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ELIMINATION OF FINITE EIGENVALUES OF THE 2D

ROESSER MODEL BY STATE FEEDBACKS

Tadeusz KACZOREK∗

A new problem of decreasing the degree of the closed-loop characteristic poly-
nomial of the 2D Roesser model by a suitable choice of state feedbacks is formu-
lated. Sufficient conditions are established under which it is possible to choose
state feedbacks such that the non-zero closed-loop characteristic polynomial has
degree zero. A procedure for computation of the feedback gain matrices is pre-
sented and illustrated by a numerical example.
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1. Introduction

The most popular models of two-dimensional (2D) linear systems are those intro-
duced by Roesser (1975), Fornasini and Marchesini (1976; 1978), and Kurek (1985).
The models were then generalised to singular linear systems (Kaczorek, 1988; 1993).
Dai showed (1988; 1989) that for singular (descriptor) linear systems Eẋ = Ax+Bu,
E,A ∈

�
n×n , B ∈

�
n×m , detE = 0, it is possible to choose a matrix K ∈

�
m×n

of the state feedback u = Kx such that the non-zero closed-loop characteristic poly-
nomial det[Es − (A + BK)] has degree zero. It is easy to show that for standard
systems (E = I) such state feedbacks do not exist.

The main subject of this note is to establish conditions for the standard 2D
Roesser model under which it is possible to choose state feedbacks such that the
non-zero closed-loop characteristic polynomial has degree zero. This procedure of
decreasing the degree of the closed-loop characteristic polynomial by state feedbacks
will be called the elimination of finite eigenvalues of the 2D Roesser model, since the
closed loop has no finite eigenvalues (poles).

This type of problem arises, e.g., while designing perfect observers for linear
2D systems (2001). To the best of the author’s knowledge, this elimination of finite
eigenvalues of the 2D Roesser model by state feedbacks has not been considered yet.
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2. Problem Formulation

Let
�
n×m be the set of n×m real matrices and

�
n :=

�
n×1 . The set of non-negative

integers will be denoted by � +. Consider the 2D Roesser model
[

xhi+1,j

xvi,j+1

]

= A

[

xhij

xvij

]

+Buij , i, j ∈ � +, (1)

where xhij ∈
�
n1 and xvij ∈

�
n2 are the horizontal and vertical state vectors, and

uij ∈
�
m is the input vector,

A =

[

A1 A2

A3 , A4

]

, B =

[

B1

B2

]

,

A1 ∈
� n1×n1 , A4 ∈

� n2×n2 , B1 ∈
� n1 , B2 ∈

� n2 .

The state feedback of the model is given by

uij = vij +K

[

xhij

xvij

]

− F

[

xhi+1,j

xvi,j+1

]

, (2)

where K = [K1 K2] ∈
�
m×n , F ∈

�
m×n , n = n1 + n2, and vij ∈

�
m is the new

input vector. From (1) and (2) we have

E

[

xhi+1,j

xvi,j+1

]

= (A+BK)

[

xhij

xvij

]

+Bvij , (3)

where E = In + BF and In is the n × n identity matrix. The problem under
consideration can be stated as follows: Given A and B, find F and K such that

det [EZ − (A+BK)] = α 6= 0, (4)

where

Z =

[

In1z1 0

0 In2z2

]

and α is a scalar independent of z1 and z2.

3. Problem Solution

The problem will be decomposed into the following two subproblems.

Subproblem 1. Given B, find F such that E 6= 0 and

detE = 0. (5)
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Subproblem 2. Given E (E 6= 0, detE = 0), A and B, find K such that (4) holds.
Solution of Subproblem 1 is based on the following theorem.

Theorem 1. Let E = In +BF . There exists a matrix F = [fij ] such that (5) holds
if and only if B 6= 0.

Proof. (Necessity) If B = 0, then detE = 1 for any F .

(Sufficiency) If B = [bij ] 6= 0, then for at least one pair (k, l) bkl 6= 0 for k ∈ [1, . . . , n],
l ∈ [1, . . . ,m], and we can choose

fij =











−1/bkl for i = l, j = k,

0 otherwise.

(6)

Then

In +BF =























1 0 · · · 0 b1lflk 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 1 bk−,1lflk 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 bk+1lflk 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 bnlflk 0 · · · 1























and detE = 0.

In the sequel, the following elementary operations will be used:

1. multiplication of any row (column) by a non-zero number,

2. addition to any row (column) of any other row (column) multiplied by any number,

3. interchange of any rows (columns).

A non-singular matrix P obtained from In by performing a number of elementary row
operation will be called the elementary row operation matrix. Similarly, an elementary
column operation matrix can be defined. Solution of Subproblem 2 is based on the
following theorem.

Theorem 2. Let E,A ∈
�
n×n , B ∈

�
n×m , E 6= 0, and detE = 0. There exists a

matrix K ∈
� m×n such that (4) holds if

rank
[

EZ −A,B
]

= n (7a)

for all finite z1, z2 ∈ � (the field of complex numbers), and

rank
[

E,B
]

= n. (7b)

The condition (7a) is necessary for the existence of K ∈
�
m×n satisfying (4).
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Proof. To simplify the notation, it is assumed that m = 1. If (7b) holds and the non-
zero matrix E is singular, then there exists a non-singular elementary row operation
matrix P1 and a non-singular elementary column operation matrix Q1 such that
(Kaczorek, 2001)

[

E′, B̄
]

= P1 [EZ,B]

[

Q1 0

0 Im

]

=

























e′11 0 0 · · · 0 0
......
0

e′21 e′22 0 · · · 0 0
......
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e′n−1,1 e
′

n−1,2 e
′

n−1,3 · · · e
′

n−1,n−1 0
......
0

0 0 0 · · · 0 0
......
1

























.

(Note that e′ij may depend on z1 or z2 .) If (7a) is satisfied, then there exist non-
singular elementary row and column operation matrices P2, Q2 and P = P2P1, Q =
Q2Q1 such that

[

Ē − Ā, B̄
]

= P [EZ −A,B]

[

Q 0

0 Im

]

=

























ē11 − ā11 −ā12 0 · · · 0
......
0

ē21 − ā21 ē22 − ā22 −ā23 · · · 0
......
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ēn−1,1 − ān−1,1 ēn−1,2 − ān−1,2 ēn−1,3 − ān−1,3 · · · −ān−1,n

......
0

−ān1 −ān2 −ān3 · · · −ānn

......
0

























, (8)

where āi,j+1 6= 0 for i = 1, . . . , n− 1.

Let (for m = 1)

K̄ = KQ =
[

1− ān1, −ān2, . . . , −ānn
]

. (9)

Then

P
[

EZ − (A+BK)
]

Q =
[

Ē − (Ā+ B̄K̄)
]

=















ē11 − ā11 −ā12 0 · · · 0

ē21 − ā21 ē22 − ā22 −ā23 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ēn−1,1 − ān−1,1 ēn−1,2 − ān−1,2 ēn−1,3 − ān−1,3 · · · −ān−1,n

−1 0 0 · · · 0
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and

det
[

EZ − (A+BK)
]

= − detP−1 detQ−1a12a23 · · · an−1,n 6= 0.

From the equality

[

EZ − (A+BK)
]

= [EZ −A,B]

[

In

−K

]

it follows that (4) implies (7a).

Example 1. For given

E =



















1 0
......
0

0 0
......
0

. . . . . .

0 0
......
1



















, A =



















0 1
......
0

1 2
......
1

. . . . . .

1 0
......
1



















, B =







0

1

0






(10)

we wish to find K = [k1 k2 k3] such that (4) holds.

It is easy to check that the matrices (10) satisfy the assumptions of Theorem 2
since

rank
[

EZ −A,B
]

= rank

















z1 −1 0
......
0

−1 −2 −1
......
1

−1 0 z2 − 1
......
0

















= 3

for all finite z1, z2 ∈ � , and

rank
[

E,B
]

= rank

















1 0 0
......
0

0 0 0
......
1

0 0 1
......
0

















= 3.

Using elementary operations, the matrix

[EZ −A,B] =

















z1 −1 0
......
0

−1 −2 −1
......
1

−1 0 z2 − 1
......
0
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can be reduced to the form
















z2 − 1 −1 0
......
0

0 −z1 −1
......
0

−1 −1 −2
......
1

















and P =







0 0 1

1 0 0

0 1 0






, Q =







0 1 0

0 0 1

1 0 0






.

From (9) we obtain

K = K̄Q−1 = [0 − 1 − 2]







0 0 1

1 0 0

0 1 0






= [−1 − 2 0].

�

Theorem 3. Let B 6= 0 and F be chosen so that E 6= 0 and detE = 0. Then there
exists K ∈

�
m×n such that (4) holds if

rank
[

Z −A,B
]

= n for all finite z1, z2 ∈ � . (11)

Proof. By Theorem 2 there exists K such that (4) holds if the conditions (7) are
satisfied. The condition (7a) is satisfied if and only if (11) holds, since

rank
[

EZ −A,B
]

= rank
[

(In +BF )Z −A,B
]

= rank

(

[Z −A,B]

[

In 0

FZ Im

])

= rank
[

Z −A,B
]

.

The condition (7b) is always satisfied, since

rank
[

E,B
]

= rank
[

In +BF,B
]

= rank

(

[In, B]

[

In 0

F Im

])

= rank
[

In, B
]

= n.

From Theorems 1 and 3 we immediately have the following result.

Theorem 4. Let A ∈
�
n×n and B ∈

�
n×m be given. The problem has a solution if

B 6= 0 and (11) holds.

If the condition (11) is satisfied and B 6= 0, then F and K can be computed
by using the following procedure:

Procedure

Step 1. Using (6), compute F satisfying detE = 0 and E = In +BF .
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Step 2. Compute K such that (4) holds using the method of elementary operations,
or by assuming akl = 0 for k = 1, . . . , r1, l = 1, . . . , r2 and a00 6= 0 of the
polynomial

det
[

EZ − (A+BK)
]

= ar1r2z
r1
1 z
r2
2 + ar11−1,r2z

r1−1
1 zr22

+ · · ·+ a11z1z2 + a10z1 + a01z2 + a00.

Example 2. For the matrices

A =



















0 1
......
0

1 2
......
1

. . . . . .

1 0
......
1



















, B =













0

1

· · ·

0













choose matrices F = [f1 f2 f3] and K = [k1 k2 k3] such that (4) is satisfied. It is
easy to check that the assumptions of Theorem 4 are met, since B 6= 0 and

rank
[

Z −A,B
]

= rank

















z1 −1 0
......
0

−1 z1 − 2 −1
......
1

−1 0 z2 − 1
......
0

















= 3 for all finite z1, z2 ∈ � .

Using the foregoing procedure, we obtain:

Step 1. From (6) we have F = [0 − 1 0] and

E = In +BF =







1 0 0

0 0 0

0 0 1






.

Step 2. Using (4), we obtain

det
[

EZ − (A+BK)
]

=

∣

∣

∣

∣

∣

∣

∣

z1 −1 0

−k1 − 1 −k2 − 2 −k3 − 1

−1 0 z2 − 1

∣

∣

∣

∣

∣

∣

∣

= −(k2 + 2)z1z2 + (k2 + 2)z1 − (k1 + 1)z2 + k1 + 1− k3 − 1.

For k1 = −1, k2 = −2, k3 = −1−α we get (4). The same result was obtained using
the elementary operation method, cf. Example 1.

�
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4. Concluding Remarks

A new problem of decreasing the degree of the closed-loop characteristic polynomial
of the 2D Roesser model by state feedbacks was formulated and solved. Sufficient
conditions were established under which it is possible to choose the state feedbacks (2)
for the standard 2D Roesser model (1) such that (4) holds. It was shown that the
problem has a solution if B 6= 0 and the condition (11) is satisfied. A procedure for
computation of the gain matrices F and K of (2) was presented and illustrated by a
numerical example. If the 2D Roesser model is singular (detE = 0), then there exists
a gain matrix K of (2) for F = 0 such that (4) holds if the condition (7) is satisfied.
The considerations can be extended to 2D Fornasini-Marchesini models (1976; 1978)
and the Kurek model (1985).
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