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POSITIVE SOLUTIONS TO POLYNOMIAL
MATRIX EQUATIONS

TabpeEUSZ KACZOREK?*

Necessary and sufficient conditions are established for the existence of positive
solutions to polynomial matrix equations. Two methods are proposed for deter-
mination of such solutions. As an example of applications it is shown that the
determination of the transfer matrix of a positive controller for a closed-loop
system with a given transfer matrix can be reduced to finding solutions to two
suitable polynomial matrix equations.

1. Introduction

Polynomial matrix equations have been considered in many papers and books (Emre
and Silverman, 1981; Feinstein and Barness, 1984; Kaczorek, 1986a; 1986b; 1987;
1992; Kudera, 1972; 1979; Qianhua and Zhongjun, 1987; Solak, 1985; Sebek, 1980;
1983; 1989; Sebek and Kucera, 1981; Wolovich, 1978). Recently the positive systems
theory has become a field of great interest and research (Kaczorek, 1997; Maeda and
Kodama, 1981; Maeda et al., 1977; Ohta et al., 1984; Van den Hof, 1997). Some
automatic-control problems can be reduced to finding positive polynomial matrix
solutions to suitable polynomial matrix equations (Kaczorek, 1992; Kutera, 1979).
The main subject of this paper is to establish conditions for the existence of positive
polynomial solutions to polynomial matrix equations and to present a method for
finding positive polynomial solutions to these equations. An example of application
of the presented results is also presented.

2. Preliminaries and Problem Statement

Denote by R9*? the set of g xp real matrices and by R?*P[s] the set of g xp poly-
nomial real matrices in the variable s. Consider a polynomial matrix with real coef-
ficients in the variable s of the form

A(s) = Ao + A5+ + Aps™ € RI*P[g] )

where A; € R¥*?, §=10,1,...,n.

A nonnegative integer n is called the degree (denoted by deg A(s)) of A(s) if
Ay is nonzero. The matrix (1) is called regular if ¢ = p and det Ay # 0.

* Warsaw University of Technology, Institute of Control and Industrial Electronics, ul. Koszy-
kowa 75, 00~-662 Warszawa, Poland, e-mail: kaczorek@nov.isep.pw.edu.pl.



404 T. Kaczorek

Let RY*P be the set of ¢ x p matrices with real nonnegative entries.

Definition 1. The polynomial matrix (1) is called positive if 4; € RY*? for 4 =
0,1,...,n.

Consider the polynomial matrix equation

B(s) = Bo+Bis+---+ Bps™, B; e R*F  fori=0,1,...,m

b
—
3
~—
Il

Xo+Xis+ -+ X8, X;eR*F fori=0,1,...,r

Without loss of generality it can be assumed that the matrix A(s) has full row rank,
since usually we have ¢ < p. This assumption guarantees that the coefficient matrix
[40,41,. .., As] has full row rank.

Note that the well-known diophantine equation (Kuéera, 1979)
A(8)X (s) + B(s)Y (s) = C(s)
where A(s) € R¥*t[s], B(s) € R¥*?[s], C(s) € R¥*4[s] are given and X (s) € Rt*4[s],

Y(s) € RV*4[s] are unknown can be considered as a particular case of (2), since it
can be written as

X(s) } _ o)

The problem under consideration can be stated as follows. Given polynomial
matrices A(s) and B(s), establish conditions under which there exists a positive
polynomial matrix X(s) satisfying (2).

A positive polynomial matrix X (s) satisfying (2) is called a positive solution
to (2). If the polynomial matrix A(s) is regular, then without loss of generality it
can be assumed that Ay = I, (the pxp identity matrix).

Necessary and sufficient conditions will be established under which eqn. (2) has
a positive polynomial solution X (s) for given polynomial matrices A(s) and B(s).

3. Existence of a Positive Solution

From (2) it follows that the minimal degree of X (s) is equal to n—m. Substituting (1)
and (3) into (2) and comparing the coefficient at the same powers of s, we obtain for
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r+n>mand n>r
Ao Xo = By
A1 Xo+ Ao Xy = By
ArXo+Ar 1 X1+ -+ Ao X, = B,

.................................... (4)
AnXO + An—1X1 +- 4+ An—rXr = Bn
AnXmn+ -+ Am—rXr = B,
Equations (4) for r +n =m can be written as
AX =B (5)
where
[ A4 0 0 0 0 |
Ay Ao 0 0 0
Ay Ay Ao 0 0
A= Ar A1 Ay A Ao € R(m+1Lgxp(r+1)
Ar+1 Ar Ar—l A2 Al
An An—l An—Z An—r—l An—r
| 0 0 0 0 A, |
o (6)
By
B
Xo B,
Xy

X =1 Xz eRp(Hl)xk, B=| B, € Rim+1)gxk
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Definition 2. A vector b € R" is called a positive linear combination of vectors
a; € R*, i =1,...,k if there exist nonnegative scalars ¢; € Ry, i = 1,...,k such
that

k
E CiQ; = b
i=1

Definition 3. The smallest nonnegative integer ¢ is called the nonnegative column
rank of A € RP*? and denoted by rank, A if there exist ¢ columns in A such that

each column of A is a positive linear combination of the ¢ columns (Cohen and
Rothblum, 1993).

Theorem 1. Equation (2) has a positive solution X(s) if and only if one of the
following equivalent conditions is satisfied:

(i) every column of the matriz B s a positive linear combination of columns of the
matriz A,

(ii) b; € coneA for i =1,...,k, where cone A denotes the cone generated by the
columns of A (Berman and Plemmons, 1994) and B = [by, ..., bx],

(iii) ranky[A, B] = ranky A.

Proof. Let A =[ay,...,a;], z:=p(r+1) and X = [z1,...,5;]. From (5) we have
Az; = b; for i =1,...,k. Equation (2) has a positive solution X(s) if and only if
z; € R% for i = 1,...,k. By definition (Berman and Plemmons, 1994) cone A is
the set of all positive linear combinations of the columns of A. Thus eqn. (2) has
a positive solution X (s) if and only if b; € cone A for i =1,...,k.

By using Definition 3 it is easy to show that eqn. (2) has a positive solution X(s)
if and only if condition (iii) is satisfied. |

Let A be a right inverse of A, ie. AAg =T (the identity matrix). If A has
full row rank, then Ag is given by (Kaczorek, 1992)

Ap=AT[AAT] " 4 (1 - AT[AA7] _1A> K X

where T denotes the transposition and K is an arbitrary matrix of appropriate
dimensions.

Theorem 2. Equation (2) has a positive solution X(s) of the minimal degree r =
m —n if there exists a right inverse Ar of A such that

ARB € RE:Jrl)pXk (8)

Moreover, if egn. (2) has a positive solution X (s) and A(s) is a positive matriz, then
the matriz B(s) is also positive.
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Proof. If there exists Ag, then a solution to (5) is given by
X = ARB (9)

Equation (2) has a positive solution X (s) of the minimal degree if (8) holds. It is easy
to show that if A(s) and X(s) are positive polynomial matrices, then the matrix
B(s) is also positive. |

Remark 1. If (m + 1)g > (r 4+ 1)p, then the matrix A does not have full row rank
and Ap does not exist, but a positive solution of the minimal degree r =m —n to
eqn. (2) may still exist.

In the particular case when A(s) is regular, we have the following.
Theorem 3. Let A(s) be regular and Ag = I,. Equation (2) has a unique positive
solution X (s) of the minimal degree r = m —n if and only if

m—1

3 AB e RyTTUPE (10)
=0
[0 0o o0 0 0 0 0]
Ay 0 0 0 0 0
A5 A, 0 0 0 0---0
A — Ar A Ay Ay 0 0 0 e R(m+1)px (m+1)p
A'r-i—l Ar Ar—l A2 Al 0

Proof. If Ay = I, we have AX = (I — A)X, where X is obtained from X by
addition of m — r zero blocks in the positions r +1,...,m + 1. Hence we obtain

N -1
X=[r- A} B (11)
It is easy to show that A* =0 for k> m and
OES S
[1-4] =Y & (12)
i=0
Substituting (12) into (11), we obtain

m—1
X=>) A'B (13)
1=0
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The uniqueness of the positive solution X (s) follows immediately from the nonsin-
gularity of the matrix [I — A]. |

Corollary 1. Let A(s) be regular and Ag = I,. Then eqn. (2) has a unique positive
solution X (s) of the minimal degree r =m —n if

A €RE*P for k=0,1,...,n and B; € RU** for j=0,1,...,m (14)

Proof. Note that (14) implies Ai ¢ R™™P<(mHP - B e RIMDPE ang by (13)

X e R&mﬂ)p"k. Therefore eqn. (2) has a unique positive solution X (s) of the
minimal degree r = m —n. ]

4. Determination of a Positive Solution

If eqn. (2) has a positive solution, then it can be found by the use of one of the
following two methods.

Method 1

The following notation will be used for elementary column operations on a polynomial
matrix: R[i x ¢] denotes multiplication of the i-th column of the matrix by a nonzero
scalar ¢, R[i + jxb(s)] stands for addition of the j-th column multiplied by the
polynomial b(s) to the i-th column of the matrix, R[i,j] is the exchange of the i-th
and j-th columns of the matrix.

Using elementary column operations, we perform the following reduction:

I, Ui(s) Ua(s)

where L(s) is the left divisor of A(s) and [Ui(s),Uz(s)] is a unimodular matrix of
elementary column operations.

It is well-known (Kaczorek, 1992; Kudera, 1979) that eqn. (2) has a polynomial
solution if L(s) is a left divisor of B(s), i.e. B(s) = L{s)B1(s). It is easy to check
that in this case the solution is given by

Bl (S)

X(s) = [Ui(s), Ua(s)] K(s)

(15)

where K(s) is an arbitrary polynomial matrix of appropriate dimensions. The matrix
K (s) is chosen so that (15) be a minimal-degree positive polynomial solution of (2).

Example 1. Find a positive polynomial solution to eqn. (2) with

241 s s 3 +252+25+1
Als) = . B(s) = 16
(5) [ s 2s+1 1 j} (5) [ 352 +2s+1 (16)
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Using the elementary column operations R[1 + 3x(—s)], R[2 + 3x(—2s — 1],
R[2 + 1 x 25°], R[3+ 1x(-s)], R[2,3], we reduce the matrix

2

$2+1 s s
As) s 2s+1 1
e s s - 1 O 0
I 0 1 0
0 0 1
to the form
1 0
0 1
Lis) 0 | | s
U (3) Ua(s) 1 —8
0 0
—s s*+1
In this case
1 0
L(S) = , Bl (S) — B(s)
01
Using (15), we obtain
1 S 2s*
X(s) = 0 0 1
.._s 32+1 —233_28_1

283 —92s—1

34252 4+25+1
3s2+2s+1
k(s)

and for k(s) = s we get the desired positive polynomial solution

s+1
s
1

X(s)

Method 2

By assumption the matrix A(s) has full row (normal) rank and the matrix A(s)AT(s)
is invertible. Therefore there exists a right inverse matrix Ag(s) of A(s) of the form

Ag(s) = AT(s) [A(S)AT(S)] Ty (I — AT(s) [A(S)AT(S)] _lA(s))

K(s) (18)
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where K(s) is an arbitrary matrix of appropriate dimensions. The matrix K(s) is
chosen so that

X(s) = Ar(s)B(s) (19)

is a positive polynomial solution of the minimal degree » = m —n to eqn. (2).

Example 2. Using Method 2 we want to find a positive polynomial solution to

eqn. (2) with (16). In this case

457 + 458 + 1255 + 125* 4+ 10s® + 10s% + 65 + 2
= 457 +1285 + 45t + 453 + 252 + 35 + 1 (20a)
458 + 485 + 10s* +65° +4s> + s+ 1

and

—1
(I — AT(s) [A(s)AT(s)} A(s)) K(s)B(s)
i 282(1—{-28-{-282—{-83)(](721 —k31 —2k318+2k’1132 —2](:315‘3) 7
+2$2(1+28+ 382) (kgg —k32~—2k328+2k‘1282—2](?3283);

(1425+28%+5%) (ka1 — ka1 — 2k315+2kq1 8% —2k31 s2)
= +(1+2S+382) (k/‘zg —kgg *2k328+2k}1282 —2](?3283); (20b)

(1+25+2s%+5%) (1425 +25%)
X (—k?‘zl + k31 +2k318—-2k1152+2k3183)+ (1+2S+382)
X (1+2S+283)(—k22 +k32+2k‘328—2k1282 +2k3283)

where
A(s) = 4s® + 125" +45% +45% + 45 +2

Taking into account (20) and using (18) and (19), we obtain

1 Xl(S)
X(S) = m ngsi (21)
3.8

where
X1(s) = 1435+ (7 — kg — kao)s® + (9 — 4kay — 4dksp)s®
+ (13 + 2]{711 bt 6k31 - 7k32)34 + (11 + 4k11 - 7k31 - 8k32)85
+ (8 + 4k§11 — 6k31 - 4k32)36 + (2 + 2k11 — 4k31 — 6k32)87 — 2k3158
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XQ(S)

X3(s)

and

The matrix (22) is chosen so that
imal degree r = 1. For ki3 = ko

= 3—ks1 — k3 + (7—‘4]631—4]932)5 + (9 + 2kq1 — 6k3; — 7k32)82
+ (9 + 4k11 — Tks1 — 8k32)83 + (10 + 4k — 6]4?31 — 4k32)s4
+ (12 + 2k1; — 4ks; — 6k32)85 - 2](231.96 + 487

= —1+4 ka1 + ka2 + (=7 + 6ka1 + 6ksg)s + (=11 — 2kyy + 14ks; + 15ksy)s>
+ (=17 = 8k11 + 21kay + 24ksp)s® + (—14 — 12k1; + 28ks; + 28kss)s*
+ (=22 — 14k11 + 28k31 + 28ks2)s® + (—6 — 12ky; + 24ks; + 28ksy)s®
+ (=12 — 8ky11 + 16ks; + 8kss)s” + (—4 + 8k3y + 12ksz)s® + 4k, s°

k11
ka1
k31

k12
k22
kaz

K= (22)

(21) be a positive polynominal solution of the min-

_ _9e2
k22:k31=k32:0 and kll:mﬁ%

we obtain the same solution (17). ¢

Example 3. Find a positive polynomial solution to eqn. (2) with

s2+1 s 3 +22+s5+1
A = , B = 23
(5) | s 25+ 1 (s) 3s% + 25 (23)
In this case the matrix A(s) is regular and
1 1 10
Ap = 0 , A= 0 , Ay =
0 1 1 2 0 0
1 1 2 1
By = , By = , By = , B3=
4] 0 1 9 2 [3 3 0]
[00000000] (1"
00000000 0
0 0 00 01000000 By 1
i-_|4 000 12000000 5| B 2
- Ay A1 00 10010000 | By 2
0 A4, 0 0 00120000 B; 3
00100000 1
00000000 ] 0 |
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It is easy to check that for (23) the condition (10) is satisfied. Using (13) for
r=m —n = 1, we obtain

1 0 0o ooooo0l 1] [1]
0 1 0 00000 0 0
0 -1 1 00000 1 1
. A -1 -2 0 10000 2 1
=(I AB = =
A={I+4+47 0 2 0-11000 2 0
2 5 -1 -20100 3 0
0 1 -1 0010 1 0
| 0 0 0 0001][0] |0]
and
X(S):[S+1
S

5. Extensions and Applications
5.1. Extensions

Consider the polynomial matrix equation
A(s)X (s)B(s) = C(s) (24)

where A(s) € RP*4[s], B(s) € R*¥[s], C(s) € RP*¥[s] are given and X(s) € R?**[s]
is unknown. Defining

A(s)X (s) = D(s) (25)
we may write (24) as

D(s)B(s) = C(s)
or

BT (s)DT (s) = C7 (s) (26)

Solving (26) we may find D(s) and then from (25) we may find the desired solution
X (s) of (24).

If the matrices A(s) and B(s) of (2) are rational, then by premultiplication
of (2) by the diagonal matrix consisting of the least common denominators of A(s)
and B(s) we obtain a suitable polynomial matrix equation. The same.approach can
also be applied to eqn. (24) if "A(s), B(s) and C(s) are rational matrices.
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5.2, Some Applications

Consider the closed-loop system shown in Fig. 1. Let the transfer matrix T, = T'(s)
of the plant be given. We are looking for the transfer matrix 7, = T,(s) of a positive
controller such that the transfer matrix of the closed-loop system is equal to the
desired one Ty, = Tu(s), i-e.

[[+T,7.) ' T, = T (27)

-0 T, -

T, |

Fig. 1. The closed-loop system used to illustrate a potential application.

A controller is called positive if its transfer matrix has a positive realisation (i.e. the
controller is a positive system). Let

X
Tm =NnD,!, T,=D;'Ny, T.= v (28)

m
where (Ny,, D) and (Np, D,) are right and left coprime pairs, respectively, and d

is the least common denominator of T,. Substitution of (28) into T, = [I + 1T )T
yields the polynomial matrix equation

Np XNy = d(NpDp, — DpNyy,) (29)

To find a positive controller, we preassume a polynomial d (which corresponds
to T, having a positive realisation) and solve first the polynomial matrix equation

YNm = d(Npo - Dme) (30)

for Y. Then we may find the desired polynomial matrix X from the polynomial
equation

NX =Y (31)

Therefore the problem of finding a positive controller has been reduced to solving two
polynomial matrix equations (30) and (31).
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6. Conclusions

Necessary and sufficient conditions for the existence of positive solutions to polynomial
matrix equations have been established. Two methods for determination of positive
solutions have been proposed and illustrated by numerical examples. It has been
shown that the determination of the transfer matrix of a positive controller of the
closed-loop system with a given transfer matrix can be reduced to the determination
of solutions to two suitable polynomial matrix equations. Some applications and
numerical aspects of the proposed algorithms will be considered in a forthcoming

paper.
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