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In this paper, a special approach to stochastic differential equations is explored. Specifically, the values of the mappings
involved are fuzzy sets, rather than the usual single values on the real line. Additionally, the equations under consideration
are symmetric, meaning that the terms of drift and diffusion appear on both sides of the equation, which is crucial for the
properties of the solutions. The primary goal of this paper is to establish certain qualitative results, such as the existence of
a unique solution and stability of the solution. These results are obtained under the assumption that the coefficients of the
equation satisfy a condition that is weaker than the standard Lipschitz condition. It is also noted that the results obtained
can be applied to symmetric fuzzy random integral equations and deterministic symmetric fuzzy integral equations.
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1. Introduction

Stochastic differential equations have become
a well-explored area of research, as evidenced
by numerous probabilistic studies (e.g.,
Arnold, 1974; Gihman and Skorohod, 1972; Kloeden and
Platen, 1992; Øksendal, 2003; Jackowska-Zduniak, 2022)
as well as analytic approaches (e.g., Lee et al., 2022).
This interest stems from their extensive applications in
modeling the dynamics of phenomena influenced by
stochastic disturbances. Typically, the states of such
phenomena are represented by single values, often
as real numbers. At any given moment, the states
are unpredictable due to inherent randomness. Thus,
stochastic equations can be described as equations that
embody uncertainty, specifically of a stochastic nature.
However, it is possible that not all parameters of the
phenomenon in question, such as the initial value, are
precisely defined by a single real number. Instead, we
might know that the initial value lies within the interval
[90, 110], or we might have information in the form of a
linguistic expression, such as ”approximately 100”. This
also introduces uncertainty regarding the initial value, but
this uncertainty is not stochastic in nature. The shift from

dealing with numbers to dealing with words is facilitated
by fuzzy sets (e.g., Zadeh, 1965; 2002; Xia et al.,
2022). By considering two types of uncertainty, namely
stochasticity and fuzziness, fuzzy stochastic differential
equations can be formulated. The author has conducted
extensive research in this new field (see Malinowski,
2013; 2014; 2016b; 2016a; 2020) and established a
framework for studying such equations. Fuzziness has
been incorporated into stochastic differential equations in
such a way that the values of the stochastic processes that
solve these equations are fuzzy sets, meaning the solution
is essentially a fuzzy stochastic process. Although the
concept is straightforward, the mathematical foundation
is quite complex. Within the framework established
by Malinowski (2012b; 2012a; 2013; 2014; 2016b;
2016a; 2020), other researchers are also expanding this
theory and exploring its potential applications, as seen
in e.g., the works of Bandyopadhyay and Kar (2019),
Priyadharsini and Balasubramaniam (2020), Arhrrabi
et al. (2021), Arshad and Shafqat (2022), Jafari and
Malinowski (2023), Jafari and Farahani (2023), Luo et al.
(2023), Sarhan and Ismail (2023), or Wen et al. (2024).

In the papers by Malinowski (2012b; 2012a; 2013;
2014), the structure of the fuzzy stochastic differential
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equations considered naturally mirrors and extends the
form known from classical theory (e.g., Arnold, 1974;
Gihman and Skorohod, 1972; Kloeden and Platen, 1992;
Øksendal, 2003) to the case of values in fuzzy sets.
Without delving into specifics, the integral form is given
by

x(t) = x0 ⊕
∫ t

0

a(s, x(s)) ds⊕ 〈
∫ t

0

b(s, x(s)) dB(s)
〉
,

where x0 is a fuzzy random variable, a is a fuzzy
set-valued drift coefficient that is random, b is a
single-valued random diffusion coefficient, and B is the
real-valued Brownian motion. However, as demonstrated
by Malinowski (2013), if such equations have solutions,
each solution retains the fuzziness in its values over time
(the fuzziness is non-decreasing). This characteristic
could be quite restrictive, necessitating the construction
of equations whose solutions would overcome this
limitation. Consequently, Malinowski (2016b) proposed
a slightly modified form of the equation, which is as
follows:

x(t)⊕ (−1)�
∫ t

0

a(s, x(s)) ds

⊕〈(−1)

∫ t

0

b(s, x(s)) dB(s)
〉
= x0.

This seemingly minor modification results in solutions
whose fuzziness does not increase over time. This
indicates that dealing with fuzzy stochastic differential
equations reveals interesting nuances, highlighting the
greater subtlety of such equations. To embrace
both mentioned cases of equations without having to
consider each separately, the author introduced symmetric
equations (Malinowski, 2016a; 2020), where fuzzy
stochastic integrals appear on both sides of the equation,
i.e.,

x(t)⊕
∫ t

0

a1(s, x(s)) ds⊕
〈∫ t

0

b1(s, x(s)) dB1(s)
〉

= x0⊕
∫ t

0

a2(s, x(s)) ds⊕
〈∫ t

0

b2(s, x(s)) dB2(s)
〉
.

This paper will study such equations. Our main goal will
be to provide the qualitative properties of symmetric fuzzy
stochastic differential equations such as the existence of a
unique solution and the stability of solution understood
as continuous dependence of the solution with respect
to the coefficients of the equation. Like in classical
single-valued analysis, the assertion of the existence of
a unique solution is a crucial issue because finding an
explicit solution to the stochastic differential equation is
typically not possible. Consequently, this paper does not
focus on solving specific examples or deriving explicit
solutions. Instead, it lays the groundwork for future efforts

to find approximate solutions to these equations, ensuring
the existence and uniqueness of the solutions discussed
here. We will involve the weakest conditions used so
far for the fuzzy stochastic differential equations, which
will guarantee such results. The vast majority of research
on stochastic differential equations is conducted with the
global Lipschitz condition imposed on the coefficients
of the equation (see, e.g., Arnold, 1974; Gihman and
Skorohod, 1972; Kloeden and Platen, 1992; Øksendal,
2003). In this paper, we go much further than this standard
Lipschitz condition and use a much weaker condition with
a function entangled in some integral inequality. Some
ideas of this type have been proposed for the classical
equations of Yamada (1981) or Taniguchi (1992). We not
only achieve the existence of a solution, but we show that
it is not very sensitive to small changes in the data in the
equation.

Finally, we also note that the analysis performed can
be applied effectively to both random (see Malinowski
2009; Vu, 2017, Long, 2018; Srivastava et al., 2022;
Atyia et al., 2023) and deterministic fuzzy differential
equations (see Kaleva, 1987; Berger and Schwarz, 1995;
Pedro et al., 2023; Gomes et al., 2015; Mazandarani and
Xiu, 2021). We note this fact because the latter equations
can be the subject of completely separate studies from
fuzzy stochastic differential equations.

2. Preliminaries
This section of the paper will compile the mathematical
frameworks necessary for constructing fuzzy stochastic
differential equations. Although these details are available
in the papers by Malinowski (2012b; 2012a; 2013), we
present them here for the reader’s convenience.

By P(Rd), we refer to the collection of all
non-empty, convex, and compact subsets of R

d. When
d = 1, the collection P(R) comprises intervals. The
distance between elements in P(Rd) is determined using
the Hausdorff metric H , which is defined as

H (A,B) := max
{
sup
x∈A

inf
y∈B

‖x− y‖, sup
y∈B

inf
x∈A

‖x− y‖},
where ‖ ·‖ denotes a norm in R

d. A fuzzy set u in R
d (see

Zadeh, 1965; 2002) can be represented by its membership
function (also denoted by u), which maps R

d to the
interval [0, 1]. The symbol F(Rd) refers to a collection
of fuzzy sets u : Rd → [0, 1] such that [u]α ∈ P(Rd) for
every α ∈ [0, 1], where

[u]α := { x ∈ R
d : u(x) ≥ α }

for α ∈ (0, 1] and

[u]0 := cl{ x ∈ R
d : u(x) > 0 }.

The set [u]0 is called the support of the fuzzy set u.
A straightforward measure of the fuzziness of u is
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Fuzz(u) := diam([u]0) = sup{‖x − y‖ : x, y ∈ [u]0}.
If u is a crisp (single-valued) set, then Fuzz(u) = 0.
Besides fuzzy sets from the family F(Rd), we will also
exploit fuzzy sets from its subfamily

Fc(R
d)

= {u ∈ F(Rd) : α �→ [u]α is an H-continuous map}.

The notation 〈r〉 represents the characteristic
function of the singleton {r}, where r ∈ R

d. Clearly, 〈r〉
belongs to F(Rd). The operations of addition u ⊕ v and
scalar multiplication r � u for u, v ∈ F(Rd) and r ∈ R

are defined levelwise, meaning

[u⊕ v]α = [u]α + [v]α

(where the right side denotes the Minkowski sum of sets),
[r � u]α = r · [u]α, where α ∈ [0, 1]. The fuzzy set w is
referred to as the Hukuhara difference of the fuzzy sets u
and v if u = v ⊕ w, and w is then denoted by u � v. It
is important to note that the Hukuhara difference may not
always exist, and u� v �= u⊕ (−1)� v.

The most frequently used metric in F(Rd) is

d∞(u, v) := sup
α∈[0,1]

H([u]α, [v]α).

For random variables taking values in F(Rd), we
also need to establish some settings. Let (Ω,A, P ) be
a complete probability space. The mapping F : Ω →
P(Rd) is called an A-measurable set-valued random
variable (or random set, for short) if

{ω ∈ Ω : F (ω) ∩O �= ∅} ∈ A
for every open set O ∈ R

d. The set Lp(Ω,A, P ;P(Rd))
denotes the collection of random sets F that are
Lp-integrally bounded, meaning that ω �→ H(F (ω), {0})
belongs to Lp(Ω,A, P ;R).

A mapping x : Ω → F(Rd) is considered a fuzzy
random variable if [x]α : Ω → P(Rd) is a random set for
every α ∈ [0, 1]. It has been demonstrated that x : Ω →
Fc(R

d) qualifies as a fuzzy random variable if and only if

x : (Ω,A) → (Fc(R
d),Bd∞) is A|Bd∞-measurable,

where Bd∞ represents the σ-algebra generated by the
topology induced by the metric d∞. A fuzzy random
variable x : Ω → F(Rd) is said to be Lp-integrally
bounded, for p ≥ 1, if [x]0 is an Lp-integrally bounded
random set. The set Lp(Ω,A, P ;F(Rd)) denotes all
Lp-integrally bounded fuzzy random variables.

Let I := [0, T ], where T is a fixed positive
number. Consider the probability space with a filtration
{At}t∈I that satisfies the usual hypotheses. The mapping
x : I × Ω → F(Rd) is referred to as a fuzzy stochastic
process if, for every t ∈ I , the mapping x(t, ·) : Ω →

F(Rd) is a fuzzy random variable. This process is
said to be d∞-continuous if almost all of its trajectories
(with respect to the probability measure P ), i.e., the
mappings x(·, ω) : I → F(Rd), are d∞-continuous
functions. A fuzzy stochastic process x is considered
nonanticipating if, for every α ∈ [0, 1], the mapping
[x(·, ·)]α is measurable with respect to the σ-algebra
N := {A ∈ B(I) ⊗ A : At ∈ At for every t ∈ I},
where At = {ω : (t, ω) ∈ A}. A fuzzy stochastic
process x is termed Lp-integrally bounded (p ≥ 1)
if E

∫
I
Hp([x(s, ω)]0, {0}) ds < ∞. The set Lp(I ×

Ω,N ;F(Rd)) denotes the collection of nonanticipating
and Lp-integrally bounded fuzzy stochastic processes.

For t ∈ I and a ∈ L1(I × Ω,N ;F(Rd))
we can define (see Malinowski, 2012b; 2012a) the
fuzzy stochastic Lebesgue–Aumann integral Ω � ω �→∫ t

0
a(s, ω) ds ∈ F(Rd), which is a fuzzy random variable.

This is done in such a way that
[∫ t

0

a(s, ω) ds

]α
=

∫ t

0

[a(s, ω)]α ds

for α ∈ [0, 1] and ω ∈ Ω. The integral on the
right is the well-known Aumann integral for set-valued
functions. The primary characteristics of the fuzzy
stochastic Lebesgue–Aumann integral are outlined in the
following statement.

Lemma 1. (See Malinowski, 2012b; 2012a) Let p ≥ 1. If
a, b ∈ Lp(I × Ω,N ;F(Rd)) then

(i) I ×Ω � (t, ω) �→ ∫ t

0
a(s, ω) ds ∈ F(Rd) belongs to

Lp(I × Ω,N ;F(Rd)),

(ii) the fuzzy stochastic process (t, ω) �→ ∫ t

0 a(s, ω) ds is
d∞-continuous,

(iii) P -a.e. for every t ∈ I

sup
u∈[0,t]

dp∞
(∫ u

0

a(s, ω) ds,

∫ u

0

b(s, ω) ds
)

≤ tp−1

∫ t

0

dp∞
(
a(s, ω), b(s, ω)

)
ds,

(iv) for every t ∈ I

E sup
u∈[0,t]

dp∞
(∫ u

0

a(s) ds,

∫ u

0

b(s) ds
)

≤ tp−1
E

∫ t

0

dp∞
(
a(s), b(s)

)
ds.

Unfortunately, the method used to define the fuzzy
stochastic Lebesgue integral cannot be replicated for
the construction of the Itô integral for fuzzy stochastic
processes. As demonstrated by Ogura (2008) and Zhang
(2008), when integrating ordinary set-valued mappings,
the set-valued Itô integral cannot be defined as a bounded
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set, rendering it entirely impractical. Consequently, to
address fuzzy stochastic differential equations of the Itô
type, the author suggested retaining the stochastic Itô
integral in its classical, single-valued form.

Having laid out the mathematical foundation, we can
now proceed to the main section of the paper.

3. Existence of a unique solution
Consider 0 < T < ∞, I = [0, T ], and let (Ω,A, P )
be a complete probability space with a filtration {At}t∈I

that satisfies the usual conditions. Let B1 = {B1(t)}t∈I

and B2 = {B2(t)}t∈I be two one-dimensional
{At}-Brownian motions (not necessarily independent)
defined on this space.

We start this section by clearly presenting the form
of the equation under study. We will examine symmetric
fuzzy stochastic differential equations, which can be
expressed in their symbolic differential form as follows:

dx(t) ⊕ a1(t, x(t)) dt ⊕ 〈b1(t, x(t))dB1(t)〉
I P.1
= a2(t, x(t)) dt ⊕ 〈b2(t, x(t))dB2(t)〉 (1)

with initial condition x(0)
P.1
= x0,

and where a1, a2 : I ×Ω×F(Rd) → F(Rd), b1, b2 : I ×
Ω × F(Rd) → R

d and x0 : Ω → F(Rd) is a fuzzy
random variable. The symbol “I P.1” above the equal
sign indicates that this equality is valid for every t ∈ I
and occurs with probability P equal to 1. Likewise,
the symbol “P.1” above the equal sign signifies that this
equality holds with probability P equal to 1.

The symbolic representation (1) of this differential
equation necessitates a precise definition of what
constitutes a solution to such an equation.

Definition 1. A solution on the interval I to equation (1) is
defined as a fuzzy stochastic process x : I × Ω → F(Rd)
that satisfies the following conditions:

(i) x ∈ L2(I × Ω,N ;F(Rd)),

(ii) x is d∞-continuous,

(iii) it holds

x(t)⊕
∫ t

0

a1(s, x(s)) ds⊕
〈∫ t

0

b1(s, x(s)) dB1(s)

〉
(2)

I P.1
= x0⊕

∫ t

0

a2(s, x(s)) ds⊕
〈∫ t

0

b2(s, x(s)) dB2(s)

〉
.

The terms
∫
a1 ds and

∫
a2 ds in (2) represent the

fuzzy stochastic Lebesgue–Aumann integrals discussed in
the previous section, while

∫
b1dB1(s) and

∫
b2dB2(s)

denote the classical R
d-valued stochastic Itô integrals

(see, e.g., Arnold, 1974; Gihman and Skorohod, 1972).
Ogura (2008) demonstrates that defining the fuzzy

stochastic Itô integral in the same manner as the fuzzy
stochastic Lebesgue–Aumann integral is not feasible.
Therefore, in our equations, the diffusion parts are
considered as single-valued Itô stochastic integrals.
Additionally, from the representation (2) for the solution
x, we obtain the form

x(t)
I P.1
=

[
x0 ⊕

∫ t

0

a2(s, x(s)) ds

]

�
∫ t

0

a1(s, x(s)) ds⊕
〈∫ t

0

b2(s, x(s))dB2(s)

−
∫ t

0

b1(s, x(s))dB1(s)

〉
,

(3)

where the appearance of Hukuhara differences is
inevitable. This necessitates certain inherent assumptions
to obtain the result regarding the existence of a solution.

We have already defined the solution of (1), but it is
also important to clarify what it means for the solution to
be unique.

Definition 2. A solution x : I × Ω → F(Rd) of equation
(1) is considered unique if d∞

(
x(t), y(t)

) I P.1
= 0, where

y : I × Ω → F(Rd) is any other solution of (1).
One of the primary objectives of this section is to

establish the existence and uniqueness of solutions to (1)
under conditions that are less stringent than the global
Lipschitz condition. The global Lipschitz condition was
employed, for example, by Malinowski (2012b; 2012a;
2016a). We now consider the following conditions:

(a0) x0 ∈ L2(Ω,A0, P ;Fc(R
d)),

(a1) the mappings a1, a2 : (I × Ω) ×Fc(R
d) → Fc(R

d)
are N ⊗Bd∞|Bd∞-measurable and b1, b2 : (I×Ω)×
Fc(R

d) → R
d are N ⊗ Bd∞ |B(Rd)-measurable,

(a2) there is η : I × R+ → R+ such that

(i) η(·, x) is integrable for every x ∈ R+,

(ii) η(t, ·) is continuous, nondecreasing and
concave for every t ∈ I ,

(iii) η(t, 0) = 0 for every t ∈ I ,

(iv) if for ζ : I → R+ it holds ζ(0) = 0 and

ζ(t) ≤ M

∫ t

0

η(s, ζ(s)) ds, t ∈ I,

where M is a positive constant, then ζ(t) = 0
for t ∈ I ,
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(v) with P.1 for every t ∈ I and for every u, v ∈
Fc(R

d)

max{d2∞
(
a1(t, ω, u), a1(t, ω, v)

)
,

d2∞
(
a2(t, ω, u), a2(t, ω, v)

)
,

‖b1(t, ω, u)− b1(t, ω, v)‖2,
‖b2(t, ω, u)− b2(t, ω, v)‖2}

≤ η(t, d2∞(u, v)),

(a3) there exist integrable functions γ, δ : I → R+ such
that with P.1 for every t ∈ I and for every u ∈
Fc(R

d)

max{d2∞(a1(t, ω, u), 〈0〉),
d2∞(a1(t, ω, u), 〈0〉),
‖b1(t, ω, u)‖2, ‖b2(t, ω, u)‖2}
≤ γ(t) + δ(t)d2∞(u, 〈0〉),

(a4) there exists T̃ ∈ (0, T ] such that for every n =
0, 1, 2, . . . the mappings xn : Ĩ × Ω → Fc(R

d),
where Ĩ = [0, T̃ ], described as

x0(t)
Ĩ P.1
= x0

and

xn(t)
Ĩ P.1
=
[
x0 ⊕

∫ t

0

a2(s, xn−1(s)) ds
]

�
∫ t

0

a1(s, xn−1(s)) ds

⊕
〈∫ t

0

b2(s, xn−1(s)) dB2(s)

−
∫ t

0

b1(s, xn−1(s)) dB1(s)

〉

are properly defined (specifically, the Hukuhara
differences exist).

Condition (a4) arises from the structure of the
symmetric equation (1) we are examining and is essential
due to the form (3) of the solution. When this condition
is met, the xn’s are well-defined d∞-continuous fuzzy
stochastic processes from L2(Ĩ × Ω,N ;Fc(R

d)). The
processes xn will be utilized to obtain the solution of
(1) using the Picard method. Since xn, n = 0, 1, 2, . . .
are defined in the interval Ĩ , it is expected that the
solution will also be defined in this interval. Therefore,
it will not be a global solution but rather a local one.
For symmetric fuzzy stochastic differential equations,
in general, solutions defined on a half-line cannot be
considered unless a very restrictive assumption (a4) about
the existence of Hukuhara differences for any t ∈ [0,∞)

is made. We aim to avoid such restrictive conditions.
Therefore, in assumption (a4), we posit the existence of
a number T̃ so that the Hukuhara differences exist for
t ∈ [0, T̃ ].

The generalized Lipschitz condition in (a2)(v) is
expressed using the η function, which appears in a specific
integral inequality in (a2)(iv). In Taniguchi (1992), a
result is presented that confirms the validity of this integral
inequality, and we refer to it here.

Remark 1. (Taniguchi, 1992) Consider the function
η : I × R+ → R+. Suppose that

• for every x ∈ R+ the function η(·, x) : I → R+ is
integrable,

• for every t ∈ I the function η(t, ·) : R+ → R+ is
nondecreasing and continuous,

• for every t ∈ I it holds η(t, 0) = 0,

• the differential equation dx(t) = η(t, x(t)) dt has
the solution x(·) with the following property:

• if there exists t∗ ∈ [0, T ) such that x(t∗) = 0, then
x(t) = 0 for every t ∈ [t∗, T ].

Then, if a continuous function ζ : I → R+ satisfies
ζ(0) = 0 and

ζ(t) ≤
∫ t

0

η(s, ζ(s)) ds for every t ∈ I ′

then ζ(t) = 0 for every t ∈ I .

Remark 2. (Taniguchi, 1992) Let η : I × R+ → R+ be a
function defined as η(t, x) = f(t)g(x), where

• f : I → R+ is an integrable function,

• g : R+ → R+ is a continuous and nondecreasing
function such that g(0) = 0 and

∫
0+

dx
g(x) = ∞.

Under these assumptions, η satisfies condition
(a2)(iv).
Furthermore, if f ≡ L (with L > 0 as a constant)

and g satisfies the properties mentioned in Remark 2,
including being concave, then a condition described by
Malinowski (2020) emerges. Specifically, for the case
η(t, x) = Lx, the global Lipschitz condition (a2)(v)
aligns with that introduced by Malinowski (2016a).

There are various intriguing examples of functions g
that are fitted to Remark 2, such as those found in the work
of Yamada (1981), i.e.,

g1(x) =

⎧⎨
⎩

x ln 1
x , 0 ≤ x ≤ ε,

ε ln 1
ε + g′1(ε−)(x− ε), x > ε,
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g2(x) =

⎧⎨
⎩

x ln 1
x ln ln 1

x , 0 ≤ x ≤ ε,

ε ln 1
ε ln ln

1
ε + g′2(ε−)(x− ε), x > ε,

where ε ∈ (0, 1) is a sufficiently small positive
number, and the expressions g′1(ε−) and g′2(ε−) represent
the left-hand derivatives of the functions g1 and g2
(respectively) at the point ε.

Following an initial discussion of assumptions
(a0)–(a4) concerning the properties of the coefficients in
Eqn. (1), we will demonstrate that the processes xn are
uniformly bounded together. This property will be utilized
to prove the main theorem of this section.

Lemma 2. Assume that conditions (a0)–(a4) are satisfied.
Then for every n ∈ N we have

E sup
t∈Ĩ

d2∞(xn(t), 〈0〉) ≤ Q, where Q > 0.

Proof. Let us choose n ∈ N and t ∈ Ĩ . Then

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉)

= E sup
u∈[0,t]

d2∞

([
x0 ⊕

∫ t

0

a2(s, xn−1(s)) ds
]

�
∫ t

0

a1(s, xn−1(s)) ds

⊕
〈∫ t

0

b2(s, xn−1(s))dB2(s)

−
∫ t

0

b1(s, xn−1(s))dB1(s)
〉
, 〈0〉

)

≤ 5Ed2∞(x0, 〈0〉)
+ 5E sup

u∈[0,t]

d2∞
(∫ u

0

a1(s, xn−1(s)) ds, 〈0〉
)

+ 5E sup
u∈[0,t]

d2∞
(∫ u

0

a2(s, xn−1(s)) ds, 〈0〉
)

+ 5E sup
u∈[0,t]

∥∥∥
∫ u

0

b1(s, xn−1(s))dB1(s)
∥∥∥2

+ 5E sup
u∈[0,t]

∥∥∥
∫ u

0

b2(s, xn−1(s))dB2(s)
∥∥∥2.

Applying Lemma 1 along with the Doob inequality, we
obtain

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉)

≤ 5Ed2∞(x0, 〈0〉)

+ 5tE

∫ t

0

d2∞
(
a1(s, xn−1(s)), 〈0〉

)
ds

+ 5tE

∫ t

0

d2∞
(
a2(s, xn−1(s)), 〈0〉

)
ds

+ 20E

∫ t

0

∥∥b1(s,Xn−1(s))
∥∥2 ds

+ 20E

∫ t

0

∥∥b2(s,Xn−1(s))
∥∥2 ds.

Based on assumption (a3) and applying the Fubini
theorem, we can express

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉)

≤ 5Ed2∞(x0, 〈0〉) + (10t+ 40)

∫ t

0

γ(s) ds

+ (10t+ 40)E

∫ t

0

δ(s)d2∞(xn−1(s), 〈0〉) ds

≤ 5Ed2∞(x0, 〈0〉) + (10T̃ + 40)

∫ T̃

0

γ(s) ds

+ (10T̃ + 40)

∫ t

0

δ(s)

× E sup
u∈[0,s]

d2∞(xn−1(u), 〈0〉) ds.

Consequently, we can deduce that for k ∈ N

max
1≤n≤k

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉)

≤ 5Ed2∞(x0, 〈0〉) + (10T̃ + 40)

∫ T̃

0

γ(s) ds

+ (10T̃+40)

∫ t

0

δ(s)

× max
1≤n≤k

E sup
u∈[0,s]

d2∞(xn−1(u), 〈0〉) ds.

Noting that

max
1≤n≤k

E sup
u∈[0,t]

d2∞(xn−1(u), 〈0〉)

≤ Ed2∞(x0, 〈0〉)+ max
1≤n≤k

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉),

we obtain

max
1≤n≤k

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉)

≤ 5Ed2∞(x0, 〈0〉) + (10T̃ + 40)

∫ T̃

0

γ(s) ds

+ (10T̃ + 40)Ed2∞(x0, 〈0〉)
∫ T̃

0

δ(s) ds

+ (10T̃+40)

∫ t

0

δ(s) max
1≤n≤k

E sup
u∈[0,s]

d2∞(xn(u), 〈0〉) ds.
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Now, by applying the Gronwall inequality, we deduce that

max
1≤n≤k

E sup
u∈[0,t]

d2∞(xn(u), 〈0〉)

≤ K exp{(10T̃ + 40)

∫ t

0

δ(s) ds}, t ∈ Ĩ ,

where

K = 5Ed2∞(x0, 〈0〉) + (10T̃ + 40)

∫ T̃

0

γ(s) ds

+ (10T̃ + 40)Ed2∞(x0, 〈0〉)
∫ T̃

0

δ(s) ds.

Hence, we can deduce that for all n ∈ N

E sup
u∈[0,T̃ ]

d2∞(xn(u), 〈0〉)≤Kexp{(10T̃ + 40)

∫ T̃

0

δ(s) ds},

which concludes the derivation. �
At this point, we present the main theorem

concerning the existence of a unique strong solution.

Theorem 1. Assume that conditions (a0)–(a4) are sat-
isfied. Then the symmetric fuzzy stochastic differential
equation (1) has a unique strong solution x in the inter-
val Ĩ = [0, T̃ ].

Proof. To establish the existence of a solution to (1),
we will utilize the sequence of fuzzy stochastic processes
{xn}∞n=0 outlined in (a4).

Let us choose t ∈ Ĩ . Observe that for all n, 
 ∈
N ∪ {0}, it holds that

E sup
u∈[0,t]

d2∞(xn+1(u), x�+1(u))

= E sup
u∈[0,t]

d2∞
([ ∫ u

0

a1(s, xn(s)) ds

�
∫ u

0

a2(s, xn(s)) ds
]

⊕
〈∫ u

0

b1(s, xn(s))dB1(s)

−
∫ u

0

b2(s, xn(s))dB2(s)
〉
,

[ ∫ u

0

a1(s, x�(s)) ds�
∫ u

0

a2(s, x�(s)) ds
]

⊕
〈∫ u

0

b1(s, x�(s))dB1(s)

−
∫ u

0

b2(s, x�(s))dB2(s)
〉)

≤ 4E sup
u∈[0,t]

d2∞
(∫ u

0

a1(s, xn(s)) ds,

∫ u

0

a1(s, x�(s)) ds
)

+ 4E sup
u∈[0,t]

d2∞
(∫ u

0

a2(s, xn(s)) ds,

∫ u

0

a2(s, x�(s)) ds
)

+ 4E sup
u∈[0,t]

∥∥∥
∫ u

0

b1(s, xn(s))dB1(s)

−
∫ u

0

b1(s, x�(s))dB1(s)
∥∥∥2

+ 4E sup
u∈[0,t]

∥∥∥
∫ u

0

b2(s, xn(s))dB2(s)

−
∫ u

0

b2(s, x�(s))dB2(s)
∥∥∥2

≤ 4tE

∫ t

0

d2∞
(
a1(s, xn(s)), a1(s, x�(s))

)
ds

+ 4tE

∫ t

0

d2∞
(
a2(s, xn(s)), a2(s, x�(s))

)
ds

+ 16E

∫ t

0

∥∥b1(s, xn(s))− b1(s, x�(s))
∥∥2 ds

+ 16E

∫ t

0

∥∥b2(s, xn(s))− b2(s, x�(s))
∥∥2 ds.

Based on (a2), the Fubini theorem, and the Jensen
inequality, we obtain

E sup
u∈[0,t]

d2∞(xn+1(u), x�+1(u))

≤ (8t+ 32)E

∫ t

0

η
(
s, d2∞(xn(s), x�(s))

)
ds

≤ (8t+ 32)

∫ t

0

Eη
(
s, sup

u∈[0,s]

d2∞(xn(u), x�(u))
)
ds

≤ (8T + 32)

∫ t

0

η
(
s,E sup

u∈[0,s]

d2∞(xn(u), x�(u))
)
ds.

Using Lemma 2, we can define a function ζ : Ĩ → R+ as
follows:

ζ(t) = lim sup
n,�→∞

(
E sup

u∈[0,t]

d2∞(xn(u), x�(u))

)
, t ∈ Ĩ .

Applying the Fatou lemma and invoking the continuity of
η(s, ·), we obtain

ζ(t) ≤ (8T + 32)

∫ t

0

η(s, ζ(s)) ds for t ∈ Ĩ ,

which indicates (based on assumption (a2)(iv)) that
ζ(t) = 0 for all t ∈ Ĩ . Therefore, for every t ∈ Ĩ

lim
n,�→∞

Ed2∞(xn(t), x�(t)) = 0.
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Taking into account the metric

ρ(x, y) =
(
Ed2∞(x, y)

)1/2

in L2(Ω,At, P ;Fc(R
d)), we obtain the metric space (cf.

Feng, 1999). Therefore, for each t ∈ Ĩ , there exists xt ∈
L2(Ω,At, P ;Fc(R

d)) such that

Ed2∞(xn(t), xt) −→ 0 as n → ∞.

Thus, by setting x(t, ω) = xt(ω), we can establish a
fuzzy stochastic process x : Ĩ × Ω → Fc(R

d) that is
{At}-adapted. In the following, we will demonstrate that
the process x meets the criteria outlined in Definition 1.
Indeed, given that

lim
n,�→∞

(
E sup

u∈Ĩ

d2∞(xn(u), x�(u))

)
= 0,

we can apply Chebyshev’s inequality to obtain: for any
ε > 0

P
(
sup
u∈Ĩ

d2∞
(
xn(u), x�(u)

)
> ε
)
−→ 0 as n, 
 → ∞.

Therefore, we conclude that there exists a subsequence
{xnk

(·, ·)} of the sequence {xn(·, ·)} such that

sup
u∈Ĩ

d∞
(
xnk

(u), x(u)
) P.1−→ 0 as k → ∞.

Thus, the process x is d∞-continuous and, as a result,
B(Ĩ)⊗A-measurable. Given that x is also {At}-adapted,
we infer that x is N -measurable. Given that x(t) ∈
L2(Ω,A, P ;Fc(R

d)) for all t ∈ Ĩ , we can express

E

∫
Ĩ

d2∞(x(t), 〈0〉) dt ≤ T̃ sup
t∈Ĩ

Ed2∞(x(t), 〈0〉) < ∞

which indicates that x ∈ L2(Ĩ × Ω,N ;Fc(R
d)).

We will demonstrate that the recently defined fuzzy
stochastic process x is the desired solution to (1). To
achieve this, let us observe that for each t ∈ Ĩ

Ed2∞

(
x(t),

[
x0 ⊕

∫ t

0

a2(s, x(s)) ds
]

�
∫ t

0

a1(s, x(s)) ds

⊕
〈∫ t

0

b2(s, x(s))dB2(s)−
∫ t

0

b1(s, x(s)) dB1(s)
〉)

≤ 3z1n(t) + 3z2n(t) + 3z3n(t),

where
z1n(t) = Ed2∞(xn(t), x(t)),

z2n(t) = Ed2∞
(
xn,
[
x0 +

∫ t

0

a2(s, xn−1(s)) ds
]

�
∫ t

0

a1(s, xn−1(s)) ds

⊕
〈∫ t

0

b2(s, xn−1(s)) dB2(s)

−
∫ t

0

b1(s, xn−1(s))dB1(s)
〉)

,

z3n(t) = Ed2∞
([∫ t

0

a2(s, xn−1(s)) ds

�
∫ t

0

a1(s, xn−1(s)) ds
]

⊕
〈∫ t

0

b2(s, xn−1(s)) dB2(s)

−
∫ t

0

b1(s, xn−1(s))dB1(s)
〉
,

[∫ t

0

a2(s, x(s)) ds�
∫ t

0

a1(s, x(s)) ds
]

⊕
〈∫ t

0

b2(s, x(s)) dB2(s)

−
∫ t

0

b1(s, x(s))dB1(s)
〉)

.

Clearly, z1n(t)
n→∞−→ 0 and z2n(t) = 0 for all t ∈ Ĩ .

Observe that

z3n(t) ≤ 4tE

∫ t

0

d2∞
(
a1(s, xn−1(s)), a1(s, x(s))

)
ds

+ 4tE

∫ t

0

d2∞
(
a2(s, xn−1(s)), a2(s, x(s))

)
ds

+ 4E

∫ t

0

∥∥b1(s, xn−1(s)) − b1(s,X(s))
∥∥2 ds

+ 4E

∫ t

0

∥∥b2(s, xn−1(s)) − b2(s, x(s))
∥∥2 ds

≤ 8(t+ 1)E

∫ t

0

η
(
s, d2∞(xn−1(s), x(s))

)
ds

≤ 8(t+ 1)

∫ t

0

η
(
s,Ed2∞(xn−1(s), x(s))

)
ds.

By applying the Lebesgue dominated convergence
theorem, the continuity of η(s, ·) and assumption
η(s, 0) = 0, we obtain that z3n(t)

n→∞−→ 0 for t ∈ Ĩ .
Therefore, for each t ∈ Ĩ

Ed2∞
(
x(t),

[
x0⊕

∫ t

0

a2(s, x(s)) ds
]�
∫ t

0

a1(s, x(s)) ds

⊕
〈∫ t

0

b2(s, x(s))dB2(s)−
∫ t

0

b1(s, x(s))dB1(s)
〉)

= 0.
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Thus, for each t ∈ Ĩ

d2∞
(
x(t),

[
x0 ⊕

∫ t

0

a2(s, x(s)) ds
] �

∫ t

0

a1(s, x(s)) ds

⊕
〈∫ t

0

b2(s, x(s))dB2(s)−
∫ t

0

b1(s, x(s))dB1(s)
〉)

P.1
= 0.

However, since the process x is d∞-continuous, it follows
that

d2∞
(
x(t),

[
x0 ⊕

∫ t

0

a2(s, x(s)) ds
] �

∫ t

0

a1(s, x(s)) ds

⊕
〈∫ t

0

b2(s, x(s))dB2(s)−
∫ t

0

b1(s, x(s))dB1(s)
〉)

Ĩ P.1
= 0.

This precisely indicates that x is a strong solution to (1).
Finally, we will demonstrate the uniqueness of x. Let y
represent another solution to (1). Then, for each t ∈ Ĩ , we
have

E sup
u∈[0,t]

d2∞(x(u), y(u))

≤ 4tE

∫ t

0

d2∞(a1(s, x(s)), a1(s, y(s))) ds

+ 4tE

∫ t

0

d2∞(a2(s, x(s)), a2(s, y(s))) ds

+ 16E

∫ t

0

‖b1(s, x(s)) − b1(s, y(s))‖2 ds

+ 16E

∫ t

0

‖b2(s, x(s)) − b2(s, y(s))‖2 ds

≤ (8t+ 32)

∫ t

0

Eη(s, d2∞(x(s), y(s))) ds

≤ (8T̃ + 32)

∫ t

0

η(s,E sup
u∈[0,s]

d2∞(x(s), y(s))) ds.

Based on (a2)(iv), we have

E sup
u∈Ĩ

d2∞(x(u), y(u)) = 0,

which directly implies

d∞(x(u), y(u))
Ĩ P.1
= 0.

Therefore, the solution x is unique. �
The above statement is extremely important.

Usually, it is not possible to find the solution as a
concrete process even in the case of single-valued
stochastic differential equations, and it is even more
difficult in the fuzzy context presented by Malinowski
(2013; 2014; 2016b). Therefore, being sure that the
equation has a solution at all is a fundamental aspect of
analysis. The significance of this result lies also in the fact
that, with the knowledge that the equation has a unique
solution, future research can be considered focused
on finding approximate solutions through numerical
methods.

4. Insensitivity of solution
In this section, we explore additional well-posedness
properties. These properties pertain to the validation
of the solution’s stability for symmetric fuzzy stochastic
differential equations. Stability, in this context, refers
to the solution’s minimal sensitivity to variations in the
equation parameters, such as changes in the initial value
and modifications in the drift and diffusion coefficients.

Consider the equation (1) with the initial value x0

and solution x, if it exists. Additionally, consider the
following equations:

dxn(t)⊕ a1(t, xn(t)) dt⊕ 〈b1(t, xn(t))dB1(t)〉
I P.1
= a2(t, xn(t)) dt⊕ 〈b2(t, xn(t))dB2(t)〉, (4)

xn(0)
P.1
= x0,n,

for n ∈ N, with initial values x0,n and solutions xn, if
they exist.

Theorem 2. Consider fuzzy random variables
x0, x0,n : Ω → Fc(R

d), n ∈ N, which satisfy
(a0). Let a1, a2 : I × Ω × Fc(R

d) → Fc(R
d) and

b1, b2 : I × Ω× Fc(R
d) → R

d satisfy (a1)-(a4), particu-
larly achieving (a4) with the same constant T̃ for x0 and
each x0,n. Assume that

lim
n→∞Ed2∞(x0,n, x0) = 0.

Then the solution x to (1) remains stable with respect to
the solutions xn to (4), meaning that

lim
n→∞E sup

t∈Ĩ

d2∞(xn(t), x(t)) = 0.

Proof. Fix t ∈ Ĩ . We observe that

E sup
u∈[0,t]

d2∞(xn(u), x(u))

≤ 5Ed2∞(x0,n, x0)

+ 5E sup
u∈[0,t]

d2∞
(∫ t

0

a1(s, xn(s)) ds,

∫ t

0

a1(s, x(s)) ds
)

+ 5E sup
u∈[0,t]

d2∞
(∫ t

0

a2(s, xn(s)) ds,

∫ t

0

a2(s, x(s)) ds
)

+ 5E sup
u∈[0,t]

∥∥∥
∫ t

0

b1(s, xn(s))dB1(s)

−
∫ t

0

b1(s, x(s))dB1(s)
∥∥∥2

+ 5E sup
u∈[0,t]

∥∥∥
∫ t

0

b2(s, xn(s))dB2(s)

−
∫ t

0

b2(s, x(s))dB2(s)
∥∥∥2

≤ 5Ed2∞(x0,n, x0)

+ 5tE

∫ t

0

d2∞(a1(s, xn(s)), a1(s, x(s))) ds
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+ 5tE

∫ t

0

d2∞(a2(s, xn(s)), a2(s, x(s))) ds

+ 20E

∫ t

0

‖b1(s, xn(s))− b1(s, x(s))‖2 ds

+ 20E

∫ t

0

‖b2(s, xn(s))− b2(s, x(s))‖2 ds.

Based on assumption (a2) and the characteristics of the
function η, we obtain

E sup
u∈[0,t]

d2∞(xn(u), x(u))

≤ 5Ed2∞(x0,n, x0)

+ (10T̃ + 40)

∫ t

0

η(s,E sup
u∈[0,s]

d2∞(xn(u), x(u))) ds.

Define

ζn(t) := E sup
u∈[0,t]

d2∞(xn(u), x(u))

and
ζ(t) := lim

n→∞ gn(t)

for t ∈ Ĩ . Then

ζn(t) ≤ 5Ed2∞(x0,n, x0)+ (10T̃ +40)

∫ t

0

η(s, ζn(s)) ds

and by the properties of η and the assumption on
Ed2∞(x0,n, x0), we have

ζ(t) ≤ (10T̃ + 40)

∫ t

0

η(s, ζ(s)) ds.

Based on assumption (a2)(iv), we have ζ(t) ≡ 0.
Therefore,

lim
n→∞E sup

u∈[0,t]

d2∞(xn(t), x(t)) = 0 for every t ∈ Ĩ .

Consequently,

lim
n→∞E sup

t∈Ĩ

d2∞(xn(t), x(t)) = 0

which concludes the proof. �
To demonstrate stability when the coefficients

a1, a2, b1, b2 undergo slight changes, we consider Eqn. (1)
with initial value x0 and solution x, if it exists, along with
the following equations:

dxn(t)⊕ an1 (t, xn(t)) dt ⊕ 〈bn1 (t, xn(t))dB1(t)〉 (5)
I P.1
= an2 (t, xn(t)) dt ⊕ 〈bn2 (t, xn(t))dB2(t)〉,

xn(0)
P.1
= x0,

for n ∈ N with the same initial value x0 and solutions xn,
if they exist.

Theorem 3. Consider a fuzzy random variable x0 : Ω →
Fc(R

d) that satisfies (a0). Assume that the conditions
(a1)-(a4) are met, with the same constant T̃ and the same
function η, for

a1, a2 : I × Ω×Fc(R
d) → Fc(R

d),

b1, b2 : I × Ω× Fc(R
d) → R

d,

an1 , a
n
2 : I × Ω×Fc(R

d) → Fc(R
d)

and

bn1 , b
n
2 : I × Ω×Fc(R

d) → R
d for every n = 1, 2, . . . .

Suppose that for every (t, u) ∈ Ĩ ×Fc(R
d)

lim
n→∞E

∫ T̃

0

d2∞(ank (t, u), ak(t, u)) dt = 0

and

lim
n→∞E

∫ T̃

0

‖bnk (t, u)− bnk (t, u))‖2 dt = 0, k = 1, 2.

Then the solution x to (1) remains stable with respect to
the solutions xn to (5), meaning that

lim
n→∞E sup

t∈Ĩ

d2∞(xn(t), x(t)) = 0.

Proof. Fix the moment t ∈ Ĩ . Note that

E sup
u∈[0,t]

d2∞(xn(u), x(u))

≤ 4E sup
u∈[0,t]

d2∞
(∫ t

0

an1 (s, xn(s)) ds,

∫ t

0

a1(s, x(s)) ds
)

+ 4E sup
u∈[0,t]

d2∞
(∫ t

0

an2 (s, xn(s)) ds,

∫ t

0

a2(s, x(s)) ds
)

+ 4E sup
u∈[0,t]

∥∥∥
∫ t

0

bn1 (s, xn(s)) dB1(s)

−
∫ t

0

b1(s, x(s)) dB1(s)
∥∥∥2

+ 4E sup
u∈[0,t]

∥∥∥
∫ t

0

bn2 (s, xn(s)) dB2(s)

−
∫ t

0

b2(s, x(s))dB2(s)
∥∥∥2
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≤ 8E sup
u∈[0,t]

d2∞
(∫ t

0

an1 (s, xn(s)) ds,

∫ t

0

an1 (s, x(s)) ds
)

+8E sup
u∈[0,t]

d2∞
(∫ t

0

an1 (s, x(s)) ds,

∫ t

0

a1(s, x(s)) ds
)

+ 8E sup
u∈[0,t]

d2∞
(∫ t

0

an2 (s, xn(s)) ds,

∫ t

0

an2 (s, x(s)) ds
)

+ 8E sup
u∈[0,t]

d2∞
(∫ t

0

an2 (s, x(s)) ds,

∫ t

0

a2(s, x(s))ds
)

+ 8E sup
u∈[0,t]

∥∥∥
∫ t

0

bn1 (s, xn(s))dB1(s)

−
∫ t

0

bn1 (s, x(s))dB1(s)
∥∥∥2

+ 8E sup
u∈[0,t]

∥∥∥
∫ t

0

bn1 (s, x(s))dB1(s)

−
∫ t

0

b1(s, x(s))dB1(s)
∥∥∥2

+ 8E sup
u∈[0,t]

∥∥∥
∫ t

0

bn2 (s, xn(s))dB2(s)

−
∫ t

0

bn2 (s, x(s))dB2(s)
∥∥∥2

+ 8E sup
u∈[0,t]

∥∥∥
∫ t

0

bn2 (s, x(s))dB2(s)

−
∫ t

0

b2(s, x(s))dB2(s)
∥∥∥2

≤ Kn + 8tE

∫ t

0

d2∞(an1 (s, xn(s)), a
n
1 (s, x(s))) ds

+ 8tE

∫ t

0

d2∞(an2 (s, xn(s)), a
n
2 (s, x(s))) ds

+ 32E

∫ t

0

‖bn1 (s, xn(s))− bn1 (s, x(s))‖2 ds

+ 32E

∫ t

0

‖bn2 (s, xn(s))− bn2 (s, x(s))‖2 ds,

where

Kn = 8T̃E

∫ T̃

0

d2∞(an1 (s, x(s)), a1(s, x(s))) ds

+ 8T̃E

∫ T̃

0

d2∞(an2 (s, x(s)), a2(s, x(s))) ds

+ 32E

∫ T̃

0

‖bn1 (s, x(s)) − b1(s, x(s))‖2 ds

+ 32E

∫ t

0

‖bn2 (s, x(s)) − b2(s, x(s))‖2 ds.

Based on assumption, we obtain

lim
n→∞Kn = 0.

Given assumption (a2) and the properties of the function
η, we can state

E sup
u∈[0,t]

d2∞(xn(u), x(u))

≤ Kn + (16T̃ + 64)

∫ t

0

η(s,E sup
u∈[0,s]

d2∞(xn(u), x(u))) ds.

Let us redefine

ζn(t) := E sup
u∈[0,t]

d2∞(xn(u), x(u))

and
ζ(t) := lim

n→∞ ζn(t)

for t ∈ Ĩ . Observe that

ζn(t) ≤ Kn + (16T̃ + 64)

∫ t

0

η(s, ζn(s)) ds

and based on assumptions about η, we get

ζ(t) ≤ (16T̃ + 64)

∫ t

0

η(s, ζ(s)) ds

which implies that ζ(t) ≡ 0. Thus,

lim
n→∞E sup

t∈Ĩ

d2∞(xn(t), x(t)) = 0

which concludes the proof. �
Therefore, we have demonstrated that the problems

described by the symmetric fuzzy stochastic differential
equation (1), with coefficients meeting conditions
(a0)–(a4), are well-posed. This implies that there is
a unique solution, and it remains stable under minor
variations in the coefficients.

5. Connections to random and deterministic
symmetric fuzzy differential equations

Assuming b1 ≡ 0 and b2 ≡ 0 in (1), we derive a
symmetric fuzzy random differential equation:

dx(t, ω)⊕ a1(t, ω, x(t, ω)) dt
I P.1
= a2(t, ω, x(t, ω)) dt,

with initial condition x(0, ω)
P.1
= x0(ω), (6)

where a1, a2 : I × Ω×Fc(R
d) → Fc(R

d) and x0 : Ω →
Fc(R

d) is a fuzzy random variable.
Since the Itô stochastic integral is absent in this

equation, the solution no longer needs to be an
N -measurable process. Instead, the product measurability
of process x suffices. Specifically, a fuzzy stochastic
process x : I × Ω → Fc(R

d) is a solution to (6) if
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x ∈ L1(I × Ω,B(I) ⊗ A;Fc(R
d)), x is d∞-continuous,

and

x(t, ω)⊕
∫ t

0

a1(s, ω, x(s, ω)) ds

I P.1
= x0(ω)⊕

∫ t

0

a2(s, ω, x(s, ω)) ds.

The uniqueness of the solution is understood as per
Definition 2. The analysis conducted in the previous
sections can be applied to derive the equivalents of
Theorems 1, 2, and 3, but this time for equation (6). In
this context, the conditions (a0) and (a1) can be slightly
relaxed for measurability purposes. Therefore, in (a0), it
is sufficient that

• (a0r) x0 ∈ L2(Ω,A, P ;Fc(R
d)),

and in (a1) that
• (a1r) a1 and a2 are (B(I) ⊗ A) ⊗

Bd∞ |Bd∞-measurable. Then we obtain the counterpart of
Theorem 1 below.

Corollary 1. Suppose that x0, a1, a2 meet the conditions
(a0r), (a1r), (a2)–(a4). Then the symmetric fuzzy random
differential equation (6) has a unique solution.
The analogs of Theorems 2 and 3 for equation (6) follow
directly.

Besides the random equation (6) derived from
equation (1), we can also formulate a deterministic
symmetric fuzzy differential equation:

dx(t)⊕ a1(t, x(t)) dt = a2(t, x(t)) dt,

with initial condition x(0) = x0, (7)

where a1, a2 : I ×F(Rd) → F(Rd) and x0 ∈ F(Rd).
A solution to (7) is a deterministic fuzzy mapping

x : I → F(Rd) that satisfies: x is d∞-continuous and

x(t) ⊕
∫ t

0

a1(s, x(s)) ds = x0 ⊕
∫ t

0

a2(s, x(s)) ds

for all t ∈ I . Since x0 is merely a fuzzy set and not a
mapping, a condition like (a0) is no longer necessary. The
remaining conditions are:

(a1d) the mappings a1, a2 : I × F(Rd) → F(Rd) are
β(I) ⊗ Bd∞ |Bd∞-measurable, where β(I) denotes
the Borel σ-algebra of subsets of I ,

(a2d) there exists a function η : I × R+ → R+ such
that η(·, r) is integrable for every r ∈ R+, η(t, ·)
is continuous, nondecreasing and concave for every
t ∈ I , η(t, 0) = 0 for every t ∈ I ,

– if for ζ : I → R+ it holds ζ(0) = 0 and
ζ(t) ≤ M

∫ t

0 η(s, ζ(s)) ds for t ∈ I , where M
is a positive constant, then ζ(t) = 0 for t ∈ I ,

– for every t ∈ I and for any u, v ∈ F(Rd)

max

{
d2∞
(
a1(t, u), a1(t, v)

)
, d2∞

(
a2(t, u), a2(t, v)

)}

≤ η(t, d2∞(u, v)),

(a3d) there exist integrable functions γ, δ : I → R+ such
that for every t ∈ I and for every u ∈ F(Rd)

max

{
d2∞(a1(t, u), 〈0〉), d2∞(a2(t, u), 〈0〉)

}

≤ γ(t) + δ(t)d2∞(u, 〈0〉),

(a4d) there exists T̃ ∈ (0, T ] such that for every n =
0, 1, 2, . . . the mappings xn : Ĩ → F(Rd), where
Ĩ = [0, T̃ ], described as

x0(t) ≡ x0

and

xn(t) =
[
x0 ⊕

∫ t

0

a2(s, xn−1(s)) ds
]

�
∫ t

0

a1(s, xn−1(s)) ds t ∈ Ĩ

are well-defined.

Corollary 2. Assume that a1, a2 : I × F(Rd) → F(Rd)
satisfy conditions (a1d)–(a4d). Then the deterministic
symmetric fuzzy differential equation (7) has a unique so-
lution.

Analogously, the results regarding the low sensitivity
of the solution to minor variations in the equation
parameters can be derived. This means that the
counterparts of Theorems 2 and 3 for the deterministic
equation (7) can be established.

6. Concluding remarks
This paper investigates symmetric fuzzy stochastic
differential equations. The term “symmetric” refers to
the inclusion of drift and diffusion components on both
sides of the equation. In the context of fuzzy equations,
this symmetry is particularly meaningful and leads to new
properties of the solutions, highlighting the importance of
studying such equations. However, this paper primarily
focuses on establishing the well-posedness of these
equations, which means proving the existence of a unique
solution and the stability of the solution with respect to
small changes in the equation’s parameters, such as the
initial value and the drift and diffusion coefficients. These
results were obtained under conditions much weaker
than the usual global Lipschitz condition with a constant
Lipschitz constant. We assumed that the coefficients of the
equation satisfy a condition involving a function within
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an integral inequality, which significantly generalizes the
Lipschitz condition with a constant. The theorems we
derived enable the practical application of these equations
in problems where the dynamics must be described by
differential equations that account for uncertainties from
both randomness and ambiguity. The conditions on the
coefficients of the equation used in this paper can be
weakened in future studies. For example, coefficients that
are discontinuous or locally unbounded can be considered,
and methods leading to Lp conditions with p > d/2 can
be applied (cf. Lee et al., 2022). In addition, the results
provide a foundation for future research on the discovery
of approximate solutions, including the use of numerical
methods. The numerical perspective can bring about the
study of a convergence rate of stochastic approximation
schemes, and this appears interesting.
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