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Curve and surface modeling techniques have long been essential in computer graphics research. However, many existing
methods for curve and surface fitting, as well as deformation, have limitations, such as challenges in representing certain
special curve forms and a lack of control over the deformation process. Therefore, there is a need for a method that
accurately represents specific curves and surfaces while allowing for a more intuitive and straightforward deformation
implementation. To address this, the paper proposes a new method for constructing curves and surfaces and for their
deformation. First, a shape-controlled basis function, termed the α-sh basis function, is defined in the basis vector space{
1, t, t2, . . . , tn−2, sinh t, cosh t

}
. Next, the favorable properties of the α-sh basis function are analyzed and proven,

demonstrating its feasibility for curve and surface fitting. Using this basis function, α-sh Bézier curves and αβ-sh Bézier
surfaces are defined, and their properties are thoroughly analyzed and proven. Finally, by adjusting the shape control
parameters, the deformation of curves and surfaces can be achieved. The proposed method also enables the representation
of special curves, such as circles, and allows for their deformation. The paper concludes with examples of curves and
surfaces, visualizations of their deformation effects, and potential applications in practical industrial design.
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1. Introduction

Curves and surfaces are fundamental elements in
computer-aided design (Kennard and Stone, 1969; Ross
and Rodriguez, 1963; Narayan et al., 2008) and geometric
modeling (Mortenson, 1997; Farin et al., 1987). The
study of curves and surfaces involves expressing complex
shapes, making it a crucial area within computer
graphics. Bézier curves and surfaces are commonly used
construction methods in this field (Marschner and Shirley,
2018; 2009; Foley et al., 1994; Kotan et al., 2021).
These methods are easy to understand and implement, and
they exhibit desirable smoothness properties. However,
once the control points and Bernstein basis functions
of traditional Bézier curves and surfaces are defined,
their shapes become fixed. This characteristic leads to
a high degree of rigidity, so adjusting the position of a
single control point can result in substantial changes to
the overall shape, thereby limiting shape manipulation
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capabilities. Additionally, in industrial design, scenarios
often arise involving circles, spheres, and other geometric
forms, where traditional Bézier curves and surfaces are
inadequate.

To achieve surface deformation, Barr (1984)
proposed an innovative approach for both global and
local deformation of 3D objects, effectively handling
conventional deformations such as twisting, stretching,
and compression. However, it has limitations in
performing arbitrary rotations. In 1986, Sederberg and
Parry (1986) introduced Free-Form Deformation (FFD),
a technique that embeds a 3D geometric model into
a spatial grid and deforms the model by altering the
shape of the grid. This method has been widely
applied and extended in various fields, including computer
graphics, CAD, animation, simulation, and medical image
processing. Hsu et al. (1992) proposed a method that
allows users to directly manipulate points to deform a
surface, eliminating the need for a detailed understanding
of the surface construction. This approach simplifies the
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deformation process. Building upon FFD, Bechmann
et al. (1997) introduced additional control points,
enabling users to more precisely control the deformation
area, facilitating the creation of more complex shapes.
However, these techniques face challenges in terms of
spatial and temporal complexity, which has led to the
development of more direct methods for curve and surface
deformation.

In recent years, an increasing number of scholars
have incorporated shape parameters into the construction
of basis functions for curve and surface deformation.
Qin et al. (2013) introduced a novel polynomial basis
function with n − 1 local shape control parameters,
enabling the construction of Bézier curves with n local
shape control parameters. They analyzed the properties
of these basis functions, discussed various curve design
applications, and demonstrated the impact of control
parameters on curve shapes. Said Mad Zain et al. (2021)
proposed a generalized fractional-order Bézier curve with
shape and fractional parameters, exploring the influence
of these parameters on curve shape and continuity in
piecewise curves. Wen-tao and Guo-zhao (2005) designed
an expandable λ-Bézier surface using a set of control
planes with λ-Bézier basis functions, which incorporate
shape parameters. Ameer et al. (2022) proposed a new
formula for designing curves and surfaces, extending the
application of Bézier curves and surfaces. By adjusting
these parameters, the surface shape can be modified, and
they discussed the properties and potential applications of
the surface.

The methods mentioned above all use Bernstein
basis functions to construct curves, but they still have
limitations in representing certain special curves. To
address these limitations, research on alternative basis
functions has emerged. Shen and Wang (2015) introduced
a Bézier curve based on trigonometric functions,
demonstrating the construction of special curves using
C-Bézier bases. Yang and Zeng (2009) and Maqsood
et al. (2020) added two shape control parameters to these
trigonometric Bézier bases, analyzing the continuity and
geometric properties of the curves, and discussing the
design and application of various curves and surfaces.

The methods described above exhibit favorable
properties in curve construction and deformation;
however, they also have certain limitations, such as
difficulties in representing special curves and achieving
simplicity and controllability in the deformation process.
Additionally, some of these construction methods are
restricted to low-dimensional curve construction and have
not been extended to surface construction.

This paper proposes a new basis function for
constructing curves and surfaces, derived through
integration to create a function space based on hyperbolic
sine functions, which incorporates shape parameters.
This new basis function construction method outperforms

traditional polynomial basis functions in constructing
special curves and surfaces. It not only enables the
construction of special curves, such as circles, but also
allows for shape control of curves and surfaces through
shape parameters. The deformation process becomes
more intuitive as it does not require changing the control
points. In Section 2, we present the construction of the
basis function with shape control parameters, analyze its
properties, and prove its feasibility in geometric shape
generation. In Sections 3 and 4, we use this basis
function to fit curves and surfaces, analyze the properties
of the constructed curves and surfaces, and provide
simple examples to illustrate the impact of shape control
parameters on the deformation of curves and surfaces.
In Section 5, we demonstrate the practicality of surface
deformation in real-world applications.

2. Construction and properties of α-sh
basis functions

The core of curve and surface design lies in the
construction of basis functions. Below, the construction
of the α-sh basis function is presented, and its properties
are analyzed.

2.1. Basis function α-sh. To achieve more direct and
flexible curve deformation, the vector space spanned by{
1, t, t2, . . . , tn−2, sinh t, cosh t

}
is extended with shape

control parameter α, allowing for precise control over the
deformation of the curve.

Definition 1. The n-th order α-sh basis function is
denoted as bi,n(t), where i = 0, 1, . . . , n. When n = 1,
two initial basis functions are obtained:

b0,1(t) =
sinhα(1 − t)

sinhα
,

b
1,1
(t) =

sinhαt

sinhα
,

(1)

where α ∈ (0,+∞), t ∈ [0, α].
For n > 1, the basis function {b0,n, b1,n, . . . , bn,n}
is recursively defined in the vector space
{1, t, t2, . . . , tn−2, sinh t, cosh t} as follows:

b0,n = 1−
∫ t

0

δ0,n−1b0,n−1(s) ds,

bi,n =

∫ t

0

(δi−1,n−1bi−1,n−1(s)

−δi,n−1bi,n−1(s)) ds,

bn,n =

∫ t

0

δn−1,n−1bn−1,n−1(s) ds,

(2)

where
δi,n =

1
∫ α

0
bi,n(t)dt

, 0 < i < n.



Construction and deformation of curves and surfaces . . . 457

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Basis functions of 2nd-order for α = 1.

We obtain the definition of the α-sh basis functions, where
α is referred to as the shape parameter.

Using the basis function expressions, we obtain the
graphs of the basis functions when the parameter α = 1.
Below are two examples.

Example 1. The graphs of 2nd-order basis functions:
formula with the basis functions 3 are presented in Fig. 1.

⎧
⎨

⎩

b01 = sinh(1−t)
sinh 1 ,

b11 = sinh t
sinh 1 ,

t ∈ [0, 1]. (3)

�

Example 2. Figure 2 presents the graphs of the 4th-order
basis functions. �

From Figs. 1 and 2, we can preliminarily observe
some excellent properties of the α-sh basis functions.
The graphs are all positioned in the positive direction
of the y-axis, ensuring the non-negativity of the basis
functions. The graphs are very smooth, with no
discontinuities, guaranteeing the accuracy of curve and
surface construction. The boundary values are either 0 or
1, determining the weight of the boundary points, which
is important for boundary control. In the following, we
will analyze and prove more of these properties.

2.2. Properties of the α-sh basis function. In the
following, we provide a detailed analysis and prove the
good properties of the α-sh basis function.

Property 1. (Normalization) The sum of the values of all
α-sh basis functions is always 1 over the interval [0, α],
i.e.,

n∑

i=1

bi,n(t) = 1, t ∈ [0, α], α ∈ (0,+∞). (4)
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Fig. 2. Basis functions of 4th-order for α = 1.

Proof. The 2nd-order basis function can only construct
simple line segments, so we will consider higher-order
cases. When n >1, we have

n∑

i=1

bi,n(t) = b0,n(t) + b1,n(t) + . . .

+ bn−1,n(t) + bn,n(t)

=

(
1−

∫ t

0

δ0,n−1b0,n−1(s) ds

)

+
( ∫ t

0

(
δ0,n−1b0,n−1(s)

− δ1,n−1b1,n−1(s)
)
ds
)

+ . . .

+

(∫ t

0

δn−2,n−1bn−2,n−1(s) ds

)

−
(∫ t

0

δn−1,n−1bn−1,n−1(s) ds

)

+

(∫ t

0

δn−1,n−1bn−1,n−1(s) ds

)

= 1.

(5)

�

Property 2. (Endpoint characteristics) Only the first
and last α-sh basis functions take the value of 1 at their
respective endpoints, while the other basis functions take
the value of 0 at these endpoints. When t = 0, b0,n(0) =
1, bi,n(0) = 0 for i > 0. When t = 1, bn,n(1) = 1,
bi,n(1) = 0 for i < n.

Proof. From the definition of the basis functions, it is
clear that this property holds when n = 1. When n > 1,
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Substituting into Definition 1 and simplifying, we obtain

b0,n(0) = 1−
∫ 0

0

δ0,n−1b0,n−1(s) ds = 1,

bn,n(α) =

∫ α

0

δn−1,n−1bn−1,n−1(s) ds

= δn−1,n−1

∫ α

0

bn−1,n−1(s) ds

= δn−1,n−1 · 1

δn−1,n−1
= 1,

bi,n(0) =

∫ 0

0

δi−1,n−1bi−1,n−1(s)

− δi,n−1bi,n−1(s) ds = 0,

bi,n(α) =

∫ α

0

δi−1,n−1bi−1,n−1(s)

− δi,n−1bi,n−1(s) ds

= δi−1,n−1 · 1

δi−1,n−1

− δi,n−1 · 1

δi,n−1
= 0.

(6)

�
Property 3. (Linear independence) A set of basis
functions {b1(t), b2(t), . . . , bn(t)} is linearly independent
on the interval [0, α] if and only if the following condition
holds:

c1b1(t) + c2b2(t) + · · ·+ cnbn(t) = 0

for all t ∈ [0, α], (7)

where the only solution is c1 = c2 = · · · = cn = 0, then
the set of basis functions is linearly independent.

Proof. Assume that there exists a non-trivial solution to
the equation

∑n
i=0 aibi,n(t) = 0. That is the functions

bi,n(t) are linearly dependent. Let t = 0. From the
endpoint characteristics of the basis functions, it follows
that a0 = 0. Next, differentiating both sides of the
equation

∑n
i=0 aibi,n(t) = 0 i times with respect to t, we

can successively conclude, using the endpoint properties
of the basis functions, that ai = 0 for all i. This
leads to a contradiction of the assumption that there is
a non-trivial solution; therefore, the functions bi,n(t) are
linearly independent. �

Property 4. (Positivity) The basis functions
{b1(t), b2(t), . . . , bn(t)} satisfy the positivity property if

bi(t) ≥ 0, ∀t ∈ [0, α], for all i = 1, 2, . . . , n.

Proof. Assume that bi,n(t) has n + 1 zeros. By Rolle’s
Theorem, bi,n(t) must be n-times differentiable, which
would contradict the linear independence of the basis
functions. Therefore, bi,n(t) can have at most n zeros.
Combining this with Property 3, we can conclude that
bi,n(t)>0 for all relevant t. �

Fig. 3. Bézier α-sh curve (solid line) and its control polygon
(dashed line) when α = 1.

3. Bézier α-sh curve
Once the n-th order α-sh basis functions are determined, a
curve segment can be obtained by linearly combining the
basis functions with n+ 1 control points.

3.1. Construction curve. In the following, we present
the construction of the α-sh Bézier curve and provide a
simple example to illustrate the curve.

Definition 2. Assume that Pi ∈ R
d (d = 2, 3) for

i = 0, 1, . . . , n, is a set of control points. Let the n-th
order basis functions be denoted by bi,n(t), where i =
0, 1, . . . , n. The curve C(t) can then be expressed using
these basis functions, as follows:

C (t) =

n∑

i=0

bi,n(t)Pi, t ∈ [0, α] , α ∈ (0,+∞) .

(8)

Example 3. (Continuation of Example 2) Given a set of
control points in two-dimensional space

P0(0, 0), P1(2, 2.5), P2(6, 2.5), P3(8, 0).

The basis functions obtained in Example 2, when the
control points are substituted into Eqn. 8, yield the curve
C1(t). Specifically, C1(t) = P0b03(t) + P1b13(t) +
P2b23(t) + P3b33(t). As shown in Fig. 3, the solid curve
represents C1(t), the circles indicate control points, and
the dashed line represents the control polygon. Figure 2
shows the basis functions corresponding to the curve.

�
It is evident from Fig. 3 that the curve has desirable

properties, including endpoint characteristics, the convex
hull property, and convexity preservation. The following
sections provide an analysis and proof of these properties.

3.2. Properties of the curve. In the following, we
provide a detailed analysis and prove the good properties
of the α-sh Bézier curve.



Construction and deformation of curves and surfaces . . . 459

Property 5. (Endpoint characteristics)

C (0) =
n∑

i=0

bi,n(0)Pi, C (α) =
n∑

i=0

bi,n(α)Pi.

Proof. From the endpoint characteristics of the α-sh basis
functions, it can be concluded that C (0) = P0, C (α) =
Pn.

�

Property 6. (Differentiation properties) Differentiating
the n-th order α-sh Bézier curve, we obtain

C
′
(t) =

n−1∑

i=0

bi,n−1(t)Qi, t ∈ [0, α] , α ∈ (0,+∞) ,

(9)
where Qi = δi,n−1(Pi+1 − Pi).

Proof. Assume that the curve C(t) is an (n+ 1)-th order
curve:

C′(t) = P0(b0,n(t))
′ + P1(b1,n(t))

′ + . . .+ Pi(bi,n(t))
′

+ . . .+ Pn(bn,n(t)
′) (10)

By substituting Eqn. (2) into Eqn. (10), we obtain

C′(t) = P0 (−δ0,n−1b0,n−1(t))

+ P1 (δ0,n−1b0,n−1(t)− δ1,n−1b1,n−1(t))

+ . . .+ Pi (δi−1,n−1bi−1,n−1(t)

−δi,n−1bi,n−1(t))

+ . . .+ Pn (δn−1,n−1bn−1,n−1(t)) .

It can be simplified to

C
′
(t) = δ0,n−1(P1 − P0)b0,n−1(t)

+ · · ·+ δi,n−1(Pi+1 − Pi)bi,n−1(t)

+ · · · δn−1,n−1(Pn − Pn−1)bn−1,n−1(t)

=

n−1∑

i=0

δi,n−1bi,n−1(t)Qi,

where Qi = Pi+1 − Pi. �

Property 7. (Convex hull property) It follows from
the normalization and non-negativity of the α-sh basis
functions that the α-sh Bézier curve always lies within the
control polygon formed by the control points.

Property 8. (Variation diminishing property) The
number of intersections between any plane and the
α-sh Bézier curve is at most equal to the number of
intersections between the plane and the associated control
polygon.

Proof. Assume that a line L intersects both the curveC(t)
and the control polygon of the curve, with m intersection
points between L and C(t). These m points divide the
segments of the control polygon into several parts. By
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Fig. 4. Comparison of α-sh basis functions with changing pa-
rameters: α-sh basis function when α = 0.1 (a), α-sh
basis function when α = 3 (b).

geometric properties, L will intersect each segment of
the control polygon at most once. Since the curve is
contained within the convex hull of the control polygon,
L is guaranteed to intersect C(t) at least once on each
segment of the control polygon. Thus, the number of
intersections between L and the curve C(t) cannot exceed
the number of intersections between L and the control
polygon.

�

Property 9. (Convex preservation of the curve) Due to
the variation-reduction property of α-sh Bézier curves, it
can be concluded that if the control polygon is convex, the
corresponding curve will also be convex.

3.3. Deformation control of α-sh Bézier curves by
parameters. After defining the α-sh Bézier curve, this
section presents a simple example to demonstrate how the
shape control parameter affects the curve. The parameter
α influences the values of the basis functions across their
domain as its magnitude changes. As the magnitude of
α changes, the weight associated with the corresponding
control point Pi also changes, resulting in a variation in
the curve’s shape.

Example 4. (Continuation of Example 2) The effect of
changes in the shape parameter on the basis function is
shown in Fig. 4.

Comparing the basis function shown in Fig. 2,
Fig. 4(a) illustrates that as the shape parameter decreases,
the weights of the first and second control points among
the four control points decrease, causing the curve to move
away from the control edge P0P1. Figure 4(b) shows
that as the shape parameter increases, the weights of the
first and third control points increase, while the weights
of the second and fourth control points decrease, pulling
the curve closer to P2. The specific influence of the shape
parameter on the curve shape is shown in Fig. 5.

�
After analyzing the properties and deformation

control of the α-sh Bézier curve, it is demonstrated that
the curve has a simple construction, predictable shape,
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Fig. 5. Bézier α-sh curve (solid line) corresponding to different
values of the α parameter.

smoothness, and strong continuity. Furthermore, by
introducing a shape control parameter, the curve’s shape
can be adjusted without altering the positions of the
control points, providing enhanced controllability.

4. Bézier αβ-sh surface
After obtaining the α-sh Bézier curve, the αβ-sh Bézier
surface can be considered as the product of two α-sh
Bézier curves.

4.1. Definition of the surface. Next, we present the
construction of the αβ-sh Bézier surface and provide a
simple example to illustrate the surface.

Definition 3. Given a set of (m + 1) × (n + 1) spatial
control points Pij , the surface is defined as a linear
combination of these control points, weighted by the
α-sh basis functions through the tensor product, and is
expressed as

S(u, v;α, β) =
m∑

i=0

n∑

j=0

bi,m(u)bj,n(v)Pij ,

u ∈ [0, α], v ∈ [0, β], α, β ∈ (0,+∞).
(11)

The surface is denoted as S(u, v), where Pij are the
control points, and bi,m(u) and bj,n(v) are the α-sh basis
functions in the u and v directions, respectively. Once
the surface is constructed, the parameters α and β can be
adjusted in both directions to achieve surface deformation.

Example 5. Assuming the surface S1 is fitted from 16
points, the basis functions are consistent with Example 2,
and the surface is represented as

S1(u, v) =

3∑

i=0

3∑

j=0

bi,3(u)bj,3(v)Pij ,

S1 (u, v) =
3∑

i=0

3∑

j=0

bi,3(u)bj,3(v)Pij = UPV,

where

U = (b0,3(u), b1,3(u), b2,3(u), b3,3(u)) ,

V = (b0,3(v), b1,3(v), b2,3(v), b3,3(v))
ᵀ
.

The control point matrix P is
⎛

⎜
⎜
⎝

(0, 0, 0) (1, 0, 1) (2, 0, 1) (3, 0, 0)
(0, 1, 1) (1, 1, 2) (2, 1, 2) (3, 1, 1)
(0, 2, 1) (1, 2, 2) (2, 2, 2) (3, 2, 1)
(0, 3, 0) (1, 3, 1) (2, 3, 1) (3, 3, 0)

⎞

⎟
⎟
⎠ .

The surface S1(t) and its control mesh are shown in
Fig. 6(a), while Fig. 6(b) displays the basis functions in
both directions for the surface. As shown in Fig 6(a),
the αβ-sh Bézier surface possesses boundary properties,
corner point properties, and convex hull properties. The
following sections will analyze and prove these properties.

�

4.2. Properties of the surface. In the following, we
provide a detailed analysis and prove the good properties
of the αβ-sh Bézier surface.

Property 10. (Boundary properties) The boundary
curves of the surface can be defined as

S(0, v) is the α-sh Bézier curve defined by the points P0,j ,

S(α, v) is the α-sh Bézier curve defined by the points Pm,j ,

S(u, 0) is the α-sh Bézier curve defined by the points Pi,0,

S(u, β) is the α-sh Bézier curve defined by the points Pi,n.

Property 11. (Corner property) When u and v take the
values 0 and α (for u) and 0 and β (for v), the αβ-sh
Bézier surface produces the corner points of the surface,
as follows:

S(0, 0) = P0,0, S(0, β) = P0,n,

S(α, 0) = Pm,0, S(α, β) = Pm,n.

Property 12. (Convex hull property) The αβ-sh Bézier
surface is a convex combination of control points and
always lies within the convex hull formed by these control
points.

Property 13. (Separability) The αβ-sh Bézier surface
can be expressed as the outer product of two α-sh Bézier
curves:

S(u, v) = Cu(t)× Cv(t),

allowing for independent manipulation along the u and v
components.

Property 14. (Variation diminishing) In an αβ-sh
Bézier surface, the number of intersection points between
any plane and the surface does not exceed the number
of intersection points with its control mesh. This
property ensures that the surface can effectively control
deformation during shape changes while maintaining
smoothness and continuity.



Construction and deformation of curves and surfaces . . . 461

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Fig. 6. Bézier αβ-sh surface when α = 1: αβ-sh Bézier surface and control mesh (a), α-sh basis function (b).

(a) (b)

Fig. 7. Surface with decreased shape parameters on different
components: α, β = 0.1 (a), α = 1, β = 0.1 (b).

4.3. Parameter control for αβ-sh Bézier surfaces
deformation. After defining the αβ-sh Bézier surface,
its construction involves two parameters, α and β,
which correspond to the two directions introduced by
the increase in dimensions. Similar to the shape control
principle for curves, α and β serve as shape control
parameters. When their values change, the values of
the basis functions within their respective domains also
change. As the magnitudes of bi,m(t) and bj,n(t) vary, the
weights at the control points Pij are modified, leading to
the desired shape transformation. This section illustrates
the impact of these shape parameters on the surface
through an example.

Example 6. According to the separability property of the
surface, the shape parameters in the u and v directions
can be adjusted independently, altering the weights of
the control points along each direction. The effects of
changing the shape parameters on the basis functions are
illustrated in Figs. 4(a) and 4(b).

In Figs. 7 and 8, the mesh represents the surface’s
position when both α and β are equal to 1. In Fig. 7(a),
when both α and β are simultaneously reduced, the entire
surface, except for the corner points, moves away from
the control mesh. In Fig. 7(b), when only β is changed,
the boundary curves corresponding to α on the surface
remain unchanged, while the surface moves away from

(a) (b)

Fig. 8. Surface with increased shape parameters on different
components: α = 1, β = 3 (a), α = 3, β = 3 (b).

the control mesh in the β direction. In Fig. 8(a), when
only β increases, the surface moves closer to the previous
endpoint in the β direction, while the boundary curves
corresponding to α remain unchanged. In Fig. 8(b), when
the parameters in both directions are increased, the surface
moves towards the previous endpoint in both dimensions,
pulling it toward one corner. �

From the analysis of the surface properties and the
shape control demonstrated in Example 3, it is evident
that the αβ-sh Bézier surface is simply constructed
and exhibits good stability. By introducing control
parameters, both the overall contour and the local shape
of the surface can be adjusted with greater precision.
The positions of the start and end points, together
with the shape control parameters, enable fine-tuning
of the surface. This flexibility allows for various
shape deformations by increasing or decreasing the shape
control parameters, thereby improving design efficiency.

5. Application
Based on the principles of curve and surface construction
and deformation, this section presents several application
examples.

When connecting multiple curves, certain conditions
must be satisfied to ensure better continuity. Suppose
there is a curve C1, constructed with three control points
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P0, P1, and P2, and another curve C2, constructed
with three control points P3, P4, and P5. When point
P2 coincides with point P3, the curves C1 and C2 are
G0-continuous at the point of coincidence. The two
curves are abbreviated as C1 = P0b0,2 +P1b1,2 +P2b2,2,
C2 = P3b0,2 + P4b1,2 + P5b2,2. To ensure that the two
curves are G1-continuous, their tangent directions at the
point of coincidence must be the same and proportional.
It satisfies the following formula:

dt

dC1
= c · dt

vC2
.

.
By Property 6, we obtain

C′
1 = δ0,1(b0,1)(P1 − P0) + δ1,1(b1,1)(P2 − P1),

C′
2 = δ0,1(b0,1)(P4 − P3) + δ1,1(b1,1)(P5 − P4).

By solving the above three equations simultaneously, we
obtain

P1 − P0 = ζ(P4 − P3),

P2 − P1 = ζ(P5 − P4),

where ζ is an arbitrary constant.

5.1. Deformation of α-sh Bézier curves.

Example 7. Constructing a circle. A single Bézier
curve cannot precisely define a closed shape, such as a
circle. To address this, four control points are used to fit a
quarter-circle arc. These four arc segments are then joined
together to form a complete circle. Finally, a shape control
parameter is applied to deform the circle.

Based on the definition of the α-sh Bézier curve and
the tangent directions at the start and end points of the arc,
we begin by assuming the positions of the control points
as follows:

P0 (r, 0) , P1 (r, d) , P2 (d, r) , P3 (0, r) .

To refine these positions, we represent the arc as a
standard Bézier curve:

C(t) = P0(1−t)3+P1 ·3(1−t)2t+P2 ·3(1−t)t2+P3 ·t3.

When t = 0.5, the corresponding point on the arc is(√
2
2 ,

√
2
2

)
. This gives the equation

(√
2

2
,

√
2

2

)

=
1

8
(r, 0) +

3

8
(r, d) +

3

8
(d, r) +

1

8
(0, r).

Solving this, we get

d = r · 4
3
tan

(π
8

)
.
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Fig. 9. Changes in the circle when the shape parameter in-
creases: α = 0.975 (a), α = 10 (b).
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Fig. 10. Changes in the curve when the shape parameter α de-
creases.
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Let k = 4
3 tan

(
π
8

)
(in the following text, k will denote

this value). Then, four sets of control points are used to
construct the circle. The coordinates of the control points
are as follows (where r is the radius of the circle):

{(r, 0), (r, r · k), (r · k, r), (0, r)},

{(0, r), (−r · k, r), (−r, r · k), (−r, 0)},
{(−r, 0), (−r,−r · k), (−r · k,−r), (0,−r)},

{(0,−r), (r · k,−r), (r,−r · k), (r, 0)}.
By adjusting the parameters simultaneously, a circle
(Fig. 9(a)) can be obtained when the parameterα = 0.975.

As the parameter increases, the curve is pulled
toward the control point immediately before the endpoint.

As the parameter decreases, it can be observed from
Fig. 10 that the fitted curve, except at the endpoints, moves
away from the control polygon. �

Example 8. A three-dimensional spiral curve is fitted
in three-dimensional space based on a two-dimensional
circle, using four sets of control points. Figure 11
illustrates how the spiral curve changes as the parameters
vary. The control points are as follows:

{(6, 0, 0), (6, 6 · k, 1), (6 · k, 6, 2), (0, 6, 3)},

{(0, 6, 3), (−6 · k, 6, 4), (−6, 6 · k, 5), (−6, 0, 6)},
{(−6, 0, 6), (−6,−6 · k, 7), (−6 · k,−6, 8), (0,−6, 9)},
{(0,−6, 9), (6 · k,−6, 10), (6,−6 · k, 11), (6, 0, 12)}.

�

5.2. Deformation of the αβ-sh Bézier surface. After
applying the curve, we extend the dimensions to apply the
circle to a surface.

Example 9. Building on the 3D spiral curve, we extend
it into a 3D spiral surface by connecting four adjacent
surface segments. Each segment is defined by a set
of control points in three-dimensional space, as shown
below:

⎛

⎜
⎜
⎝

(6, 0, 0) (3, 0, 0) (0, 0, 0)
(6, 6 · k, 1) (3, 3 · k, 1) (0, 0, 1)
(6 · k, 6, 2) (3 · k, 3, 2) (0, 0, 2)
(0, 6, 3) (0, 3, 3) (0, 0, 3)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

(0, 6, 3) (0, 3, 3) (0, 0, 3)
(−6 · k, 6, 4) (−3 · k, 3, 4) (0, 0, 4)
(−6, 6 · k, 5) (−3, 3 · k, 5) (0, 0, 5)
(−6, 0, 6) (−3, 0, 6) (0, 0, 6)

⎞

⎟
⎟
⎠ ,

(a) (b)

Fig. 11. Spirals with the dotted line for α = 0.975, dash-dotted
line for α = 0.1, solid line for α = 10. Top view of
the spiral (a), 3D view of the spiral (b).

(a) (b)

(c) (d)

Fig. 12. Spiral surfaces with different parameters: top view of
the spiral surface when α = 0.975 (a), spiral surface
when α = 0.975 (b), top view of the spiral surface
when α = 10 (c), spiral surface when α = 10 (d).

⎛

⎜⎜
⎝

(−6, 0, 6) (−3, 0, 6) (0, 0, 6)
(−6,−6 · k, 7) (−3,−3 · k, 7) (0, 0, 7)
(−6 · k,−6, 8) (−3 · k,−3, 8) (0, 0, 8)

(0,−6, 9) (0,−3, 9) (0, 0, 9)

⎞

⎟⎟
⎠ ,

⎛

⎜
⎜
⎝

(0,−6, 9) (0,−3, 9) (0, 0, 9)
(6 · k,−6, 10) (3 · k,−3, 10) (0, 0, 10)
(6,−6 · k, 11) (3,−3 · k, 11) (0, 0, 11)

(6, 0, 12) (3, 0, 12) (0, 0, 12)

⎞

⎟
⎟
⎠ .

Here, we use four control points. Along the direction of
the control points aligned with the parameter β, all control
points lie on a straight line, meaning that variations in
β do not affect the surface shape. Only the parameter
α influences the surface geometry. Figure 12 shows the
surface shapes for different values of α, with Fig. 12(c)
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Fig. 13. Construction and deformation of the spring: the ba-
sic arc surface constructed using sixteen control points,
with α = 1 and β = 1 (a), the segment of a heli-
cal tube formed by the connection of four arc surfaces
(b), a segment of a spring formed by the connection
of eight helical tube segments (c), a rectangular spring,
with α = 10 (d).

matching the shape of Fig. 9(b). Adjusting the surface
shape through α does not alter the control points, thus
preserving continuity both within each surface patch and
at the boundaries between patches.

�
The above analysis addresses the fitting and deformation
of the αβ-sh Bézier surface for specific surface types.
Next, we present several examples to demonstrate the
application of αβ-sh Bézier surface deformation in
industrial design.

Example 10. Helical tubes are commonly used
in everyday applications, particularly as springs. In
mechanical equipment and the automotive industry,
rectangular springs are more frequently employed.
Compared to springs with circular cross-sections,
rectangular springs offer greater stiffness, enhanced
elasticity, and improved stability and fatigue resistance,
especially under high-speed vibration.

The helical tube is created by fitting a spring using
the αβ-sh Bézier surface, constructed by joining multiple
arc segments. Figure 13(a) shows a quarter of the helical
tube, and through additional segment connections, the
helical tube in Fig. 13(b) is formed. By rotating this
segment (Fig. 13(b), a complete spring (Fig. 13(c)) is

obtained. Finally, by adjusting the parameter values, a
rectangular spring, as shown in Fig. 13(d), is generated.
Throughout this transformation process, the positions of
the control points are preserved, ensuring that the surface
maintains good continuity during deformation.

�

Example 11. The αβ-sh Bézier surface, known
for its excellent smoothness, can also be applied in the
design of household appliances, providing both aesthetic
benefits and improving the feasibility of product design.
The following example of a wine glass illustrates the
application of surface deformation.

When constructing the wine glass, the base, stem,
and body are all formed by connecting four surfaces.
The deformation process affects only the cup body. It is
important to note that surface deformation is influenced
by the start and end points. The control point at the rim of
the cup is taken as the starting point, while the connection
between the cup body and the stem serves as the endpoint,
resulting in a quarter of the cup body as shown in Fig.
14(a). By increasing the control parameter, the surface
is pulled toward the previous node at the endpoint in
the component corresponding to β, as illustrated in Fig.
14(b).

The spatial control points of the surface shown in Fig.
14(a) are listed as follows:

(1, 0, 13) (1, 1 · k, 13) (1 · k, 1, 13) (0, 1, 13)
(12, 0, 16) (12, 12 · k, 16) (12 · k, 12, 16) (0, 12, 16)
(9, 0, 27) (9, 9 · k, 27) (9 · k, 9, 27) (0, 9, 27)
(7, 0, 29) (7, 7 · k, 29) (7 · k, 7, 29) (0, 7, 29).

�

6. Discussion
Traditional Bézier curves and surfaces cannot represent
special curves, such as circles, and any deformation of
these curves or surfaces can only be achieved by changing
the positions of the control points. To address these issues,
this paper proposes a new basis function called the α-sh
basis function, which is used in the construction of curves
and surfaces. The basis functions are defined using the
vector space

{
1, t, t2, . . . , tn−2, sinh t, cosh t

}
, with the

shape control parameter α incorporated into the functions.
Curves constructed using the α-sh basis function can first
be used to construct special curves, and second, curve
and surface deformation can be achieved by adjusting
the control points at the starting and ending positions,
as well as by modifying the shape control parameter.
The deformation process does not require altering the
positions of the control points, making it simpler and more
intuitive. Compared to previous research, the method
proposed in this paper demonstrates superior performance
in terms of curve and surface continuity over construction
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(a) (b)

(c) (d)

Fig. 14. Construction and deformation of wine glass: wine glass
body when α = 1, β = 1 (a), wine glass body when
α = 3, β = 1 (b), wine glass when α = 1, β = 1 (c),
wine glass when α = 3, β = 1 (d).

methods based on trigonometric functions. When
achieving higher-order continuity, the proposed method
exhibits better properties and makes it easier to realize C1

and C2 continuity. Additionally, trigonometric functions
require significantly higher computational costs when
dealing with floating-point operations. Furthermore,
unlike the construction methods mentioned in previous
studies, the basis functions of the proposed method in
this paper lack symmetry. This unique property means
that the selection of the starting and ending control points
also influences the deformation effect, providing more
possibilities for curve and surface design. This paper also
extends the application of this new construction method
to both two-dimensional and three-dimensional spaces,
rather than being confined to a single-dimensional space.

The use of a new basis function, compared to
traditional Bézier curves and surfaces, increases the
computational load, requiring more time for curve and
surface construction. Additionally, during deformation,
the shape control parameter must be carefully chosen.
When designing curves and surfaces, special attention
should be given to the distribution of control points at the

starting and ending positions.
In future work, we will further investigate the

deformation techniques of curves and surfaces with shape
control parameters, optimize the construction method
of the basis functions, and expand the ways in which
parameters can control the shape.

Acknowledgment
This research was supported by the National Natural
Science Foundation of China (no. 12001327).

References
Ameer, M., Abbas, M., Abdeljawad, T. and Nazir, T. (2022).
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Kotan, M., Öz, C. and Kahraman, A. (2021). A lineariza-
tion-based hybrid approach for 3D reconstruction of
objects in a single image, International Journal and Ap-
plied Mathematics and Computer Science 31(3): 501–513,
DOI: 10.34768/amcs-2021-0034.

Marschner, S. and Shirley, P. (2009). Fundamentals of Computer
Graphics, 3rd Edn, AK Peters/CRC Press, Natick.

Marschner, S. and Shirley, P. (2018). Fundamentals of Computer
Graphics, 4th Edn, CRC Press, Boca Raton.

Maqsood, S., Abbas, M., Hu, G., Ramli, A. L.A. and Miura,
K.T. (2020). A novel generalization of trigonometric
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