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BASIC SYSTEMS THEORY FOR DISCRETE LINEAR

REPETITIVE PROCESSES USING 2D ROESSER
MODEL INTERPRETATIONS

Krzyszror GALKOWSKI*, Eric ROGERS**
DAwID OWENS***

Previous work has shown that the stability conditions for discrete linear repeti-
tive processes and 2D linear systems recursive in the positive quadrant can be
tested using the same tests. This does not provide a suitable basis for studying
the application of 2D linear systems theory to key, currently open, systems
theoretic questions for discrete linear repetitive processes, such as e.g. what (if
anything) is meant by reachability/controllability and observability and how
these properties are characterised. The objective of this paper is to develop 2D
systems models for the repetitive processes which remove this difficulty. Here the
main results are a range of 2D linear systems models, with particular emphasis
on the well-known Roesser model structure, a proof of stability equivalence, and
some key results regarding reachability.

1. Introduction

Repetitive, or multipass, processes constitute a class of 2D linear systems whose
unique characteristic is a series of sweeps, called passes, through a set of dynamics
defined over a fixed finite duration known as the pass length. On each pass, an
output, called the pass profile, is produced which acts as a forcing function on, and -
hence contributes to, the next pass profile. Industrial examples include long-wall coal
cutting and metal-rolling operations (Smyth, 1992) and algorithmic examples include
classes of iterative learning control schemes (Amann et al., 1996).

In effect, the 2D systems structure of these processes arises from the need to use
two co-ordinates to specify a variable, i.e. the pass number or index k£ > 0 and the
position ‘¢’ along a given pass which is of finite duration by definition. Hence repetitive
processes are a class of 2D systems where the duration of information propagation
in one direction (along the pass) is finite and infinite in the other (pass to pass).
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The basic unique control problem is that the output sequence can contain oscillations
that increase in amplitude in the pass-to-pass direction. Such behaviour is easily
generated in simulation studies and in experiments on scaled models of industrial
examples (Edwards, 1974; Smyth, 1992).

The most obvious approach to control this behaviour is to “join” successive pass
profiles end to end to form the so-called infinite length single pass equivalent and then
apply directly standard (1D) techniques. For example, if the dynamics are linear and
the process is single-input/single-output (SISO), then the “classical” Nyquist theory
could be applied (Edwards,1974).

In general, this strategy will fail (see (Smyth, 1992) for a complete treatment)
since it ignores completely their inherent 2D systems structure. The previous work
(Rogers and Owens, 1992) has developed a rigorous stability theory for linear constant
pass length processes based on an abstract model in a Banach space setting which in-
cludes all such processes as special cases. Physically this theory can be interpreted (in
terms of the underlying function space) as bounded-input/bounded-output (BIBO)
stability independent of the pass length, also known as stability along the pass.

The results of applying this abstract theory to a wide range of sub-classes have
been reported e.g. in (Rogers and Owens, 1992; Smyth, 1992). One of them is the sub-
class of so-called discrete processes which constitute the subject of this paper. Smyth
(1992) details how one such set of tests can be implemented in a computer-aided
analysis environment using, in effect, standard linear systems tests.

Discrete linear repetitive processes exhibit strong structural links with 2D lin-
ear systems described by the well-known Roesser (1975) model (or equivalents), see
(Rocha et al., 1996) for more details on this subject. This raises a possibility of using
well-established 2D systems theory to answer basic systems theoretic (and controller
design) questions for discrete linear repetitive processes for which few or no results
are currently available. By analogy with standard (or conventional) linear systems,
where strong structural links are also present, one such general question is: What
(if anything) is meant by reachability /controllability and observability for these pro-
cesses and how can such properties be characterised both theoretically and in form of
computationally feasible tests?

The previous work (Rocha et al., 1996) has shown that stability tests can be
interchanged between these two (apparently distinct) areas. In particular, the sta-
bility conditions for these two classes of linear systems can be tested by applying
the same tests. This, however, does not provide a suitable basis on which to study
the application of 2D systems theory to currently open systems theoretic questions
for discrete linear repetitive processes. The first major result of this paper removes
this basic difficulty by showing that several equivalent 2D systems representations
of the dynamics of these repetitive processes exist. These include both regular (or
nonsingular) and singular models.

Based on this observation, it is shown that the stability theories for these two
classes of systems are formally equivalent. Then using a regular Roesser model of the
systems dynamics, a state transition matrix for discrete linear repetitive processes
is developed. This leads to some fundamental results on reachability. Finally, some
on-going research is briefly discussed.
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2. Background

This section summarises the required results from the representation and stability
theory based on the abstract model. A complete treatment, including proofs, can be
found in (Rogers and Owens, 1992).

Suppose that F, is a Banach space, W, a linear subspace of E,, and Y} the
pass profile produced on pass k by a linear repetitive process. Let us denote by
o < +o0o the pass length and introduce a bounded linear operator L, € B (E,, FEy).
Then the dynamics of a linear repetitive process generated over a fixed pass length
a < +00, denoted by S (E,, W, L), are described by linear recursion relations of
the form

Yi41 = LoYr + bpy1, k>0 (1)

Here L.Y; denotes the contribution of pass k& to pass k¥ + 1 and bry; € W,
represents initial conditions, disturbances and control input effects on pass k + 1.

In order to avoid a source of confusion due to terminology, it is important to
distinguish between repetitive processes and the general area of repetitive control
systems. Here the term “repetitive” refers to the explicit interaction between succes-
sive pass profiles/outputs of an uncontrolled process to generate a sequence of pass
profiles over the fixed finite pass length, i.e. the key unique feature of a repetitive pro-
cess. The central idea of repetitive control (see e.g. Yamamoto, 1993) is that instead
of teaching a system exactly how to behave, it is given a reference signal and learns
the necessary control action using a suitable regulation mechanism.

The first form of stability for S (Es, Wy, Ls) is termed asymptotic stability. In
effect, it demands that “bounded disturbance sequences” produce bounded sequences
of pass profiles (in the sense of the underlying function space norm) over a fixed finite
pass length. One of several equivalent characterisations is the following:

Definition 1. S (E,, Wy, Ls) is said to be asymptotically stable provided that there
exist finite real scalars M, > 0 and A, € (0,1) such that
ILa]l < Mads, k>0 (2)

where ||-|| denotes the norm on FE,.

Theorem 1. S(E,, Wy, L,) is asymptotically stable if and only if
7(La) < 1 ®3)
where 7(-) denotes the spectral radius.

To provide information on transient behaviour (in the pass to pass, i.e. k, direc-
tion), the limit profile is defined and characterised as follows.

Definition 2. Suppose that S (E,, Wa, L,) is asymptotically stable and let {bx},+,
be a disturbance sequence that converges strongly to a disturbance b, in W,. Then
the strong limit

Yoo := LIMIT Y (4)

—4-00

is called the limit profile corresponding to {bx} ;-
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Theorem 2. Let the conditions of Definition 2 hold. Then the corresponding limit
profile is the unique solution of the linear equation

Yoo = Lo Yoo + boo (5)

The existence of Y, is always guaranteed by asymptotic stability but, since
o is finite by definition, this property does not guarantee that the limit profile has
“acceptable” (in a well-defined sense) dynamics along the pass. An example of this
fact is given in Section 3. Applications do exist where asymptotic stability is all
that is required (see (Amann et al., 1996) for one such case). In general, however,
asymptotic stability must be strengthened to avoid such problems, resulting in so-
called stability along the pass. Basically this demands that bounded disturbance
sequences produce bounded sequences of pass profiles independent of the pass length
and can be characterised as follows:

Definition 3. S (E,, Wy, Ly) is said to be stable along the pass provided that there
exist finite real scalars My, > 0 and Ay € (0,1) independent of o such that

[ZE]) < Moo XE,, k>0 (6)

Theorem 3. S(E.,W,, Lys) is stable along the pass if, and only if

Teo i=58up 7(Ls) <1 (7)
a>0
and
My :=sup sup ”(zI— La)_lll < 400 (8)
a>0 |z|=X

for some real number X\ € (7o, 1).

The first condition here shows that asymptotic stability V @ > 0 is a necessary
condition for stability along the pass. Also condition (8) does, of course, imply condi-
tion (7). In a large number of cases considered to-date, however, (7) has proved much
easier (in relative terms) to interpret. This is the reason for retaining their separate
identities here.

3. Discrete Linear Processes—2D Models and Stability

The state-space model of the sub-class of the so-called discrete unit memory linear
repetitive processes has the structure

X(k+1,t+1)=AX(k+ 1,t) + BU(k + 1,t) + BoY (k,t)

(9
Y(k+1,t) = CX(k+1,t) + DU(k + 1,t) + DoY (k, 1) )

Here, on pass k, X (k,t) is the nx1 state vector at sample ¢ along the pass length
a < +00,Y(k,t) is the mx1 vector pass profile, and U(k,t) is the Ix1 vector of
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control inputs. It is a straightforward task to write (9) in form S (E,, Wy, L, ), where
E, is the Banach space of bounded continuous mappings from the finite integer set
0 <7 < « into the vector space C™ of complex m-vectors with norm

= ) 1
Y= max YO, (10)
where ||-||, is any convenient norm in C™. The defining equation for L, is
DoY(Z) 1 =0
(LoY) = (11)

i1
DoY)+ S CATIByY(l): 0<t<a
=0
When omitting the output equation (which has no role in this work), the Roesser
model for 2D linear systems recursive in the positive quadrant has the structure

Xn(k+1,t) = A1 Xn(k,t) + A2 X, (k,t) + BiU(k,t)

(12)
Xo(k,t +1) = A3 Xn(k,t) + AsXo(k,t) + BoU(k, 1)

Here k and t are respectively the (integer-valued) horizontal and vertical coefficients,
X}, is the nx1 vector of horizontally transmitted information, X, is the mx1 vector
of vertically transmitted information, and U is the Ix1 vector of control inputs. Also
it is clear by inspection that (12) has strong structural links with the repetitive process
state space model of (9) and this has led to the claim that (9) is, in fact, a Roesser
model (Rocha et al., 1996).

This claim is based on interpreting the state vector of (9) {X} as horizontally
transmitted information and the pass profile {Y'} as vertically transmitted infor-
mation. In fact, however, a number of key structural differences exist between the
repetitive process state-space model of (9) and the 2D Roesser state-space model
of (12). They are discussed in detail in the work (Gatkowski et al., 1995) which
also proposes that the most appropriate point to start the development of a 2D sys-
tems state-space description for linear repetitive processes described by (9) is from a
Fornasini-Marchesini type model (see e.g. Fornasini and Marchesini, 1978; Kaczorek,
1985).

Fornasini-Marchesini models of 2D linear systems of systems recursive in the
positive quadrant do not split the state vector into horizontal and vertical components,
i.e. Xp and X,, respectively, in (12), which is the key feature of the Roesser model.
Here again the output equation is not required and with Z(k,t) denoting the state
at point (k,t), k>0, t >0, the general version of this model has the structure

EZ(k+1,t+1)=AsZ(k,t+ 1)+ AcZ(k + 1,t) + A7 Z(k, 1)
+ BsU(k,t+ 1) + ByU(k + 1,t) + BsU(k, t) (13)

As before, U is the (appropriately dimensioned) vector of control inputs. If E = I,
(13) is called regular (or nonsingular) and singular if det(E) = 0.
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Return now to the repetitive process state-space model of (9) and introduce
T
Z(k,t) = [XT(k,t) | YT(k,t)} (14)

Then it follows immediately that (9) can be written in form

EZ(k+1,t+1)=AsZ(k+1,t)+ AgZ(k,t) + BsU(k + 1,¢) (15)
where

I, 0 ~ [B
E:{o 0}’A8— ’BG_{D}(M)

This is the singular version of (13) with A5 =0, B4 =0, Bs = 0. (For a background
for the structure and control of 2D linear systems described by singular state-space
models we refer the reader to e.g. (Kaczorek, 1992) and the references given there,
and (Lewis, 1992), as well as to numerous works published since then.)

A 0
¢ -I,

0 By

) 9 — 0 DD

In 2D linear systems theory (Lewis, 1992) it is possible to employ a change of
state variable to write regular/singular Fornasini-Marchesini models in Roesser form.
Consider first (13) when A7y =0, As # 0, i.e. the first-order form. Then in this case
the Roesser model results when

A—**
*T1o o

where * denotes a non-zero matrix with compatible dimensions.

00

* ok

0

*

*
5A6:

7B3: 7B4:

] (17)

The 2D model of (15) is not of first-order form and hence the above analysis, i.e.
based on (17), does not apply. Instead (see (Lewis, 1992) for the 2D systems case)
introduce

¢(k,t) = EZ(k,t+ 1) — AgZ(k, 1) (18)
&(k,t) = £(k,t) — BgU(k, 1) (19)

where the role of (19) is to avoid the undesirable feature of a shift in the input vector.
Using (18) and (19) the following is the singular Roesser model for linear repetitive
processes described by (9):

<I>(k+1,t)}:{ 0 A 0

U(k,t) (20)
0 E|| Zkt+1) Inim Ag Bs

I'n+m O
Z(k, 1)

d(k, 1) } .

In this model, both the state {X} and the pass profile {Y}, as represented by the
augmented vector Z, constitute vertically transmitted information. (Compare it with
the earlier claim that the pass profile {Y} is the vertically transmitted information.)
Note also that the state dimension in this last model is twice that of (15).
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The overall aim of constructing 2D systems models for discrete linear repetitive
processes is to assist in answering basic systems theoretic questions (and related prob-
lems such as controller design) for these processes. In the next section it is shown
that the singular model of (15) and (16) can be used to develop a transition matrix
for (9) which then leads to a definition and some key basic results on reachability for
these processes. These results extend and generalise the preliminary versions given
in (Gatkowski et al., 1996a; 1996¢).

A key feature of the discrete linear repetitive process state-space model of (9)
is that it is regular. This, in turn, suggests that a regular Roesser model for these
processes can also be developed. The remainder of this section develops such a rep-
resentation and uses it to establish stability equivalence.

Introduce the following vectors into (9):

n(k,t) = X(k,t +1) — AX(k,t) — BU(k,t) (21)
wk,t) =Y (k,t) — CX(k,t) — DU(k,t) (22)
Then the result can be written as
77(]6 +1, t) 0 By ByC n(k,t) BoD
/L(k +1,t) = 0 Dy DoC ,LL(k’, t) + | DoD U(k),t) (23)
X(k,t+1) I, O A z(k,t) B

i.e. a regular Roesser model. Note also that the state dimension here is n + 2m in
contrast to 2(n +m) for the singular Roesser model of (20).

The goal of the remainder of this section is to show an equivalence in terms of
stability for (9) and its 2D Roesser model interpretation. Consider first the Roesser
model of (23). Then application of the Huang (1972) test for stability of 2D linear
systems described by the Roesser model gives the following proposition:

Proposition 1. The 2D bounded-input/bounded-output (BIBO) stability test of
Huang (1972) applied to (9) requires that:

r{Dg) <1, m{A) <1 (24)
and all eigenvalues of the transfer function matriz
G(z1) == C(211, — A)"'By + Dy (25)

lie inside the unit circle in the complex plane V|z1| = 1.

Consider now asymptotic stability of (9) which requires the computation of the
spectral radius of the associated linear operator L,. One method of doing this is to
consider the equation

(21 -La)Y =17 (26)

and construct necessary and sufficient conditions on the complex scalar z to ensure
that a solution exists Vn € E, and that this solution is bounded in the sense that
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IIY]] < Kol|n|| for some real scalar Ky and Vn € E,. The result of this is as follows
with the proof in Chapter 3 of (Rogers and Owens, 1992):

Theorem 4. Linear repetitive processes defined by (9) are asymptotically stable if
and only if

’I‘(.Do) <1 (27)

Suppose now that Theorem 4 holds and also that the control input sequence
applied converges strongly to U. Then Theorem 2 applied to this case shows that
the resulting limit profile dynamics are described by

Xeo(t+1) = (A+Bo (In — DO)—lc) Xoo(t)
+ (B + Bo (I — Do)~ D) Uwo(t)

Yoo (t) = (Im — Do) ™ CXoo(t) + (Im — Do) ™' DU (1) (28)

which is simply a proper standard (or 1D) linear time-invariant state space model.
Hence if processes described by (9) are asymptotically stable, then, after a “sufficiently
large” number of passes, their dynamics can be replaced by those of a standard linear
system. Note, see also below, that asymptotic stability does not ensure that the
resulting limit profile is stable in the standard sense, i.e. all eigenvalues of the matrix
(A + Bo(Im, — Dg)~1C) have modulus strictly less than 1.

In the current context an immediate consequence of this result is that asymptotic
stability of processes described by (9) is not equivalent to BIBO stability of their 2D
linear systems (regular Roesser model) interpretations. This is a direct consequence
of the fact that the pass length « is finite and hence the reason why this property is
independent of, in particular, the eigenvalues of the matrix A which clearly govern
the dynamics produced along any pass. As a simple example to demonstrate the
potential weakness of this property, consider the following SISO single state process
where 8 > 1, ie. the case of (9) with A = ~05, B=1, B =05+83, C =1,
Do =D =0

Y(k+1,t41)=-05Y(k+1,t)+ (0.5 + B)Y (k,t) + U(k + 1,¢) (29)
This example is asymptotically stable but the limit profile dynamics
Y(co,t + 1) = Y (00,t) + U(co, t) (30)

are unstable along the pass in the standard sense since 8 > 1!

In terms of stability along the pass (characterised by Theorem 3 here) note that
in this case L, is independent of o and hence (7) of this result holds if and only if
r(Do) < 1. Also the “boundedness condition” (8) of this result is equivalent to the
existence of a A € (r,1) such that (26) has a uniformly bounded, with respect to «,
solution Y € E, for all choices of n € E, satisfying sup, ||7|| < +oco0 and V|z| > A.
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It is clear that, in general, (8) of Theorem 3 could prove very difficult to interpret.
In the case of (9), however, the following interpretation is possible (for a proof see
Chapter 3 of (Rogers and Owens, 1992)):

Theorem 5. Linear repetitive processes defined by (9) are stable along the pass if
and only if

1. the condition of Theorem / holds, and

2. 3 real numbers € > 0 and A € (rw,1): all eigenvalues of the nxn matriz
A+ By (21, — Do) ™" C have modulus strictly less than 1 —¢ for all choices of
2] > X

Using this last result, the following stability equivalence result can now be estab-
lished:

Theorem 6. Linear repetitive processes described by (9) are stable along the pass if
and only if their 2D linear systems Roesser model interpretation as defined here by
(23) is BIBO stable.

Proof. To show the necessity, first note that (8) can be replaced by

My :=sup sup “(zI - La)—l“ < 400 (31)
a>0 [z]>A

for some A € (700,1). Hence
U(z):= A+ By (2l — Dy) ™' C (32)

must be a stability matrix at |z| = +00, i.e. A must be a stability matrix. Also write
the ‘characteristic polynomial’ |21, — ¥(z)| in form

= 9(2)| = P (59)

Then stability along the pass holds provided that

|2lm — G(21)| # 0, V|| >1, |z| = A (34)
Note also that
z1|—+o0

and considering the case of |z| =1 yields that the eigenvalues of G (z1) with |z | =1
lie in the open unit circle in the complex plane. Hence the 2D systems conditions for
BIBO stability, as expressed by Proposition 1, are necessary for stability along the
pass.

To show that they are also sufficient, suppose that Dy is a stability matrix and
hence roo < 1. Also if A is a stability matrix and all eigenvalues of G (z;) with
|z1] = 1 lie in the open unit circle in the complex plane, it is possible to choose
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A € (reo,1): both sides of (33) are non-zero for |z| = A and |zi| =1 and such that
all eigenvalues of A have modulus less than A. Finally, considering the unit contour
{z1 : |21] = 1} traversed clock-wise and applying standard encirclement theorems to
the right-hand side of (33) yields the fact that all roots of this equation lie in the
interior of the circle |z1] =1, V]z| = A. Equivalently, (8) of Theorem 3 holds for this
case. |

It is a straightforward task to obtain a regular Fornasini-Marchesini model from
the regular Roesser model of (23) and, of course, the stability equivalence result also
transfers directly. Hence the details are omitted here. A key feature of Theorem 6
is that it releases the wealth of 2D systems stability tests for use with discrete linear
repetitive processes and vice versa. For a detailed treatment of this general area,
including (where appropriate) software development, see (Smyth, 1992).

To-date, little work has been reported on fundamental systems theoretic problems
for discrete linear repetitive processes, such as controllability and observability. In
the 2D linear systems area, a considerable volume of theory is now available for both
the singular and regular cases. A background for this can be found in e.g. (Kaczorek,
1992), the relevant references given there, and numerous papers since this text. Also
Rocha (1990) has studied aspects of this general area in a behavioural setting with
some highly significant results.

One possible means of addressing these and related areas for discrete linear repet-
itive processes is, if possible, to extend/generalise the 2D linear systems approach. For
2D linear systems described by Roesser/Fornasini-Marchesini models the basic start-
ing point has been a transition matrix description of the underlying system dynamics.
The remainder of this paper develops a transition matrix for discrete linear repetitive
processes and then uses it to develop some basic results on reachability /controllability.

4. Transition Matrix and Controllability /Reachability

Return to the regular Roesser model interpretation of the dynamics of (9) given
by (23) and partition it as follows:

Xnlk +1,¢ An A X (k, t B
a( ) _ 1 A n(k,t) + 1 Uk,t) (36)
Xv(k,t + 1) Asy  Ags Xv(k‘,t) By
where
T T T
Xnlkt) = [n7 (s, t) | 1T (B,8)], Xu(k,t) = X (k1) (37)
and
0 B ByC '
Ap = ODZ , Az = DZC ,A21=[I 0],A22=A
ByD
Bi=| |, By=B (38)
DyD
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Roesser (1975) has shown that the fundamental matrix sequence, or transition
matrix, for a regular model of the form (36) is as follows:

Tpq=0, p<0 and/or ¢ <0
Too=1 (39)
Tpg =Th0Tp-1,0 +ToaTp,e1

where

0 0

; TU,I -
A21 A22

(40)

In order to illustrate its structure for discrete linear processes, the first six terms are
given below:

By B,C 00 0 0 ByDy ByDoC
T1,0= 0 Dg D()C 5 T[])l—_- 0 0 0 , TQ’[): 0 Dg Dgo
0 0 I 0 A 0 0 0
[0 0 o [ B,CA 0 ByC A2
T0,2 - 0 0 0 5 T1‘2 = DoCA 0 D()CA2
0 A2 ByC ABy ABoC + B,CA
[ BeDyC ByCBy, ByDyCA -+ ByCB,yC
Toqp=| D2C DyCBy D2CA+ DyCByC (41)
0 By Dy By DoC

Given appropriate boundary conditions, i.e. the initial pass profile Y5(¢), 0 <t < q,
and state initial conditions X (k,0), k& > 1, the transition matrix can be used to
generate a general response formula for processes described by (9). The remainder of
this section uses the transition matrix to introduce and characterise one concept of
controllability /reachability for (9).

When continuing to treat the discrete linear repetitive processes of (9) as a 2D
linear system with Roesser model description (36), the following deﬁnltlons of local
controllability and reachability can be introduced:

Definition 4. The discrete linear repetitive process (9) written in the 2D Roesser
model form of (36) is said to be locally controllable in the rectangle [0, F]x[0, H],
0 < H < a, if for admissible boundary conditions Xx(k,0), &k > 0 and X,(0,t),
0 <t < a,3 asequence of input vectors U(k,t) on (0,0) < (k,¢) < (F, H) such that

X (F, H)
X(F H) = =0 (42)
X,(F, H)
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Definition 5. The discrete linear repetitive process (9) written in the 2D Roess-
er model form of (36) is said to be locally reachable in the rectangle [0, F]x [0, H],
0 < H < a, if for admissible boundary conditions X (k,0), & > 0 and X,(0,1),

< < @, and every vector Xp,3 a sequence of input vectors U(k,t) on

0 <t
(0,0) < (k,t) < (F,H) such that
X(F,H)=Xp (43)

where again X (F, H) is defined by (42).

Conditions for the existence of these properties are known (Kaczorek, 1992). In
particular, it is known that local reachability implies local controllability. The full
characterisation of these notions for the general model of 2D systems is provided in
(Kaczorek, 1994).

Given this last fact, the remainder of this paper will only deal with local reach-
ability. In this context, it is appropriate to introduce the matrix '

0
By

B
M;i=Ti—1, ! + 15 -1 (44)

and the following theorem gives the necessary and sufficient conditions for local rea-
chability:

Theorem 7. The discrete linear repetitive process (9) written in the 2D Roesser

model form of (36) is locally reachable in the rectangle [0,F]x[0,H], 0 < H < «a if
and only if the matriz

Rpg = [ Moy My My --- My -+ Mrpy ] (45)
has full-row rank.

Proof. This follows virtually identical arguments to those of (Kaczorek, 1992) for the
2D linear systems case. Hence it is omitted here. ] :

Inspection of Rppy shows immediately that the following relationships hold,
where C means that the matrix on its left-hand side is a submatrix of the one on its
right-hand side:

Rp g C Rrpyr, Rry C Rry1,0 (46)

Hence (9) written in form (36) is locally reachable in all rectangles of pass F, i.e.

[0,F]x[0,1], [0, F]x[0,2], ---, [0, F] %[0, a]
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if it is locally reachable in the rectangle [0, F]x[0,1]. Also the matrix Rp; has the
structure

BoD ByDyD BoDF'D 0 ByCB ByDyCB + ByCByD
Rpi=| DoD DD -~ DED 0 DyCB D2CB+ DyCByD
0 0 0 B ByD ByDoD
F-3 A . .
BoD§~2CBoD + Y BoDy >/ CByD}™' D + BoDY~'CB
Jj=0
= F 2 i pit (47)
Dy~'CByD+ » Dy *CByD}™' D+ D{CB
J=0
BoD{™'D ]

Consequently, all points on pass F' would be reachable if
rank Rpy = 2n+m (48)

In fact, this condition never holds. Suppose, however, that the matrix Dy is non-
singular. Then the first block row in Rp; can be reduced to zero entries without
changing its rank. The action required is to left multiply the second block row of
Rp1 by BUDO_1 and subtract the result from the first block row.

This fact means that the 2D model for discrete linear repetitive processes given
by (36) is never locally reachable. Note also that such a result is to be expected from
the fact that the state sub-vectors 7 and p depend on each other and hence arbitrary
values for each of them cannot be achieved simultaneously. In fact, the maximal rank
of Rpy is m +m and, if this condition holds, then for arbitrary vectors u(k,t) and
X(k,t), n(k,t) can be computed as

n(k,t) = BoDg ' u(k,t) (49)

Also sufficient conditions for this limited reachability property are the same as those
for local reachability of the general singular 2D model representation of (9). The
details can be found in (Gatkowski et al., 1996a; 1996¢).

Continuing with the assumption that Dy is a non-singular matrix, define the
so-called restricted state vector for (9):

u(k,t) }

X (k, 1) (50)

Z(k,t) = [

Then the following restricted 2D state-space model of the Roesser type is obtained
for the dynamics of (9):

u(k +1,1)
X(k,t+1)

Dy DoC
BoDy' A

DyD
B

Uk,t)  (51)

uk,t) |
X (k,1)
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Hence the subvector u(k,t) propagates information in the vertical direction and the
subvector X (k,t) propagates information in the horizontal direction. For this model
all points on pass F are locally reachable under the same conditions as for the general
2D singular model of (9), i.e. if and only if the following conditions hold:

rank A(F) =m (52)
and

rank [BOA(F ~1)| B] =n (53)
where

A(F) = [D{™'D | Df=*D | - | D (54)

The details can again be found in (Gatkowski et ol., 1995).

It seems however that a natural approach to these problems is to embed their
basic 2D structure in a classical 1D representation which leads to the so-called pass
reachability/observability (Gatkowski et al., 1996b).

5. Conclusions

Discrete linear repetitive processes exhibit strong structural links with 2D linear time-
invariant systems by the well-known Roesser model (or equivalents). This raises a pos-
sibility of using well-established 2D linear systems theory to answer the basic systems
theoretic (and controller design) questions for linear repetitive processes for which
few or no results are currently available. By analogy to conventional (or standard)
linear systems, where strong structural links are also present, one such question is as
follows: What (if anything) is meant by reachability /controllability and observability
for these processes and how can such properties be characterised both theoretically
and in terms of computationally feasible tests?

Previous work, e.g. by (Rocha et al., 1996), has shown that stability along the
pass for discrete linear repetitive processes and BIBO stability of 2D linear systems de-
scribed by the Roesser model can be tested using common tests. These tests are based
on interpreting the state vector of a discrete linear repetitive process as horizontally
transmitted information and the pass profile as vertically transmitted information.
Equivalently, it was assumed that the state space model for discrete linear repetitive
processes was in fact a Roesser model.

Indeed, a number of structural differences exist between the repetitive process
state-space model and the 2D systems Roesser model. This, in turn, means that
the approach employed in (Rocha et al., 1996) cannot really be extended from the
stability domain to general questions such as the one given above. The first set of
major results in this paper consists of several new 2D linear systems models for the
dynamics of discrete linear repetitive processes and attention has been paid to both
standard and singular Roesser models.

In comparison with the previous approach, these models consider both the state
and the pass profile as vertically transmitted information. It has been shown that
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stability along the pass is equivalent to BIBO stability in the 2D systems sense. Also
a standard Roesser model interpretation has been used to develop some key results
regarding the general question given above. These are a transition matrix plus a
physically meaningful definition of reachability together with some basic characteri-
sations of this property. Currently these results are being refined into computationally
feasible tests. Also work is proceeding on extending these basic results to e.g. control-
lability, together with in-depth investigations of their overall role in understanding
the basic dynamic behaviour of linear repetitive processes. Results from this research
will be reported in due course.
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