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There is recent evidence that a considerable proportion of somatic mutations in cancer cells’ DNA may exert a weakly
advantageous effect on tumor growth. In this paper, we develop models of cancer evolution with somatic mutations that
introduce a weakly advantageous force to the evolution of cancer cells. The elaborated models incorporate random events
of cellular births, deaths and occurrences of somatic mutations in cancer cells’ DNA. The models belong to two categories:
deterministic and stochastic. The former are based on systems of differential equations that balance the average number
of cells and mutations during evolution. To verify the results of our deterministic modeling, we use a stochastic Gillespie
algorithm. We show that our models predict the explosive growth of the cancer cells population, consistent with recent
experimental observations.
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1. Introduction
The growth of cancer cellular population is a highly
variable and complex process with several genomic and
physiological components. Many important properties
and parameters of this process remain disputable, and
much research is necessary for better understanding how
tumors change during growth and under therapy (Greaves
and Maley, 2012). Developing and studying mathematical
models of cancer evolution and confronting their
outcomes with experimental data can help discovering
roles and estimating strengths of various factors behind
cancer onset and progression.

A long-standing area of research in cancer modelling
is fitting various mathematical models to temporal,
experimental data on tumour growth (e.g., Laird, 1964;
Brú et al., 2003; West and Newton, 2019; Talkington
and Durrett, 2015; Vaghi et al., 2020; Kühleitner et al.,
2019). Scenarios in the cited researches included
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exponential growth models, power law models with
exponent lower then one leading to growth slowing down
in time, Von Bertalanffy and Kleiber, saturating growth
models, Gompertzian, logistic, etc. A variety of growth
scenarios and divergent conclusions regarding growth
types, exponential, slowing down or saturating, result
from the inherent difficulty in inferring growth type from
temporal data over rather short periods of time.

The recent advancements of experimental techniques
for monitoring neoplastic transformations have facilitated
the acquisition of novel insights for the study of
tumour growth. The application of PET (positron
emission tomography) techniques enables the estimation
of tumour growth rates, as determined by the intensity
of glucose intake (Pérez-García et al., 2020). The
results published by Pérez-García et al. (2020) yielded
a groundbreaking conclusion: the growth of several
cancers follows a superlinear power law, i.e., a power
law model with an exponent greater than one. This
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conclusion leads to scenarios of tumor growth of
explosive type, with finite escape times. It thus
calls for research into the explanations (physiological,
metabolic, genetic/genomic, geometric/spatial) of such
scenarios. Models of explosive tumor growth have already
appeared in the literature (Pérez-García et al., 2020;
Azimzade et al., 2021; Bosque et al., 2023). These
studies used versions of Fisher–Kolmogorov (FK) partial
differential equations as a mathematical background,
however their constructions were based of different views
and principles. Pérez-García et al. (2020) proposed the
model of the form of three dimensional FK equation
with cell diffusion and two types (size-independent and
size-dependent) cellular proliferation processes taking
place in the environment/medium of a given capacity.
Bosque et al. (2023) introduced the model incorporating
cell migration, proliferation with phenotypic transitions
and interference between clones with different phenotypes
competing for the available space. Again, it was assumed
that tumor growth occurs in the environment of a given
capacity. Finally, Azimzade et al. (2021) developed a
more complex and detailed model, of the form of a system
of FK equations, with fitness advantages of cancer cells
caused by driver mutations, dynamics of cellular oxygen
consumption and angiogenesis.

The present paper develops a mathematical model
of tumour growth driven by the propagation of weakly
advantageous somatic mutations in cancer cells. Somatic
mutations in cancer cells are usually classified as either
drivers or passengers (e.g., Greaves and Maley, 2012).
Driver mutations are rare but have a strong causal effect
on cancer development, while passenger mutations are
abundant in cancer cells DNA but have little or no
effect on cancer development. Searching for driver
mutations in cancer DNA and researching their roles
in cancer growth plays a crucial role in understanding
processes underlying oncogenesis (e.g., ICGC/TCGA
PCWG Consortium, 2020; Vogelstein and Kinzler, 2015).
The number of driver mutations discovered/detected in a
cancer cell population (in a sample from a cancer patient)
is typically very low. These few drivers (Vogelstein
and Kinzler, 2015) are always accompanied by large
numbers of somatic passenger mutations. In contrast to
driver mutations, impact of these numerous passenger
mutations on cancer onset and/or development is actually
rather not well understood (Kumar et al., 2020). Due to
its high significance the issue of the role of passenger
mutations in cancer has been studied by using/combining
experimental/clinical observations, repositories of cancer
DNA sequencing data (ICGC/TCGA PCWG Consortium,
2020; Cerami et al., 2012; WSI, 2022), tools of
comparative genomics (Fu et al., 2014), statistics and
mathematical modeling (Bozic et al., 2010; Kumar et al.,
2020; McFarland et al., 2013).

One viewpoint in the literature on cancer genomics

is that all passenger mutations are fully neutral and have
no effect on tumour progression/evolution. This opinion
was presented in several studies (Bozic et al., 2010;
Williams et al., 2016; Tung and Durrett, 2021) supported
by analyses of data from the ICGC/TCGA next-generation
sequencing project (Wilks et al., 2014). The rationale
for the full neutrality hypothesis provided by Bozic et al.
(2010) was based on the consistency of predictions of the
branching process model of cancer growth with allelic
frequencies of driver and passenger mutations seen in
sequencing data. Williams et al. (2016) introduced a
mathematical model for variant allele frequencies (VAF)
in an exponentially growing population, which predicted
the 1/f power law of distribution of VAFs of fully neutral
passenger mutations, quite consistent with observational
data of next-generation sequencing of cancer tissues.
Some authors (McDonald et al., 2018; Noorbakhsh and
Chuang, 2017; Wang et al., 2018) pointed out that VAF
statistics following from the model of Williams et al.
(2016) can also be reproduced by other models, with not
necessarily fully neutral mutations. Tung and Durrett
(2021) used the multi-type branching processes model
for studying the possibility of distinguishing neutral from
advantageous mutations.

Recently, many researches have been bringing
arguments that accumulated passenger mutations can
impact cancer evolution, parallel/addition to drivers.
Several authors observed that statistics (patterns of
allelic frequencies) of passenger mutations differ between
different cancers. Mc Farland et al. (2013; 2014)
analyzed somatic mutations available in the Cosmic
database (WSI, 2022) and, by studying their potential
molecular impact using the bioinformatic tool PolyPhen
(Boyko et al., 2008), hypothesized that majority of
the passenger mutations are likely to exert a mildly
damaging effect on the evolution of cancer cells
population. Following this hypothesis, they have
developed a mathematical model of cancer evolution with
two counteracting factors, frequent passenger mutations,
each with a weak deleterious effect and rare, driver
mutations. Accumulated passenger mutations caused a
slow shrinking of the cancer population, while rare driver
mutations introduced selective sweeps, i.e., short time
intervals of rapid population growth. Jiao et al. (2020)
and Salvadores et al. (2019) demonstrated that genomic
locations and frequencies of somatic mutations can be
used to construct molecular signatures to distinguish
between cancer types and their progression scenarios. In
the recent research, Kumar et al. (2020) used quantitative
molecular functional impact score (Fu et al., 2014)
and evolutionary conservation measure (Davydov et al.,
2010) to quantify the cumulative fitness effects of
passenger mutations on tumour growth. Applying these
scores to data on pan-cancer whole genome sequencing
(ICGC/TCGA PCWG Consortium, 2020), they concluded
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that aggregated effect of passengers plays a role in
tumorigenesis beyond standard drivers and may either
introduce a weakly deleterious impact or may generate a
mildly driving (advantageous) evolutionary force.

As outlined above there is an experimental evidence
on the occurrence of weakly advantageous somatic
mutations in cancer cells. Therefore, we elaborate
and analyze mathematical and computational models of
oncogenesis driven by weakly advantageous mutations.
Our approach is inspired by the model published by
McFarland et al. (2013). We simplify it by including
only one type of mutations, weakly advantageous. We
also modify the relation for the cell deaths process,
compared to the results of McFarland et al. (2013),
by assuming that cell deaths occur with the intensity
given by the power function with exponent parameter
A. Allowing different values of A gives an additional
degree of freedom in fitting the model to observations. We
demonstrate that the proposed model predicts superlinear
tumor growth, consistent with experimental results shown
by Pérez-García et al. (2020). Scenario and contributions
of our analysis are as follows:

• We elaborate and launch stochastic simulations
for scenarios of cancer evolution with weakly
advantageous mutations based on the Gillespie
algorithm, for supporting and verifying further
results of deterministic modelling.

• We formulate a deterministic model of tumor
evolution as a system of differential balance
equations for changes of expected numbers of cells
with divisions and deaths, and for changes of
expected numbers of occurring mutations.

• In this model of tumor growth solitary mutation wave
propagates in cancer cells population. We obtain
analytical relations concerning the propagation of the
mutation wave (dynamics of mutation wave) in the
growing population of cancer cells, in terms of the
mean and variance of the number of mutations. In
the previous literature, models of the dynamics of
mutation of fitness waves were derived under the
assumption of constant population size.

• We analyse the model of quasi-stationary mutation
wave (mutation wave with variance approximately
constant over time). Using the deterministic model
augmented with the simple cutoff condition for
number of cells (Tsimring et al., 1996; Sharp, 1982),
we establish a deterministic numerical procedure for
relating the variance of the quasi-stationary mutation
wave with the population size.

• For the model of quasi-stationary mutation wave,
we derive analytical relations for the growth
rate of the cancer cells population. We verify

the obtained deterministic, analytical results by
stochastic simulations.

• We demonstrate that, for a reasonable selection of
parameters, the tumor growth rate versus tumor
size/volume increases superlinearly with an exponent
parameter within the range consistent with the
findings presented in reference (Pérez-García et al.,
2020).

In our study, the force driving the growth of
cancer cells population is the process occurring at the
molecular level, of the emergence of somatic mutations
during cellular replication and their propagation in
cellular evolution. The scenario under consideration
is more fundamental, and its mathematical modeling is
less complex than the mathematical models of cancer
growth at the level of cellular processes proposed in the
referenced previous papers (Pérez-García et al., 2020;
Azimzade et al., 2021; Bosque et al., 2023). Our
models require only a few parameters, intensities of
cellular births and deaths, probabilities of occurrences
of weakly advantageous mutations and their fitness.
Their approximate values can be found or estimated
on the basis of the literature (e.g., Mc Farland et al,
2013; 2014). Our mathematical model explains the
rate of growth of both solid tumors and blood cancers,
while previously proposed models rather refer only to
solid tumors. In the development of tumors and their
understanding at the mesoscopic level there are many
aspects such as spatial distribution, interactions with
surrounding tissues, dynamics of angiogenesis, which
are biologically very important, but their mathematical
modeling is complicated.

2. Evolution scenario for the cancer cells
We study the evolution scenario of the cancer cells
population with events of deaths, births and weakly
advantageous mutations. These events are represented
graphically in Fig. 1. Cell deaths and births are
inhomogeneous Poisson processes with rates depending
on the state of the model (defined by population size
and the number of mutations in cancer cells). Random
events of mutations are occurring during cell births. Cell
death rate depends on the cancer cell population size, on
the population capacity parameter and on the exponent
parameter. Birth rates of cells depend on the number of
(somatic, weakly advantageous) mutations in their DNA.

2.1. Notations for processes and events. In relation to
the events shown in Fig. 1 we use the following notation.

N(t) denotes population size, i.e., the expected
number of cells in the analyzed cancer population and by
NC , we denote the population capacity parameter. We
often drop t (time) writing N(t) = N , for conciseness.
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Fig. 1. Graphical representation of possible events in the ana-
lyzed scenario of cancer cells populations evolution.

The intensity of death processes is assumed to depend
on the population size N(t) and population capacity
parameter NC by a power function with exponent denoted
by A (see (1)).

By l we denote the number of weakly advantageous
passenger mutations in a cancer cell, nl(t) = nl stands for
the size (expected number of cells) of the subpopulation
of cancer cells population, of cells harbouring l weakly
advantageous passenger mutations. We also call the
sub-population nl-type or class with l mutations. By f
we denote the value of the positive selection coefficient.
The probability of acquiring a mutation in a cell division
is denoted by pf .

All variables and parameters presented above are
listed in Table 1.

2.1.1. Death process. Intensity of the cellular death
Poisson processes μD(N) depends only on the total
number of cells N and on the population capacity
parameter NC , by the relation

μD(N) =

(
N

NC

)A

. (1)

The above relation between μD(N) and N is assumed as
a power function with an exponent A. If the exponent
is equal to one, A = 1, the model of the death intensity
becomes the same as that used in the literature (McFarland
et al., 2013; 2014). Here, by allowing A �= 1 we
introduce one more degree of freedom in modelling. This
additional degree of freedom has consequences to the
rate of growth of cancer cells population with weakly
advantageous mutations and allows us to fit our model to
recently published experimental results on rates of growth
of tumours (Pérez-García et al., 2020).

2.1.2. Birth process. Birth rate of cells of type l,
denoted by μB(l, f), is assumed to be described by the
following function

μB(l, f) = (1 + f)l � elf , (2)

where approximation ef � (1+f) is used. Accumulation
of weakly advantageous mutations, according to the

above function, increases the intensity of the birth
process. Based on the assumption of the weak effect of
mutations, we can linearize the birth rate function (2) for
approximating values of μB(l, f)

μB(l, f) ∼= μB(χf , f)(1 + f(l − χf )),

μB(l − 1, l) ∼= μB(χf , f)(1 + f(l − 1− χf )).
(3)

The above linearization is around the mean value of
the number of mutations in a cell χf , defined in the
subsequent text in (6).

2.1.3. Mutation process. Mutations occur during cell
divisions, with probability pf , which leads to the intensity
of mutations given by

pfμB(l, f), (4)

where μB(l, f) is birth process intensity given by (2).

2.1.4. Values of parameters. Values of parameters
of selection and mutation processes in the model are
chosen by referring to the literature (McFarland et al.,
2013). The value of the negative selection coefficient
of weakly deleterious passenger mutations was taken by
these authors to be in the range 10−4 − 10−1. We
take these values as a reference, and we assume a
positive selection coefficient, f , of the order 10−4 −
10−3. Probability of mutations, pf are taken to be of
the order of 10−3 − 10−2. In the work of McFarland
et al. (2013) similar values of probability of passenger
mutations are obtained by multiplying mutation intensity
per cell division event per nucleotide by the estimated
number of target sites equal to be of the order of 106.
The population size of cancer cells in our computations
is assumed to be in the range from 103 to 106.

2.1.5. Units of time scale. In our model, the temporal
progression is continuous and corresponds to the actual
time elapsed during tumour evolution. It is scaled by the
intensities of the birth-and-death process. The unit of time
is assumed equal to the expected waiting time for the birth
event in a “wild type" cell, with no mutations (l = 0).
With values of parameters applied in our models one unit
of time is considered to fall within the range of one day to
one week.

3. Stochastic simulation model of evolution
of cancer cells

The elaborated stochastic simulations algorithm for the
evolution scenario described in the previous section is
described below. We use Gillespie stochastic simulation
method (Gillespie, 1976) to draw random times of
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Table 1. Variables and parameters in deterministic and stochastic models and their explanations.
Symbol Explanation Units
N(t) Cancer cells population size Counts
NC Population capacity parameter Counts
l Number of weakly advantageous mutation in cancer cell Counts

nl(t) Size of the subpopulation of cells with l mutations Counts
f Value of positive selection coefficient Dimensionless
pf Probability of acquiring mutation in cell division Dimensionless
A Exponent of the power function describing cell death intensity Dimensionless

events of cells deaths, divisions and mutations, based
on intensities (1), (2) and probabilities (4). In our
implementation of the Gillespie algorithm, the state of the
process is N -dimensional vector, where N is the number
of cells (population size), each element corresponds to
one cell and its entry is determined by the number l
of mutations harboured by the cell. Initially, the state
vector contains entries equal to 0 since the initial mutation
number is zero for all cells. The initial value of N is set
to N = NC .

In each simulation cycle/loop, time instants
corresponding to potentially occurring events of deaths
and births are randomly drawn from exponential
distribution and scaled by intensities (1) and (2),
following from population size and numbers of mutations
in each cell. For each cell birth, a possible mutation
event is generated randomly as a Bernoulli trial with
probability pf . To increase efficiency, we use the tau-leap
version of the Gillespie algorithm (Marchetti et al., 2017).
The parameter of the simulation algorithm τ should be
much smaller than the unit of time. Based on simulation
experiments, we consider the range 0.005 ≤ τ ≤ 0.05 as
a reasonable choice.

Values of randomly generated times of potential
deaths and births and results of Bernoulli trials are then
used to obtain binary vectors of events (pdt-death event,
pdv-division event, and pdm-mutation event), which allow
for appropriate updating of the state vector.

The whole simulation process is combined from
multiple simulation loops where each loop increases
simulation time by τ . Simulation terminates when the
condition of the simulation time or population size is
encountered.

4. Deterministic model of evolution of the
population of cancer cells

Deterministic modelling involves formulating systems of
differential equations describing the fitness effects of
advantageous mutations as well as related laws behind
cellular deaths and replications. On the basis of relations
(1)–(2) we formulate a deterministic model of the

evolution as the set of deterministic equations of balances
of expected streams of dividing/dying cells and occurring
passenger mutations. The set (system) of equations of
balances of cells/mutations flows has the following form:

d

dt
nl = pfμB(l − 1, f)nl−1

+ (1 − pf)μB(l, f)nl − μD(N)nl. (5)

The right-hand side has three components of the rate of
change of a number of cells of type l. The first component
is the rate of increase of the number of cells of type
l due to cells of type l − 1 acquiring mutation during
their replications, the second component gives the rate of
increase due to replications of cells of type l (division
without mutation), finally, the third one is the rate of
decrease due to cell deaths. The range of indices l is
l = 0, 1, 2 . . . .

4.1. Evolution of the population size. We can derive
a differential equation governing the evolution of the
population size—the total number of cells N equal to the
sum of the numbers of cells over all cell types. We have
N =

∑
l nl and we define mean χf and variance σ2

f of
numbers of advantageous mutations

χf (t) = χf =
∑
l

lνl, (6)

σ2
f =

∑
l

(l − χf )
2νl, (7)

where νl are frequencies of cells of type l:

νl(t) =
nl(t)

N(t)
. (8)

Summing both sides of equations (5) over the range
of values of l and using linear approximations (3) and
relation (1) we get

d

dt
N =

[
μB(χf , f)−

(
N

NC

)A
]
N. (9)
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The above differential equation describes the dynamics of
the size of the total cell population N(t). Rewriting (9) as

1

N

d

dt
N =

[
μB(χf , f)−

(
N

NC

)A
]

(10)

and noting that N is large, one can notice that (5)
with (10) can be considered as a two-time scale system
(Kuehn, 2015). In the fast time scale we assume
μB(χf , f) � const, so starting from any initial condition
the population size N(t) tends to the fast time limit N =

NCμB(χf , f)
1
A . Slow time scale dynamics is given by

the solution to (5) restricted to the manifold

N(t) = NC [μB(χf (t), f)]
1
A . (11)

4.2. Mutation wave. We describe mutation wave
traveling in cancer cells population by deriving the
dynamics of the change of the mean number of mutations
χf (t). In order to derive equations describing the
change of mean numbers of mutations over time we
start by considering frequencies of cell types. We first
differentiate both sides of (8) to obtain

d

dt
νl = − 1

N2

dN

dt
nl +

1

N

dnl

dt
. (12)

By substituting (9) and (5) in the above equation, we get
the set of differential equations describing the dynamics
of νl(t),

d

dt
νl = μB(χf , f)[pf(1 + f(l− 1− χf ))νl−1

− pf(1 + f(l− χl))νl + f(l − χf )νl]. (13)

Using the above, we derive a differential equation
describing the time change of χf (t). We use equations for
the dynamics of frequencies of cell types; see Eqn. (13).
Multiplying both sides of (13) by l and summing up over
the range of index l we obtain

∑
l

l(
d

dt
νl) =

d

dt
(χf ) = μB(χf , f)(pf + fσ2

f ). (14)

4.3. Quasi-stationary profile of mutation waves in
finite-size population. Equation (14) is used here for
modeling propagation of the mutation wave. However,
its efficient application requires elaborating a method for
computing/estimating values of variance σ2

f . Balancing
forces, which influence values of σ2

f , need accounting for
the effects of the finite size of the cancer cell population
and quantization of sub-populations (cell classes) nl. The
differential balance equations (5) are formulated in real
numbers arithmetic, so they contain streams of cells and
mutations generated in sub-populations nl of fractional
sizes (of sizes smaller than 1). In real cellular populations

and in stochastic simulations sub-populations nl generate
cells and mutations when their size is bigger than 1.
So here we use a simple (heuristic) modification of the
deterministic model (5), which involves introducing the
assumption that cell divisions in the cell class nl can
happen only if nl ≥ 1. Introducing the function h(n)
defined as

h(n) =

{
n if n ≥ 1,

0 if n < 1,
(15)

we formulate modified deterministic balance equations, as
follows:

d

dt
nl = pfμB(l − 1, f)h(nl−1)

+ (1 − pf)μB(l, f)h(nl)− μD(N)nl. (16)

The condition for the size of cell classes analogous
to (15) was already used in modeling evolution of fitness
of RNA viruses in populations with constant size, where
it was named cutoff condition (Tsimring et al., 1996;
Sharp, 1982). It is intuitively explained by the same
argument as we are giving here and additionally supported
by experimental and simulation results. Here we use
the cutoff modification for the model with a growing
population size. Analogously to the previous literature we
observe that the deterministic model with cutoff condition
(16) gives reasonably good consistency with stochastic
simulations.

Comparison of numerical solutions of two models,
differential system of differential equations (5) and
modified differential equations with cutoff condition (16)
is given in Fig. 2, for the parameters A = 1, f =
0.0005, pf = 0.025, NC = 10 000. Time plots
corresponding to solutions (5) are drawn as dashed lines,
while those representing (16) are drawn as solid lines.
Initial conditions for both models are defined by initial
population size N(0) = NC and the initial number of
mutations in all cells l = 0. Numerical solutions are
computed by the fourth-order Runge–Kutta algorithm.
Qualitatively, both solutions are analogous, both predict
the propagation of a mutation wave towards accumulating
an increasing number of weakly advantageous passenger
mutations by cancer cells and the increase of the
population size N(t). However, quantitatively the two
scenarios of propagation differ significantly. The mutation
wave computed based on (5) propagates faster. When
represented by means and variances it is also broader (has
larger variance) than that corresponding to (16). When
comparing time plots of variances of mutation numbers,
σ2
f (t) (right panel, middle plot), we see that the values of

σ2
f (t) computed based on cutoff modified equations (16)

(solid line) are approximately constant (precisely, they
increase very slowly), while values of σ2

f (t) computed on
the basis of differential equations (5) (dashed line) show a
significant increase in time.
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Fig. 2. Comparison of solutions of deterministic differential equations model (5), with the solution to model (16) with cutoff modifica-
tion (15), for modelling evolution with weakly advantageous mutations, for the parameter set A = 1, f = 0.0005, pf = 0.025,
NC = 10 000. Left panels present plots of mutation waves at three time instants t = 500, t = 1 000 and t = 2 500. The right
panels show time plots of mean numbers of mutations, χf (t) (upper plots), the variance of mutation numbers, σ2

f (t) (middle
plots) and number of cells in the cancer population N(t) (lower plots). For all plots, dashed lines show time plots computed by
using numerical integration of the system of differential equations without (5) while analogous solid lines represent solutions
to modified equations (16).

Additionally it can be seen that solutions to modified
differential equations (16) are consistent with the results
of stochastic simulations. This can be demonstrated
by comparison analogous to that presented in Fig. 2.
Deterministic modelling is based on differential equations
with cutoff modification. Stochastic simulations are
based on the Gillespie algorithm described in the
previous subsection. The set of parameters assumed in
computations is the same as that in Fig. 2: A = 1, f =
0.0005, pf = 0.025, NC = 10 000. Here we assume a
longer time range, from t = 0 to t = 10 000. In Fig. 3 we
show time plots corresponding to differential equations
with cutoff modification (16) solved numerically by
using the Runge–Kutta method, versus analogous time
plots obtained by using stochastic simulations with
the Gillespie algorithm. The deterministic differential
equation model and Gillespie simulation algorithm
were started with the initial condition given by initial
population size N(0) = NC and the initial number of
mutations in all cells l = 0.

In the plots of time change of σ2
f (t) corresponding

to solutions of systems of cutoff modified equations (16)
shown in Fig. 2 and Fig. 3 we observe quasi-stationarity
of σ2

f (N). Variances of mutation numbers σ2
f (t)

corresponding to propagating mutation waves are
changing slowly in time. It is also the property of
mutation waves seen stochastically in simulations in
Fig. 3 (when variances of numbers of mutations are
averaged over time).

Referring to the slow time relation (11) we accept
the hypothesis that σ2

f is a slowly changing function of
the population size N . Here we present the slow change
of σ2

f (N) in quantitative terms. In Fig. 4 we show plots of
functions σ2

f (N) for different values of positive selection
coefficient (f = 0.0005, f = 0.001, f = 0.0015) and
for different values of exponent parameter (A = 0.1,
A = 0.3, A = 0.5, A = 1). Plots in Fig. 4 were obtained
by multiple runs of a numerical algorithm for solving
cutoff modified equations (16), with different values of
NC . It is seen from Fig. 4 that, while values of N change
in the range of 3 orders of magnitude (from 103 to 106)
the corresponding values of σ2

f span less than one order
of magnitude (from 10 to 50). Plots corresponding to
different values of A are drawn with different colours.
Fig. 4, apart from showing slow growth σ2

f (N) as a
function of N also demonstrates that changing the value
of the exponent A makes almost no change in the plots of
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Fig. 3. Comparison of deterministic (with cutoff modification) versus stochastic modelling for evolution with weakly advantageous
mutations, for the parameter set A = 1, f = 0.0005, pf = 0.025, NC = 10 000. The left panels present plots of mutation
waves at three time instants t = 2 500, t = 5 000 and t = 7 500. The right panels show time plots of mean numbers of
mutations, χf (t) (upper plots), the variance of mutation numbers, σ2

f (t) (middle plots), and the number of cells in the cancer
population N(t) (lower plots). For all plots, black, bold lines show time plots computed by using numerical integration of the
system of differential equations with cutoff modification (16). Gray plots present the results of stochastic simulations obtained
by using the Gillespie algorithm.

σ2
f (N).

Based on the above, in the model considered in
the next subsection (for deriving the power law of the
population size growth), we use an approximation

σ2
f (N) = σ2

f
∼= const. (17)

4.4. Power law in the evolution of the population
size. Evolution of the size of cancer cells population
in the slow time with weakly advantageous mutations
(11) is determined by the time change of mean numbers
of mutations in cancer cells, χf (t), whose dynamics is
described by differential equations (14). The equation
for the velocity of the mutation wave (14), can be used
to derive a model of the evolution of the population size
in the slow time in the form of differential equations.
Through this subsection, we accept the hypothesis on the
slow change of variance; see Eqn. (17).

To derive a differential equation for the slow time
evolution of the population size, we differentiate with
respect to time both sides of (11), and we use (14). This
leads to
d

dt
N(t) =

1

A
NC [μB(χf , f)]

(1+ 1
A )

(fpf +f2σ2
f ). (18)

The above equation, by using (11), can be
transformed to the differential equation with N(t) as a
state variable:

d

dt
N(t) =

1

ANA
C

N (1+A)(fpf + f2σ2
f ). (19)

By computing logarithms of both sides of the above
equation, we have the relation

log10(
d

dt
N(t)) = (1 +A)log10(N(t))

+ log10

(
fpf + f2σ2

f

ANA
C

)
, (20)

which represents the power law in the population size
growth. Logarithms of population size log10(N(t)) and
the growth rate log10(

d
dtN(t)) are dependent linearly with

the coefficient 1+A. Analytical solution to the differential
equation (19) as

N(t) =
NC[

1− t(fpf + f2σ2
f )
] 1

A

(21)



Modeling propagation of weakly advantageous mutations in cancer cells 487

103 104 105 106 107
5

10

15

20

25

30

35

40

45

f=0.0005

f=0.0010

f=0.0015

Fig. 4. Plots of functions σ2
f (N) for different values of the positive selection coefficient (f = 0.0005, f = 0.001, f = 0.0015) and

for different values of the exponent parameter (A = 0.1, A = 0.3, A = 0.5, A = 1). Plots corresponding to different values
of A are drawn with different line styles: A = 0.1 with a dash-dotted line, A = 0.3 with a dotted line, A = 0.5 with a dashed
line, and A = 1.0 with a solid line.

exhibits a finite escape time,

t =
1

fpf + f2σ2
f

. (22)

We show a comparison of results of modelling
the growth of the population size N(t), by using a
deterministic analytical solution (21) versus stochastic
Gillespie algorithm, for parameters f = 0.0005, pf =
0.025, NC = 10000 and different values of exponent
parameter A (A = 0.1, A = 0.3, A = 0.5 and A =
1.0) in cell death intensity relation (1). In Fig. 5(a) we
present time plots N(t), while in Fig. 5(b) we show plots
of log10(

dN
dt ) versus log10(N(t)). Black bold curves

in Figs. 5(a) and 5(b) are computed by using analytical
solution (21) with approximation (17), where the variance
is assumed to equal for all plots, σ2

f = 25 (this value was
set on the basis of plots shown in Fig. 4 corresponding to
f = 0.0005). Logarithmic plots in Fig. 5(b) demonstrate
that for the range of change of population size N(t) of
the order of magnitude 1–2, the pattern of growth is well
approximated by the power law (20).

5. Growth rates of tumours measured by
positron emission tomography (PET)

Growth plots shown in Figs. 5(a) and 5(b) prove that
growth rates of the size of the cancer cells population
can be approximated by power functions with exponent
1 + A. In Fig. 5a, we have shown approximations of
cancer cells population growth for 1 + A ranging from
1.1 to 2 and for population size increased by more than
one order of magnitude. Growth patterns presented in

Fig. 5(b), showing growth intensity versus population
size in logarithmic scales, can replicate analogous,
experimentally measured plots published by Pérez-García
et al. (2020). In Fig. 1(a–h) from that work, values
of exponents of power laws range from 1.182 to 1.386
and ranges of sizes of tumour cell populations cover
1–2 orders of magnitude. These values can be easily
reproduced by assigning suitable values to the exponent
parameter A in our modelling, confirmed by the Gillespie
simulation algorithm.

6. Discussion and conclusions

Mathematical and simulation models of asexual evolution
with mutation waves travelling/propagating in populations
of cells/organisms have already been extensively studied.
The majority of approaches concern constant size
population, the Wright–Fisher or Moran models of
evolution. The classical result (Haigh, 1978), concerning
mutations bringing deleterious effects, is a Poisson-like
quasi-stationary distribution of sizes of mutation classes
(mutation front) in a constant-size population. In
the deterministic model, the position of the mutation
front is fixed, while stochastic effects cause advance
of the mutation wave/front by the mechanism called
Muller’s ratchet (Muller, 1932). Later studies developed
many quantitative aspects concerning estimating the
speed of advance of the mutation front (Gordo and
Charlesworth, 2000). Several studies analyze, with the
assumption of constant population size, evolution with
advantageous mutations (Desai and Fisher, 2007; Uecker
and Hermisson, 2011; Neher, 2013). In the context
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Fig. 5. Comparisons of growth patterns of cancer cells population size N(t), for evolution with weakly advantageous mutations, for
parameters f = 0.0005, pf = 0.025, NC = 10000 and different values of exponent parameter A in cell death intensity relation
(1). Values of A used in computations/simulations are A = 0.1, A = 0.3, A = 0.5 and A = 1.0. Time plots N(t): time
plots N(t) computed by using the analytical relation (21) are drawn with bold black lines, time plots of N(t) obtained by using
stochastic modelling (Gillespie algorithm) are drawn as grey curves (a)—top. Plots of log10( dNdt ) versus log10(N(t)): plots
obtained by using (20) are drawn as black, bold lines. Growth patterns of N(t) obtained on the basis of stochastic simulations
(grey plots in Fig. 5(a)) are represented by grey asterisks. The coordinates of each asterisk are computed as base 10 logarithms
of averaged values of N(t) (horizontal coordinate) and dN

dt
(vertical coordinate). Averaging over bins of the size 1 000 in the

time scale is done for the purpose of reducing the large variation of dN
dt

in stochastic simulations (b)—bottom.

of advantageous mutations, often the interest of the
researchers is in estimating the probability of fixation
or the time to fixation (Desai and Fisher, 2007; Uecker
and Hermisson, 2011). Neher (2013) proposed the
mathematical model of the process of fast adaptation
driven by advantageous mutations, in the form of a
coalescent with multiple mergers. Rouzine et al. (2003)
as well as Desai and Fisher (2007) models of evolution
with constant population size and two types of mutations,
mildly deleterious and mildly advantageous, are studied.

Evolution is described in terms of waves/fronts of fitness,
which summarize counteracting effects of two possible
types of mutations. The studies by Rouzine et al. (2003)
as well as Desai and Fisher (2007) use different modelling
techniques, however, they come to quite consistent results.
Waves and mean population fitness, which appear in their
scenarios follow from the combined effect of deleterious
and advantageous mutations and depend on mutation
intensities and values of selection/fitness coefficients and
the population size.
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In the works of Park et al. (2010) as well as Park
and Krug (2013), several methodologies for estimating
the speed of the wave of advantageous mutations in
constant-size populations are presented and discussed. In
the research by McFarland et al. (2013; 2014) (already
mentioned in Introduction) a model of evolution with rare,
strongly advantageous driver mutations and counteracting
mildly deleterious passenger mutations is proposed for
cancer cell populations. The size of the cancer cells
population is not assumed constant but follows from
the influence of the environment with a given capacity
parameter and from the effects of occurring mutations.
Mildly (weakly) deleterious passenger mutations lead to
a slow, gradual decrease in the fitness of cancer cells,
while driver mutations cause positive selective sweeps and
define the clonal structure of the cancer cell population.

Here we have elaborated and studied models of
the evolution of the cancer cells population inspired
by McFarland et al (2013; 2014). Their model of
propagating mutations in differs from Fisher–Wright or
Moran type models in two important aspects. First, the
size of the cancer cells population is not assumed to be
constant, as in Fisher–Wright and Moran models, but
follows from the influence of the environment with a
given capacity parameter and from the effects of occurring
mutations. Second, the time lapse is continuous, scaled
by the intensity of the birth process and therefore can
be related to the real time lapse in tumor progression.
In the Fisher–Wright and Moran models time scales are
either measured in generations or are given by discrete
sequences of deaths and births occurring simultaneously.
The two above differences make principles of modeling
given by Mc Farland et al. (2013; 2014) a suitable tool
for studying scenarios of tumor growth and growth rates.
In our study we have simplified and modified the models
of Mc Farland et al. (2013; 2014) by assuming that
mutations can only have weakly advantageous effect on
the fitness of cancer cells and that cell deaths process
has the intensity given by the power function (1), with
exponent parameter A. The function describing cell death
intensity (1) is different (more general) than that of Mc
Farland et al. (2013; 2014), where A = 1 was assumed.
Allowing different values of A gives an additional degree
of freedom in fitting the model to observations.

We have formulated a deterministic model of cancer
cell evolution and verified this model by stochastic
simulations, based on the Gillespie algorithm. Our
deterministic model was defined as a system of differential
equations for balances of numbers of cells and numbers
of mutations with a cutoff condition, nl < 1. Solutions
to cutoff modified equations (16) show reasonably good
agreement with the results of stochastic simulations, as
demonstrated in Fig. 3. Mutation wave is quasi-stationary,
it shows a very slow increase of variance in time. The
variance of the mutation wave (Fig. 4) depends on the

value of the parameter f (decreases with the increase of
the fitness parameter f ) and shows very small changes
versus changing the exponent parameter A.

On the basis of deterministic balance equations, we
derive a model for the propagation of the mutation wave in
the population of cancer cells. The model of propagation
(14) is analogous to relations derived in several papers
(Rouzine et al., 2003; Neher, 2013), called Fisher’s
equation (Neher, 2013), or breeder’s equation (Heywood,
2005). However, in contrast to these studies, the
differential equation (14) describes the process evolving
in the real time scale of tumor growth. It has the scaling
factor μB(χf , f), which reflects the phenomenon that
cells with a greater number of mutations proliferate at a
faster rate.

The observation of variance σ2
f (N) changing slowly

as a function of N (see Fig. 4) motivates us to use
constant approximation σ2

f = const (17). With this
assumption, we study the dynamics of the slow change of
the population size. We use the model of the dynamics of
the mean number of mutations (14) to write a differential
equation for the slow time change of the population
size (20), and then we obtain an analytical solution
(21). The approximation σ2

f = const works well for
changes of N(t) within orders of magnitude 1–2, as
illustrated in Figs. 5(a) and 5(b). However, using the
constant approximation σ2

f = const has limitations.
When changes in the population size N are larger than
approximately two orders of magnitude, the resulting
increase of σ2

f would change the dynamics. The growth
would accelerate.

In the supplement to the work of McFarland et al.
(2013) the authors present a simplified model of evolution,
in the form of a single differential equation, for tumor
growth driven by counteracting driver and passenger
mutations. The model has only one compartment and
its construction relies on the assumptions that only fixed
mutations can influence the proliferation of cells and that
fixation of mutations occurs instantly. The evolution of
the size of the cancer cells population follows from an
imbalance between the effects of occurring passenger and
driver mutations. Depending on which force is stronger,
the population either expands or goes to extinction. The
fate of the cancer cells population depends on the initial
population size, above some critical value expansion
occurs, while the population with an initial size below
the critical value would extinct. This model predicts the
growth scenario with the growth rate exponent equal to
2. Our approach is more detailed, bases on stratification
of cells into compartments corresponding to numbers
of harboured somatic mutations and leads to analytical
estimates consistent with stochastic simulations with the
growth rate exponent 1 +A.

The formula for growth rate (20) has an interesting
form. The growth rate does not depend on parameter



490 A. Polański et al.

f (positive selection coefficient) and pf (probability of
mutation), but only on the exponent parameter A of the
death process intensity (1). It may seem counter-intuitive,
but an increase in A actually results in an increase of the
exponent of the tumor growth rate function.

Concluding, we have elaborated modeling tools for
the growth of the cancer cell population driven by weakly
advantageous mutations. The deterministic model shows
agreement with the results of stochastic simulations and
allows us to estimate the width and velocity of the
mutation wave, and to predict the pattern of growth of the
population size. With the elaborated model we are able to
predict the pattern of cancer cells population growth with
the growth rate proportional to N1+A; see Eqn. (19). This
pattern of growth, when choosing values of A in the range
from 0.182 to 0.386, is consistent with the experimental
results of Pérez-García et al. (2020).

7. Data and software availability
Our implementation of the Gillespie simulation algorithm
described in Section 3 is available at https://pypi.
org/project/seEvo1D/.

Acknowledgment
This publication was supported by the Department of
Computer Graphics, Vision, and Digital Systems, Silesian
University of Technology (Gliwice, Poland) under a
statutory research project (Rau6, 2025) and co-financed
by the European Union through the European Social Fund
(grant POWR.03.02.00-00-I029 (Mateusz Kania)).

References
Azimzade, Y., Saberi, A.A. and Gatenby, R.A. (2021).

Superlinear growth reveals the allee effect in tumors, Phys-
ical Review E 103(4): 042405.

Bosque, J.J., Calvo, G.F., Molina-García, D., Pérez-Beteta,
J., Vicente, A.M.G. and Pérez-García, V.M. (2023).
Metabolic activity grows in human cancers pushed by
phenotypic variability, Iscience 26(3): 106118.

Boyko, A.R., Williamson, S.H., Indap, A.R., Degenhardt,
J.D., Hernandez, R.D., Lohmueller, K.E., Adams, M.D.,
Schmidt, S., Sninsky, J.J., Sunyaev, S.R., White, T.J.,
Nielsen, R., Clark, A.G. and Bustamante, C.D. (2008).
Assessing the evolutionary impact of amino acid mutations
in the human genome, PLoS Genetics 4(5): e1000083.

Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen,
S., Karchin, R., Kinzler, K.W., Vogelstein, B. and Nowak,
M.A. (2010). Accumulation of driver and passenger
mutations during tumor progression, Proceedings of the
National Academy of Sciences of the United States of
America 107(43): 18545–18550.

Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L. and Brú,
I. (2003). The universal dynamics of tumor growth, Bio-
physical Journal 85(5): 2948–2961.

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O.,
Aksoy, B.A., Jacobsen, A., Byrne, C.J., Heuer, M.L.,
Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander,
C. and Schultz, N. (2012). The CBIO cancer genomics
portal: An open platform for exploring multidimensional
cancer genomics data, Cancer Discovery 2(5): 401–404.

Davydov, E.V., Goode, D.L., Sirota, M., Cooper, G.M., Sidow,
A. and Batzoglou, S. (2010). Identifying a high fraction of
the human genome to be under selective constraint using
GERP++, PLoS Computional Biology 6(12): e1001025.

Desai, M.M. and Fisher, D.S. (2007). Beneficial mutation
selection balance and the effect of linkage on positive
selection, Genetics 176(3): 1759–1798.

Fu, Y., Liu, Z., Lou, S., Bedford, J., Mu, X.J., Yip, K.Y.,
Khurana, E. and Gerstein, M. (2014). FunSeq2: A
framework for prioritizing noncoding regulatory variants
in cancer, Genome Biology 15(10): 480.

Gillespie, D.T. (1976). A general method for numerically
simulating the stochastic time evolution of coupled
chemical reactions, Journal of Computational Physics
22(4): 403–434.

Gordo, I. and Charlesworth, B. (2000). The degeneration of
asexual haploid populations and the speed of Muller’s
Ratchet, Genetics 154(3): 1379–1387.

Greaves, M. and Maley, C.C. (2012). Clonal evolution in cancer,
Nature 481(7381): 306–313.

Haigh, J. (1978). The accumulation of deleterious genes in a
population—Muller’s ratchet, Theoretical Population Bi-
ology 14(2): 251–267.

Heywood, J.S. (2005). An exact form of the breeder’s equation
for the evolution of a quantitative trait under natural
selection, Evolution 59(11): 2287–2298.

ICGC/TCGA PCWG Consortium (2020). Pan-cancer analysis
of whole genomes, Nature 578(7793): 82–93.

Jiao, W., Atwal, G., Polak, P., Karlic, R., Cuppen, E., Danyi,
A., de Ridder, J., van Herpen, C., Lolkema, M.P., Steeghs,
N., Getz, G., Morris, Q.D. and Stein, L.D. (2020). A
deep learning system accurately classifies primary and
metastatic cancers using passenger mutation patterns, Na-
ture Communications 11(1): 728.

Kuehn, C. (2015). Multiple Time Scale Dynamics, Springer,
Berlin.

Kühleitner, M., Brunner, N., Nowak, W.-G., Renner-Martin,
K. and Scheicher, K. (2019). Best fitting tumor growth
models of the von Bertalanffy–Pütter type, BMC Cancer
19(683): 1–11.

Kumar, S., Warrell, J., Li, S., McGillivray, P.D., Meyerson,
W., Salichos, L., Harmanci, A., Martinez-Fundichely, A.,
Chan, C.W.Y., Nielsen, M.M., Lochovsky, L., Zhang,
Y., Li, X., Lou, S., Pedersen, J.S., Herrmann, C., Getz,
G., Khurana, E. and Gerstein, M.B. (2020). Passenger
mutations in more than 2,500 cancer genomes: Overall
molecular functional impact and consequences, Cell
180(5): 915–927.e16.

Laird, A.K. (1964). Dynamics of tumour growth, British Journal
of Cancer 18(3): 490.

https://pypi.org/project/seEvo1D/
https://pypi.org/project/seEvo1D/


Modeling propagation of weakly advantageous mutations in cancer cells 491

Marchetti, L., Priami, C. and Thanh, V.H. (2017). Simulation
Algorithms for Computational Systems Biology, 1st Ed.,
Springer International Publishing, Cham.

McDonald, T.O., Chakrabarti, S. and Michor, F. (2018).
Currently available bulk sequencing data do not necessarily
support a model of neutral tumor evolution, Nature Genet-
ics 50(12): 1620–1623.

McFarland, C.D., Korolev, K.S., Kryukov, G.V., Sunyaev, S.R.
and Mirny, L.A. (2013). Impact of deleterious passenger
mutations on cancer progression, Proceedings of the Na-
tional Academy of Sciences of the United States of America
110(8): 2910–2915.

McFarland, C.D., Mirny, L.A. and Korolev, K.S. (2014).
Tug-of-war between driver and passenger mutations in
cancer and other adaptive processes, Proceedings of the
National Academy of Sciences of the United States of
America 111(42): 15138–15143.

Muller, H.J. (1932). Some genetic aspects of sex, The American
Naturalist 66(703): 118–138.

Neher, R.A. (2013). Genetic draft, selective interference, and
population genetics of rapid adaptation, Annual Review of
Ecology, Evolution, and Systematics 44(1): 195–215.

Noorbakhsh, J. and Chuang, J.H. (2017). Uncertainties in
tumor allele frequencies limit power to infer evolutionary
pressures, Nature Genetics 49(9): 1288–1289.

Park, S.-C. and Krug, J. (2013). Rate of adaptation in sexuals and
asexuals: A solvable model of the Fisher–Muller effect,
Genetics 195(3): 941–955.

Park, S.-C., Simon, D. and Krug, J. (2010). The speed of
evolution in large asexual populations, Journal of Statis-
tical Physics 138: 381–410.

Pérez-García, V. M., Calvo, G.F., Bosque, J.J., León-Triana,
O., Jiménez, J., Perez-Beteta, J., Belmonte-Beitia, J.,
Valiente, M., Zhu, L., García-Gómez, P., Sánchez-Gómez,
P., Hernández-San Miguel, E., Hortigüela, R., Azimzade,
Y., Molina-García, D., Martinez, Á., Rojas, Á. A.,
de Mendivil, A.O., Vallette, F., Schucht, P., Murek, M.,
Pérez-Cano, M., Albillo, D., Honguero Martínez, A.F.,
Jiménez Londoño, G.A., Arana, E. and García Vicente,
A.M. (2020). Universal scaling laws rule explosive growth
in human cancers, Nature Physics 16(12): 1232–1237.

Rouzine, I.M., Wakeley, J. and Coffin, J.M. (2003). The solitary
wave of asexual evolution, Proceedings of the National
Academy of Sciences of the United States of America
100(2): 587–592.

Salvadores, M., Mas-Ponte, D. and Supek, F. (2019). Passenger
mutations accurately classify human tumors, PLoS Com-
putational Biology 15(4): e1006953.

Sharp, R.P. (1982). Landscape evolution (a review), Proceedings
of the National Academy of Sciences of the United States
of America 79(14): 4477–4486.

Talkington, A. and Durrett, R. (2015). Estimating tumor
growth rates in vivo, Bulletin of Mathematical Biology
77: 1934–1954.

Tsimring, L.S., Levine, H. and Kessler, D.A. (1996). RNA virus
evolution via a fitness-space model, Physical Review Let-
ters 76(23): 4440.

Tung, H.-R. and Durrett, R. (2021). Signatures of
neutral evolution in exponentially growing tumors: A
theoretical perspective, PLoS Computational Biology
17(2): e1008701.

Uecker, H. and Hermisson, J. (2011). On the fixation process of
a beneficial mutation in a variable environment, Genetics
188(4): 915–930.

Vaghi, C., Rodallec, A., Fanciullino, R., Ciccolini, J., Mochel,
J.P., Mastri, M., Poignard, C., Ebos, J.M. and Benzekry,
S. (2020). Population modeling of tumor growth curves
and the reduced gompertz model improve prediction of the
age of experimental tumors, PLoS Computational Biology
16(2): e1007178.

Vogelstein, B. and Kinzler, K.W. (2015). The path to
cancer—Three strikes and you’re out, New England Jour-
nal of Medicine 373(20): 1895–1898.

Wang, H.-Y., Chen, Y., Tong, D., Ling, S., Hu, Z., Tao, Y., Lu, X.
and Wu, C.-I. (2018). Is the evolution in tumors Darwinian
or non-Darwinian?, National Science Review 5(1): 15–17.

West, J. and Newton, P.K. (2019). Cellular interactions
constrain tumor growth, Proceedings of the National
Academy of Sciences of the United States of America
116(6): 1918–1923.

Wilks, C., Cline, M. S., Weiler, E., Diehkans, M., Craft, B.,
Martin, C., Murphy, D., Pierce, H., Black, J., Nelson,
D., Litzinger, B., Hatton, T., Maltbie, L., Ainsworth, M.,
Allen, P., Rosewood, L., Mitchell, E., Smith, B., Warner, J.,
Groboske, J., Telc, H., Wilson, D., Sanford, B., Schmidt,
H., Haussler, D. and Maltbie, D. (2014). The cancer
genomics hub (CGHub): Overcoming cancer through the
power of torrential data, Database 2014, bau093, DOI:
10.1093/database/bau093.

Williams, M.J., Werner, B., Barnes, C.P., Graham, T.A.
and Sottoriva, A. (2016). Identification of neutral
tumor evolution across cancer types, Nature Genetics
48(3): 238–244.

WSI (2022). Catalogue of somatic mutations in cancer
(cosmic), Wellcome Sanger Institute, Hinxton, http://
www.sanger.ac.uk/genetics/CGP/cosmic/.
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