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In this paper, a fault detection mechanism using interval observers and a robust fault-tolerant control strategy with dynamic
event-triggered mechanism are designed for the switched control problem during the transformation process of a morphing
aircraft. Firstly, an interval observer design method for the nonlinear switched system is given. It is converted by coordinate
transformation into the form of solving Sylvester’s equation in the absence of actuator faults. Secondly, by using the
output of the interval observer, the upper and lower bounds of the system output under the no actuator faults condition
are constructed, and the design of the fault detection mechanism is achieved by monitoring whether the system output
exceeds the bounds. Thirdly, in order to save communication resources, a robust fault-tolerant control strategy based on
dynamic event-triggered mechanism is designed. Based on fault detection results, two different controllers are utilized for
switched control, ensuring the boundedness of the closed-loop system signal, and conditions for the asymptotic stability of
the closed-loop system are offered. Finally, a nonlinear model of morphing aircraft system with variable wing curvature is
used to verify the validity of the designed scheme.

Keywords: morphing aircraft, interval observer, fault detection, dynamic event-triggered, robust fault-tolerant control,
switched system.

1. Introduction
With the rapid development of aviation technology,
traditional aircrafts are gradually showing their limitations
in carrying out complex and diversified missions. These
aircrafts typically have fixed aerodynamic configurations
that cannot be adapted to changing flight environments
and mission requirements. As a result, the concept of the
morphing aircraft has emerged. It enables the aircraft to
adjust its morphology to maintain an optimal flight state
according to different flight environments and mission
needs by changing its aerodynamic configuration during
flight, such as variable wingspan, variable swept-back
wing, etc. (Dong et al., 2015; Wu et al., 2017).
However, as the morphing aircraft is a complex nonlinear
switched system with serious external disturbances in its
transformation process, researchers mostly adopt the idea
of combining several control methods. This leads to
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its controller design process appears to be exceptionally
difficult.

Switched systems, as a hybrid system, can be
modelled for many engineering applications due to the
presence of various jump parameters. However, the study
of switched systems is made difficult by the fact that
their dynamics depend on the subsystems’h dynamics
and switching signals. This makes it difficult to study
the stability of these systems. In order to address this
issue, methods such as common Lyapunov functions,
multiple Lyapunov functions, and the average dwell
time method have been proposed by researchers for
studying the stability of switched systems under arbitrary
or constrained switching signals (Meng et al., 2020;
Wang et al., 2019; Zhao et al., 2011). The theory of
switched systems provides an effective way in the problem
of designing control systems for morphing aircrafts
(Ligang et al., 2020; Liang et al., 2019). Q-learning
based switched control strategies for variable swept wing
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deformable aircraft are investigated by Ligang et al.
(2020). The relevant altitude motion model is established
and the inner and outer two-part controllers are designed
to learn the optimal commands through the Q-learning
algorithm. Liang et al. (2019) establish a longitudinal
short-period linear switched model of a morphing aircraft
by combining with the theory of switched system to
address the control problem of the morphing aircraft
during its transformation process. An improved robust
adaptive control law is designed to suppress the effects
of various kinds of disturbances and uncertainties on the
system.

Nowadays, the research on nonlinear systems turns
to various practical scenarios. Event-triggered control
(ETC) is one of the important directions. It has attracted
much attention from researchers due to its ability to
reduce computational cost and communication resources
while maintaining satisfactory system performance (Wu
et al., 2021; Ma et al., 2020; Ding et al., 2019).
Since the application fields of switched systems are
very wide and most of them rely on networks for
information transmission, networked control inevitably
has the problems of limited bandwidth and additional
occupied communication resources. Therefore, it
is especially necessary to introduce event-triggered
mechanism in switched system (Liu et al., 2019; Lian
and Li, 2021). In the work of Liu et al. (2019), the
problem of fault detection in network switched control
systems subject to repetitive scalar nonlinearities and
random perturbations under an event-triggered scheme is
considered. A nonlinear fault detection filter is proposed
to generate residual signals and detect system faults, and
an event-triggered strategy is applied to limit the signal
transmission.

Compared to static event-triggered mechanism,
in order to further reduce the consumption of
communication resources, a dynamic event-triggered
mechanism is proposed by Girard (2014) as well as
Xia and Fu (2024). That is, internal dynamic variables
are added to the static event triggered conditions. In
this way, a larger trigger interval and fewer triggers
can be obtained under the premise of ensuring system
performance. Currently, many researchers have studied
the application of event-triggered mechanisms, and the
research results are quite abundant. Event-triggered
mechanisms are widely used in dealing with various
types of problems (Li et al., 2021; Long et al., 2022; Wan
et al., 2021). The transient H∞ tracking performance of
switching linear variable parameter (LPV) aero-engine
models over a limited time range is investigated using a
dynamic event triggered method by Li et al. (2021). By
constructing a novel dynamic event-triggered mechanism,
the transmission interval can be dynamically adjusted
according to the changes in tracking performance, which
greatly reduces the transmission cost. In the work of

Long et al. (2022) robust adaptive event-triggered control
of nonlinear switched systems is investigated. The robust
adaptive controller under dwell time switching is designed
by backstepping method. And the event-triggered
mechanism is integrated into the switched controller,
which can effectively avoid zeno behavior and ensure
the global asymptotic stability of the system. Wan
et al. (2021) investigate fault detection and isolation
under the dynamic event triggered mechanism for
switched systems and propose an improved dynamic
event triggering mechanism. Also the dynamic event
triggered mechanism is improved, which contains two
internal dynamic variables, mode information and seven
adjustable parameters. Therefore, the data transmission
can be flexibly adjusted to save network resources.

In the last decade, fault-tolerant control has made
significant advances in the design and implementation of
control strategies and mechanisms capable of maintaining
stability in the event of system failures or errors.
These advances are largely based on the design of an
integrated fault diagnosis and compensation architecture
(FDA). The architecture typically employs fault detection,
isolation and estimation (FDIE) mechanisms to provide
relevant fault information for the design of the controller
(Abbaspour et al., 2017; Avram et al., 2017). In the
work of Abbaspour et al. (2017) sensor and actuator
fault identification control for unmanned aerial vehicles
(UAVs) using a neural adaptive observer is investigated
using an extended Kalman filter to reconstruct the
parameters. Avram et al. (2017) design a fault diagnosis
architecture consisting of a nonlinear fault estimator and a
set of nonlinear adaptive fault isolation estimators based
on the functional structure of the fault. After isolating
the faults, the fault parameter estimates generated by
the matched isolation estimators are used to adapt and
compensate for the effects of the faults.

Due to the ever-increasing complexity of industrial
systems, the fault of any single component can lead
to serious damage or even catastrophic consequences.
Therefore, fault detection techniques are essential in
improving the safety and reliability of the system and in
preventing faults from occurring. Early fault detection
relied heavily on hardware redundancy, which had the
advantage of high reliability and the ability to isolate
faults directly. However, due to high cost and space
constraints, this method is no longer applicable in modern
control systems. As a result, analytical redundancy-based
fault detection methods have emerged, which can be
broadly classified into model-based (Habibi et al., 2019;
Junnila and Laihonen, 2020), signal processing-based
(Germán-Salló and Strnad, 2018) and observer-based
(Ashraf et al., 2021; Li et al., 2019) fault detection
methods. The observer is widely used as an effective
residual generator for fault detection. An adaptive
fault/state observer with H∞ performance is proposed
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by Ashraf et al. (2021) to estimate actuator and sensor
faults simultaneously. To implement the tracking control
a nonlinear sliding mode state feedback control law
is designed based on the estimated state and fault
information of the fault estimation unit. In the work
of Li et al. (2019), the problem of fault detection and
fault estimation for DC-DC conversion based switching
systems is mainly investigated. Fault detection is achieved
by designing a sliding mode observer (SMO) to generate
residual signals, comparing them with a predetermined
threshold, and fault estimation is achieved by using fault
reconstruction methods.

With the rise of interval observer theory, new ideas
for fault detection have been provided (Guo et al., 2019;
Guo and Zhu, 2016a; Yang and Zhang, 2018). By
constructing upper and lower bounds of the observer, the
interval observer provides a limit for the dynamic change
of the state and a natural threshold for fault diagnosis. The
two links of designing residual evaluator and threshold
selector are omitted in the traditional observer-based fault
diagnosis method, and the method is concise and intuitive.
In the work of Guo et al. (2019), for generalized systems
containing actuator faults, a methodology to achieve fault
detection using interval observers is investigated. Guo
and Zhu (2016a) utilize an interval observer to construct
the corresponding residuals, and propose a fault detection
method for nonlinear systems with both uncertainty and
external disturbances and containing actuator faults.

Based on the above analysis, a fault detection
mechanism based on interval observer and a robust
fault-tolerant control problem based on dynamic
event-triggered mechanism are investigated for the
morphing aircraft system. The main contributions of this
paper can be summarized as follows:

(i) Fault detection for a morphing aircraft system in
the presence of external disturbances, actuator faults,
and uncertainties is achieved by designing an interval
observer.

(ii) A robust fault-tolerant controller based on the
dynamic event-triggered mechanism is constructed,
and the conditions for the closed-loop system to
be asymptotically stable are given, and the Zeno
behavior is excluded. According to the results
of fault detection, the switched control with two
different controllers can ensure the boundedness of
the signal of the closed-loop system and greatly
reduce the number of communications.

(iii) The validity of the scheme is verified by nonlinear
simulation of the morphing aircraft system with
variable wing curvature used in the literature (Zhu
and Yu, 2022).

Based on the above analysis, the present paper makes the
following main contributions:

(i) In order to visualize real-time fault information,a
novel fault detection mechanism is introduced that
employs interval observers for nonlinear switched
systems, allowing intuitive fault identification by
monitoring whether the system output exceeds
predefined bounds.

(ii) To solve the difficult problem of communication
resource efficiency in fault-tolerant control, a
dynamic event-triggered robust fault-tolerant control
strategy is proposed. Based on the real-time fault
detection results obtained from the interval observer,
different controllers can be used for switching
control by the strategy, which effectively reduces
data transmission while ensuring that the signal of
the closed-loop system is bounded.

(iii) The effectiveness of the designed fault detection
mechanism and fault-tolerant control method
is verified through modeling and simulation of
a morphing aircraft system with variable wing
curvature, providing theoretical support for practical
applications.

2. Modelling and analysis of the morphing
aircraft

Morphing aircraft with variable wing curvature is
considered in this paper. The longitudinal periodic
nonlinear dynamics of the morphing aircraft is expressed
as follows (Zhu and Yu, 2022):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mV γ̇ = T̃ sinα+ Lf −mg cos γ − FIz ,

mV α̇ = −T̃ sinα− Lf +mg cos γ + FIz +mV q,

q̇ = − İy
Iy
q + 1

Iy

(
−Sxg cos θ +MA + T̃ZT +MIy

)
,

θ̇ = q,
(1)

wherem is the mass of the aircraft, V is the flight speed, γ
is the trajectory angle, q is the pitch angle speed, θ is the
pitch angle, T̃ is the thrust, α is the angle of approach,
g is the gravitational acceleration, Iy is the rotational
moment of inertia of the aircraft around the y-axis of the
fuselage, ZT is the power position, Lf is the lift, MA

is the aerodynamically generated pitching moment, and
MIy is the moment of inertia induced by the body-change
process.

Defining x̄f as the distance from the leading edge
vertex at the wing’s maximum curvature, and ȳc(x̄) as
the wing curvature distribution function with a maximum
value of relative curvature c̄, one can get

ȳc(x̄) = 0.5(ȳup + ȳdown), (2)

c̄ =
c

r
= [ȳc(x̄)]max, (3)
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x̄f =
xf
r
, (4)

where ȳup denotes the perpendicular distance of the upper
surface of the airfoil with respect to the chord line and
ȳdown denotes the perpendicular distance of the lower
surface of the airfoil with respect to the chord line.
The distribution of the two in the chord length direction
together defines the thickness and shape characteristics of
the airfoil.

Using the small disturbance linearization method to
linearize the system (1) at the equilibrium point, the state
matrix A and control matrix B can be obtained:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2
Q0SWCD0

mV0

Q0SW (CL0 − CDα)

m

−2
Q0SWCL0

mV0
−Q0SW (CD0 + CLα)

m
0 0

2
Q0SW cACM0

IyV0

Q0SW cACMα

Iy

−g 0
0 1
0 1
0 0

⎤

⎥
⎥
⎦ , (5)

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
TδT
m

−Q0SWCLδe

mV0
0

0 0
Q0SW cACMδe

Iy
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

V0 , Q0 , SW , CD0 , CL0 , CM0 , CMδe , TδT , cA are
the flight speed of the morphing aircraft at the equilibrium
point, the dynamic pressure, the wing reference area, the
lift coefficient, the drag coefficient, the pitching moment
coefficient, the lift coefficient of the elevator, the moment
coefficient of the elevator, the thrust coefficient of the
engine, and the mean aerodynamic chord length of the
wing, respectively. By substituting the fitted aerodynamic
parameters with the wing curvature function, the equation
of state of the morphing aircraft containing the parameter
(wing curvature c) is obtained

Ẋ = A(c)X +BU, (7)

where the state variables

X =
[
ΔV Δα Δθ Δq

]T

represent velocity (m/s), angle of attack (rad), pitch angle
(rad) and pitch angle speed (rad/s), respectively. The
control input variables U =

[
Δδe ΔδT̃

]
represent

the elevator deflection angle and throttle opening,
respectively. Based on the functional relationship between
fitted aerodynamic parameters and curvature, the variable

parameter matrix model containing the varying parameter
(curvature c) can be obtained by substituting the state
matrix A (Zhu and Yu, 2022):

A(c)

=

⎡

⎢
⎢
⎣

−0.0003282c− 0.00246 3.08c− 3.903
−0.0003766c− 0.000067 −0.000164c− 0.9465

0 0
0.00821c+ 0.005878 −4.6677

−9.8 0
0 1
0 1
0 0

⎤

⎥
⎥
⎦ , (8)

where A(c) is the state matrix of the morphing aircraft
model with the wing curvature change parameter c. The
aircraft increases the wing curvature c by increasing the
thickness of the upper surface of the wing, and the change
of the state quantity caused by the wing curvature c
changes the flight state.

Based on the theory of switched systems, the
transformation process of the wing curvature of an aircraft
can be described as a linear switched system:

ẋ(t) = Aσx(t) +Bσu(t). (9)

If the uncertainties, disturbances and actuator faults
of the wing curvature during switching are considered, the
following nonlinear switched system can be constructed:

⎧
⎨

⎩

ẋ(t) = Aσx(t) +Bσu(t) + EσS(t)
+fσ(x, t) +Dσω(t),

y(t) = Cσx(t),
(10)

where σ : R+ → N{1, 2, · · ·, n} is the switching signal,
which is a segmented constant-value function dependent
on state or time. y(t), u(t), x(t), S(t), ω(t) represent
output variables, input variables, state variables, actuator
faults, and unknown external perturbations, respectively.
Aσ, Bσ, Cσ, Dσ, Eσ are matrices of known real constants
of appropriate dimensions.

Assumption 1. For the initial state of the system x(0),
there exist known vectors x̄(0), x(0) that satisfy x(0) ≤
x(0) ≤ x̄(0). For the unknown external disturbances
ω(t), there exist known upper and lower bounds ω̄(t),
ω(t) that satisfy ω(t) ≤ ω(t) ≤ ω(t).

Assumption 2. For any σ ∈ N , fσ is a known nonlinear
function that is monotonically increasing with respect to x
and satisfies the global Lipschitz condition, for all t ≥ 0,
there are

||fσ(x, t)|| ≤ θ||x1 − x2||,
where θ is the known Lipschitz constant.
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Assumption 3. (Aσ, Bσ) is controllable and (Aσ , Cσ) is
observable.

Lemma 1. (Guo et al., 2019) For a vector x ∈ Rn,there
exist known vectors x̄(t), x(t) ∈ Rn, such that x(t) ≤
x(t) ≤ x̄(t), if A ∈ Rm×n is a non-negative matrix, then
the following inequality holds

Ax(t)−Ax̄(t) ≤ Ax(t) ≤ Ax̄(t)− Ax(t).

Lemma 2. (Cui and Xiang, 2022) For any matrices A
and B of appropriate dimensions, the following inequality
holds

ATB +BTA ≤ γATA+
1

γ
BTB.

Lemma 3. (Ashraf et al., 2021b) For a scalar μ and a
symmetric positive definite matrix G > 0 , the following
inequality holds

2xT y ≤ 1

μ
xTGx + μyTG−1y x, y ∈ R.

Lemma 4. (Guo and Zhu, 2016a) For a continuous sys-
tem ẋ(t) = Ax(t) + w(t), if x(0) ≥ 0, then for ∀t ≥ 0,
there must be x(t) ≥ 0, where A ∈ Rm×n is a Metzler
matrix.

Definition 1. (Guo and Zhu, 2016b) A square matrix
A is said to be a Hurwitz matrix if all of its eigenvalues
have negative real parts, and a Schur matrix if all of the
eigenvalue norms of the square matrix A are less than one.

3. Design of an interval observer
Take ψ(t) = Tx(t) ,T to be an invertible constant matrix.
Let S(t) = 0, then system (10) can be rewritten as

⎧
⎨

⎩

ψ̇(t) = TAσT
−1ψ(t) + TBσu(t)

+TDσω(t) + Tfσ(t, x),
y(t) = CT−1ψ(t).

(11)

Therefore, without considering the effect of actuator
failure, the interval observer can be designed as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄ψ(t) = TAσT
−1ψ̄(t) + TBσu(t)

+TL(y− CT−1ψ̄(t)) + (TDσ)
+
ω̄(t)

−(TDσ)
−
ω(t) + Tfσ(t, x̄)− Tfσ(t, x),

ψ̇(t) = TAσT
−1ψ(t) + TBσu(t)

+TL(y− CT−1ψ(t)) + (TDσ)
+
ω(t)

−(TDσ)
−
ω̄(t) + Tfσ(t, x)− Tfσ(t, x̄),

(12)
where L is the observer gain matrix,

(TD)
+
= max{0, TD}, (TD)

−
= (TD)

+ − TD,

and it is easy to get (TD)+ ≥ 0, (TD)− ≥ 0.

Theorem 1. If there exists a matrix L such that Ψ =
T (A− LC)T−1 ≥ 0 and is a Schur matrix, take ψ(0) =
min{T x̄(0), T x(0)}, it ψ̄(0) = max{T x̄(0), T x(0)}.
When S(t) ≡ 0, for ∀t ≥ 0, there is

ψ(t) ≤ ψ(t) ≤ ψ̄(t). (13)

Then system (12) is an interval observer for system (10)
without actuator faults.

Proof. Define the upper bound error of the interval
observer

˜̄ψ(t) = ψ̄(t)− ψ(t). (14)

One can get

˙̄̃
ψ(t) = TAσT

−1ψ̄(t) + TBσu(t) + TL(y − CT−1ψ̄(t))

+ [(TDσ)
+
ω̄(t)− (TDσ)

−
ω(t)] + [Tfσ(t, x̄)

− Tfσ(t, x)]− TAσT
−1ψ(t)− TBσu(t)

− TDσω(t)− Tfσ(t, x)

= T (A− LC)T−1ψ̄(t) + TLCT−1ψ(t)

− TAT−1ψ(t) + [(TDσ)
+
ω̄(t)− (TDσ)

−
ω(t)]

− TDσω(t) + [Tfσ(t, x̄)− Tfσ(t, x)− Tfσ(t, x)]

= T (A− LC)T−1 ˜̄ψ(t) + [(TDσ)
+
ω̄(t)

− (TDσ)
−
ω(t)− TDσω(t)] + [Tfσ(t, x̄)

− Tfσ(t, x)− Tfσ(t, x)].
(15)

�
According to Assumption 1 and Lemma 1, it follows

that

(TD)
−
ω(t) ≤ (TD)

−
ω(t) ≤ (TD)

−
ω̄(t),

(TD)
+
ω(t) ≤ (TD)

+
ω(t) ≤ (TD)

+
ω̄(t).

(16)

According to (16), it is easy to obtain that

(TDσ)
+ω̄(t)− (TDσ)

−ω(t)− TDσω(t) ≥ 0. (17)

Under Assumption 2, there are

Tfσ(t, x̄)− Tfσ(t, x) ≥ 0,

T fσ(t, x)− Tfσ(t, x) ≥ 0.
(18)

It is easy to get

Tfσ(t, x̄)− Tfσ(t, x) − Tfσ(t, x) ≥ 0. (19)

Since ψ(t) = Tx(t), the initial state of system (11)
satisfies

ψ(0) ≤ ψ(0) ≤ ψ̄(0), (20)

i.e.,
˜̄ψ(0) = ψ̄(0)− ψ(0) ≥ 0. (21)
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It follows from Lemma 4 that for any t > 0 it holds that

˜̄ψ(t) = ψ̄(t)− ψ(t) ≥ 0. (22)

Similarly, defining the lower bound error ψ̃(t) = ψ(t) −
ψ(t), for any t ≥ 0, one can get

ψ̃(t) = ψ(t)− ψ(t) ≥ 0. (23)

Thus, for any t ≥ 0, there is ψ(t) ≤ ψ(t) ≤ ψ̄(t), and
then (12) is said to be the interval observer of the system
(10) in the absence of actuator faults.

Remark 1. Since T is an invertible matrix, the Sylvester
equation can be constructed from Ψ = T (A − LC)T−1

as follows:

TA−ΨT = QC, TL = Q (24)

where Ψ is usually chosen as a diagonal matrix, and the
unique solutions L and T can be obtained by solving Eqn.
(24) through MATLAB if and only if the matrix Ψ does
not have common eigenvalues with matrix A.

The above interval observer is designed under the
assumption that there is no actuator fault, i.e., S(t) = 0.
In this case, the upper and lower bounds of the output of
the interval observer can be defined as

{
ȳ(t) = max{CiT

−1ψ̄(t), CiT
−1ψ(t)},

y(t) = min{CiT
−1ψ̄(t), CiT

−1ψ(t)}. (25)

That is, the actual output of the system without actuator
faults should satisfy y(t) ≤ y(t) ≤ ȳ(t). The observer
output error is defined as ēy(t) = ȳ(t) − y(t), ey(t) =
y(t)−y(t). Based on this, an interval observer-based fault
detection mechanism is designed as follows:
{
if ey(t) > 0 or ēy(t) < 0 ⇒ fault = 1 ⇒ alarm,

if ey(t) < 0 or ēy(t) > 0 ⇒ fault = 0.
(26)

4. Design of a dynamic event-triggered
robust fault-tolerant control method

In this section, the dynamic event-triggered conditions are
given, and an internal dynamic variable is designed on the
basis of the static event-triggered mechanism to obtain a
longer trigger interval. The specific scheme adopted is as
follows:

⎧
⎪⎨

⎪⎩

t0 = 0,

t̃k+1 = inf{t > tk|φ(t) + r0

+ ∂(ε1||�x(t)|| − ||�e(t)||) ≤ 0},
(27)

where ∂ > 0, r0 > 0,||�x(t)|| is the paradigm term of the
state x(t). The dynamic variable φ(t) is defined as

φ̇(t) = −χφ(t) + ε1||�x(t)|| − ||�e(t)|| (28)

Initial conditions are φ(0) ≥ φ0, χ > 0. The event trigger
error is defined as

�

e(t) = x(t̃k)− x(t̃k+1), (29)

where t̃k is the event-triggered transient. The k-th
event-triggered instant t̃k is recorded and controller
parameters are updated when the triggering condition in
(27) is satisfied.

Remark 2. By introducing a small fixed threshold
r0 to the dynamic event-triggered condition (27), it is
ensured that the time interval between two consecutive
events is non-negative and not infinitely close to 0. The
frequency of event-triggered can be effectively reduced to
avoid the occurrence of Zeno phenomenon. In this paper,
it is considered that (27) will be applied to the robust
fault-tolerant controller to be designed next, assuming that
n samples occur on the interval, then

u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t̃k), t ∈ [ti, t̃k+1),
u(t̃k+1), t ∈ [t̃k+1, t̃k+2),
...
u(t̃k+n), t ∈ [t̃k+n, ti+1).

(30)

Based on the diagnostic results of the fault detection
mechanism (26), the robust fault-tolerant control law for
designing the nonlinear switched system (10) is defined as
follows:

u(t) =

{
uw(t) if fault = 0,
uw(t) + us(t) if fault = 1.

(31)

The impact of disturbances and faults on the system
is assessed by the fault detection mechanism. If the
system is determined to be stable and its state trajectory
is observed to remain within the range of the interval
observer, the fault signal is set to fault = 0, i.e.,
u(t) = uw(t) = −Kix(t), indicating that the system
performance is not significantly affected by faults or
disturbances. Conversely, if the state trajectory is found
to deviate outside the observer’s range due to a fault
or disturbance, indicating a significant impact on system
performance, the fault signal is set to fault = 1, i.e.,
u(t) = uw(t) + us(t) = −Kix(t) − B−1

i EiŜ(t), where
Ŝ(t) is the adaptive estimation of the fault, and is updated
in the following form:

˙̂
S(t) = EiPx(t). (32)

Theorem 2. For the closed-loop system (10), if there
exists a symmetric positive definite matrix P = PT > 0,
scalars μ > 0, γ0 > 0 and a control gain matrix Ki such
that ⎡

⎢
⎢
⎣

ϕ1 PDi θP CT
i

∗ −γ02I 0 0
∗ ∗ − 1

μI 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ < 0, (33)
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where ϕ1 = (Ai −BiKi)
T
P +P (Ai−BiKi)+μI , then

the closed loop system is said to be asymptotically stable
and has H∞ performance index not greater than γ0.

Proof.
Case 1. For the i-th subsystem of system (10), when
S(t) = 0, i.e., fault = 0, the Lyapunov function is
constructed as follows:

Vi(t) = xT (t)Px(t). (34)

By choosing the fault-tolerant control law u(t) =
uw(t) = −Kix(t), one can get

V̇i(t) + yT (t)y(t)− γ0
2ωT (t)ω(t)

= ẋT (t)Px(t) + xT (t)P ẋ(t) + yT (t)y(t)

− γ0
2ωT (t)ω(t)

= [Aix(t) +Biu(t) +Diω(t) + fi(t, x)]
T
Px(t)

+ yT (t)y(t)− γ0
2ωT (t)ω(t) + xT (t)P [Aix(t)

+Biu(t) +Diω(t) + fi(t, x)].
(35)

�
According to Lemmas 2 and 3 and Assumption 2, it

can be obtained that

2xT (t)Pfi(x, t) ≤ θ2

μ
xT (t)PTPx(t) + μxT (t)x(t),

(36)

2xT (t)PDiω(t) ≤ 1

γ02
xT (t)PDiDi

TPx(t)

+ γ0
2ωT (t)ω(t).

(37)

Substituting into Eqns. (37) and (38) yields

V̇i(t) + yT (t)y(t)− γ0
2ωT (t)ω(t)

≤ xT (t)[(Ai −BiKi)
T
P + P (Ai −BiKi)]x(t)

+
1

γ02
xT (t)PDiDi

TPx(t) + γ0
2ωT (t)ω(t)

+
θ2

μ
xT (t)PTPx(t) + μxT (t)x(t)

+ x(t)
T
Ci

TCix(t)− γ0
2ωT (t)ω(t)

= xT (t)[(Ai −BiKi)
T
P + P (Ai −BiKi)

+ Ci
TCi +

1

γ02
PDiDi

TP + μI]x(t)

= xT (t)Ξx(t)

(38)

Based on the Schur complement, the matrixA can be
equated to

Ξ =

⎡

⎢
⎢
⎣

ϕ1 PDi θP CT
i

∗ −γ20I 0 0
∗ ∗ − 1

μI 0

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦ , (39)

where ϕ1 = (Ai −BiKi)
T
P + P (Ai − BiKi) + μI .

Therefore, if there is no fault in the system, i.e., when
the fault signal fault = 0, the closed-loop system (10)
is asymptotically stable if Ξ < 0 holds and the H∞
performance index is not greater than γ0.

Case 2. The actuator fault error function is defined as
follows:

ef (t) = S(t)− Ŝ(t). (40)

For the i-th subsystem of system (10), whenS(t) 
=
0, i.e., fault = 1, the Lyapunov function is constructed
as follows:

Ṽi(t) = xT (t)Px(t) + ef
T (t)ef (t). (41)

By choosing the fault-tolerant control law

u(t) = uw(t) + us(t) = −Kix(t)−Bi
−1EiŜ(t),

one can get

˙̃V i(t) = ẋT (t)Px(t) + xT (t)P ẋ(t) + ėf
T (t)ef (t)

+ ef
T (t)ėf (t)

= [(Ai −BiKi)x(t) − EiŜ(t) + EiS(t) +Diω(t)

+ fi(t, x)]
T
Px(t) + xT (t)P [(Ai −BiKi)x(t)

− EiŜ(t) + EiS(t) +Diω(t) + fi(t, x)]

+ xT (t)PEi
T ef (t) + ef

T (t)EiPx(t).
(42)

Substituting into (32) and (41) yields

˙̃V i(t) + yT (t)y(t)− γ0
2ωT (t)ω(t)

≤ xT (t)[(Ai −BiKi)
TP + P (Ai −BiKi)]x(t)

+ 2xT (t)PDiω(t) + 2xT (t)PDiω(t)

+ [Cix(t)]
T
Cix(t) − γ0

2ωT (t)ω(t).
(43)

From (37) and (38), one can get

˙̃V i + yT (t)y(t) − γ0
2ωT (t)ω(t)

≤ xT (t)[(Ai −BiKi)
T
P + P (Ai −BiKi)]x(t)

+
1

γ02
xT (t)PDiDi

TPx(t) + γ0
2ωT (t)ω(t)

+
θ2

μ
xT (t)PTPx(t) + μxT (t)x(t)

+ x(t)
T
Ci

TCix(t) − γ0
2ωT (t)ω(t)

= xT (t)[(Ai −BiKi)
T
P + P (Ai −BiKi)

+ Ci
TCi +

1

γ02
PDiDi

TP + μI]x(t)

= xT (t)Ξx(t).
(44)

Therefore, as in Case 1, if a fault occurs in the system, i.e.,
when the fault signal fault = 1, the closed-loop system
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(10) is asymptotically stable if Ξ < 0 is established, and
has an H∞ performance index not larger than γ0. The
proof is complete.

5. Experimental simulation
In order to verify the validity of the design, the morphing
aircraft system with variable wing curvature used by
Zhu and Yu (2022) is simulated under the influence of
external disturbances, actuator faults and uncertainties.
The specific model is represented as follows:

⎧
⎪⎨

⎪⎩

ẋ(t) = Aσx(t) +Bσu(t) + EσS(t)

+ fσ(x, t) +Dσω(t),

y(t) = Cσx(t),

where

x(t) = [x1(t), x2(t), x3(t), x4(t)]
T

= [ΔV0,Δβ0,Δθ0,Δq0]
T
.

Assuming that the flight conditions of the morphing
aircraft are at an altitude of 1.5 km and an air temperature
of 300 K. The wing curvature c is considered to be 0% and
1%, i.e., the initial base airfoil state and the system states
of the wing curvature c = 0% and c = 1% are composed
of a morphing aircraft system with two subsystems.

The stability is then verified by simulation, and the
relevant matrix parameters are chosen as follows:

A(c) =

⎡

⎢
⎢
⎣

−0.0003282c− 0.00246
−0.0003766c− 0.000067

0
0.00821c+ 0.005878

3.08c− 3.903 −9.80
−0.000164c− 0.9465 0 1

0 0 1
−4.6677 0 0

⎤

⎥
⎥
⎦ .

A(c) is the state matrix of the morphing aircraft
model with the wing curvature change parameter c. The
aircraft increases the wing curvature c by increasing the
thickness of the upper surface of the wing, and the change
of the state quantity caused by the wing curvature c
changes the flight state:

A1 = A(0) =

⎡

⎢
⎢
⎣

−0.00246 −3.903 −9.8 0
−0.000067 −0.9465 0 1

0 0 0 1
0.005878 −4.6677 0 0

⎤

⎥
⎥
⎦ ,

B1 =

⎡

⎢
⎢
⎣

0 0.0127 0 0
−0.0596 0 0 0

0 0 0.1 0
−21.45 0 0 0.1

⎤

⎥
⎥
⎦ ,

A2 = A(1) =

⎡

⎢
⎢
⎣

−0.002788 −0.823 −9.8 0
−0.0004366 −0.9465 0 1

0 0 0 1
0.014088 −4.6677 0 0

⎤

⎥
⎥
⎦ ,

B2 =

⎡

⎢
⎢
⎣

0 0.0127 0 0
−0.0596 0 0 0

0 0 0.1 0
−21.45 0 0 0.1

⎤

⎥
⎥
⎦ ,

C1 = C2 =

[
1 1 0 0
0 0 1 1

]

,

D1 = D2 =

⎡

⎢
⎢
⎣

0.5
0.5
−0.5
−0.5

⎤

⎥
⎥
⎦ ,

E1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0.1 0 0
0 0 0.9 0
0 0 0 0.1

⎤

⎥
⎥
⎦ ,

E2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0.5 0 0
0 0 1 0
0 0 0 −0.1

⎤

⎥
⎥
⎦ .

Since A1, A2 are not nonnegative matrices, the
interval observer (12) is designed after transforming the
system accordingly by choosing nonnegative matrices Ψ
and Q:

Ψ =

⎡

⎢
⎢
⎣

0.27 0 0 0
0 0.11 0 0
0 0 0.61 0
0 0 0 0.14

⎤

⎥
⎥
⎦ , Q =

⎡

⎢
⎢
⎣

1 0
0 1
1 1
0 1

⎤

⎥
⎥
⎦ .

Sylvester’s equation in (24) is solved to obtain

L1 =

⎡

⎢
⎢
⎣

−0.5827 2.6676
0.1825 −2.6547
0.0217 −11.7344
−0.0076 10.0566

⎤

⎥
⎥
⎦ ,

L2 =

⎡

⎢
⎢
⎣

−0.7436 3.1860
0.3298 −3.0783
0.0591 −11.6556
−0.0246 9.9910

⎤

⎥
⎥
⎦ ,

T1 =

⎡

⎢
⎢
⎣

86.4427 199.4556 10.7975 46.4861
0.2419 0.5846 −0.2602 −0.1005
−2.5021 −2.5403 −0.6551 −0.6490
0.3319 0.7089 0.5994 0.9119

⎤

⎥
⎥
⎦ ,

T2 =

⎡

⎢
⎢
⎣

108.5924 353.9227 12.8313 79.5931
0.1275 0.4338 −0.2734 −0.1389
−3.1387 −4.5024 −0.6951 −1.0676
0.1620 0.4840 0.5749 0.8550

⎤

⎥
⎥
⎦ .
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Fig. 1. Curve of switched signal σ(t).
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Fig. 2. State interval estimation for subsystem 1.
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Fig. 3. State interval estimation for subsystem 2.
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Fig. 4. Residual interval for subsystem 1.
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Fig. 5. Residual interval for subsystem 2.
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(a) Dynamic event-triggered mechanism.
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(b) Static event-triggered mechanism.

Fig. 8. Number of triggers for dynamic event triggered and
static event triggered mechanisms.

Based on Theorem 2, the control gain matrix of the
robust fault-tolerant controller can be obtained as follows:

K1 =

⎡

⎢
⎢
⎣

−0.0083 −41.9500 −0.0825 −0.2541
196.5582 78.7062 0.0077 −0.2363

−0.0009753 −0.0492 25.0022 −6.7054
−1.7427 −8998.416 −0.9753 −29.4957

⎤

⎥
⎥
⎦ ,

K2 =

⎡

⎢
⎢
⎣

−0.0090 −41.9500 −0.1776 −0.0299
196.5582 78.7028 0.0456 −0.1029
−0.0058 −0.1058 25.0022 −8.3092
−1.9134 −8998.416 −19.7622 31.4207

⎤

⎥
⎥
⎦ .

In order to demonstrate the advantages of the
proposed dynamic event-triggered robust fault-tolerant
control scheme, this section also shows the design results
of the robust fault-tolerant control scheme using static
event-triggered mechanism for comparison.

Case 1. The actuator faults in the system is defined as
follows:

S(t) =

⎧
⎪⎨

⎪⎩

0, t < 1,

a1 sin(2πf̃t), 1 ≤ t < 6,

a2(1− e−2(t−3)), t ≥ 6.

where f̃ = 0.6, a1 = 0.01, a2 = 0.02. In addition,
let

f1(t, x1) = b1x1, f2(t, x2) = b1x2, ω = b1 cos(2πf̃1t),

where f1 = 0.7, b1 = 0.01. Under the initial conditions

x1(0) =
[
15−2−3

]T
,

x2(0) =
[
0.52.5−2.5−1

]T
,

φ0 = 0,

the simulation results are shown in Figs. 1–7.
The switched signal σ(t) is shown in Fig. 1.

To evaluate the robustness of the proposed H∞
control framework, the H∞ performance index γ0 is
optimized to 0.1 via linear matrix inequalities, ensuring
a balance between disturbance attenuation and control
conservatism. Under the action of the switched signal,
the state response curves of the two subsystems of the
morphing aircraft at wing curvature c = 0% and c = 1%
are shown in Figs. 2 and 3.

The residuals of the system outputs with the upper
and lower bounds of the interval observer are shown in
Figs. 4 and 5. In this study, a single-actuator fault
scenario is employed to clearly demonstrate these control
performance characteristics.The control input curves for
subsystems 1 and 2 are shown in Figs. 6 and 7.

According to the fault detection mechanism (26),
it is known that subsystem 1 is in a faulty state
before 2.5 s and subsystem 2 is in a faulty state
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Fig. 9. State interval estimation for subsystem 1.
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Fig. 10. State interval estimation for subsystem 2.
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Fig. 11. Residual interval for subsystem 1.
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Fig. 12. Residual interval for subsystem 2.
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(a) Dynamic event-triggered mechanism.
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(b) Static event-triggered mechanism.

Fig. 15. Number of triggers for dynamic event triggered and
static event triggered mechanisms.

before 4 s. Based on the designed fault-tolerant control
law, the effects of disturbances and actuator failures
are effectively compensated,enabling the system state to
quickly converge to 0 and achieve asymptotic stability
with prescribed H∞ performance (γ0 = 0), while
effectively suppressing external disturbances and model
uncertainties.

When the event-triggered mechanism is not used, the
number of data transfers for 12 s of system operation
reaches 1200 times. As shown in Fig. 8(b), under
the static event-triggered mechanism, the data of the
two subsystems are transmitted 731 and 653 times
respectively, which are about 39.1% and 45.6% less
than the total number of transmissions respectively. As
shown in Fig. 8(a), under the dynamic event-triggered
mechanism, the data of the two subsystems are transmitted
153 times and 162 times, respectively, which are

about 87.3% and 86.5% less than the total number
of transmissions, respectively. Compared with the
static event-triggered mechanism, the number of data
transmissions is reduced by about 40.9 to 48.2%
through the dynamic event-triggered mechanism while
ensuring the desired performance of the system, and
communication and computation resources are effectively
saved.

Case 2. The actuator faults in the system is defined as
follows:

S(t) =

⎧
⎪⎨

⎪⎩

0, t < 1.5,

a3 sin(2πf̃t), 1.5 ≤ t < 6,

a4(1 − e−2(t−3)), t ≥ 6,

where f̃ = 0.6, a3 = 0.05, a4 = 0.1. In addition, let

f1(t, x1) = b1x1, f2(t, x2) = b1x2, ω = a3 sin(2πf̃t),

where f̃1 = 0.7, b1 = 0.1.

By enhancing the amplitude of disturbances and
faults, the state response curves of subsystem 1 and
subsystem 2 are shown in Figs. 9 and 10, and the output
residual intervals are shown in Figs. 11 and 12. The
control input curves for subsystem 1 and 2 are shown
in Figs. 13 and 14. It can be seen that the system still
converges quickly and with good performance.

It can be seen that the system still converges quickly
and with good performance. In this scenario, as shown
in Fig. 15(b), under the static event-triggered mechanism,
the data of the two subsystems are transmitted 765 and
702 times, respectively, which is 36.3% and 41.5% less
than the total number of transmissions, respectively. As
shown in Fig. 15(a), the data of the two subsystems under
the dynamic event-triggered mechanism are transmitted
330 and 491 times, respectively, which are 72.5% and
59.1% less than the total number of transmissions, and
could be reduced by about 17.6% to 36.2% compared with
the static event-triggered mechanism.

As shown in the simulation results, the interval
observer-based fault detection mechanism designed in this
paper can intuitively determine the fault conditions. When
the fault is identified, the robust fault-tolerant controller
based on the dynamic event-triggered mechanism can
make the variable wing curvature morphing aircraft
system reach stability and maintain good robustness, and
effectively reduce the consumption of communication and
computational resources.

6. Conclusion
In this paper, the problem of control system design
for a class of morphing aircraft with variable wing
curvature is investigated. Firstly, the transformation
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process of the morphing aircraft is modelled as a nonlinear
switched system with uncertainty and subject to both
external disturbances and actuator faults. Secondly,
the interval observer-based fault detection method and
the dynamic event-triggered robust fault-tolerant control
strategy are studied. The upper and lower bounds of the
system output without actuator faults are constructed by
designing interval observers, and the occurrence of faults
is intuitively identified according to whether the actual
system output exceeds this range. Thirdly, a dynamic
event-triggered robust fault-tolerant control scheme is
designed, in which two different controllers are used
for switching control according to the real-time fault
detection results. It ensures the boundedness of the signal
of the closed-loop system, and effectively reduces the
number of data transmission and saves communication
resources. Finally, the gain matrices of the observer
and controller can be obtained by solving Sylvester’s
equation and linear matrix inequality through MATLAB,
respectively. The designed fault diagnosis mechanism and
fault-tolerant control method are applied to a nonlinear
model of a morphing aircraft system with variable wing
curvature, and the effectiveness of the designed fault
detection mechanism and control method is verified.
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