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APPROXIMATION OF A SOLIDIFICATION PROBLEM

Rajae ABOULAÏCH∗, Ilham HAGGOUCH∗

Ali SOUISSI∗∗

A two-dimensional Stefan problem is usually introduced as a model of solidifi-
cation, melting or sublimation phenomena. The two-phase Stefan problem has
been studied as a direct problem, where the free boundary separating the two
regions is eliminated using a variational inequality (Baiocchi, 1977; Baiocchi et
al., 1973; Rodrigues, 1980; Saguez, 1980; Srunk and Friedman, 1994), the en-
thalpy function (Ciavaldini, 1972; Lions, 1969; Nochetto et al., 1991; Saguez,
1980), or a control problem (El Bagdouri, 1987; Peneau, 1995; Saguez, 1980). In
the present work, we provide a new formulation leading to a shape optimization
problem. For a semidiscretization in time, we consider an Euler scheme. Under
some restrictions related to stability conditions, we prove an L2-rate of conver-
gence of order 1 for the temperature. In the last part, we study the existence of
an optimal shape, compute the shape gradient, and suggest a numerical algo-
rithm to approximate the free boundary. The numerical results obtained show
that this method is more efficient compared with the others.

Keywords: Stefan problem, free boundary, shape optimization, Euler method,

finite-element method

1. Problem Statement

We consider the open bounded domain Ω ⊂ � 2 defined by

Ω =
{

x = (x1, x2) ∈
� 2 | 0 < x1 < 1, 0 < x2 < 1

}

(1)

The boundary of Ω is written as ∂Ω. Time is denoted by t ∈ ]0, T [ , 0 < T <∞. The
field of temperature is θ : Ω × ]0, T [ −→ � 2 , so θ (x, t) is the temperature at point
x ∈ Ω at time t ∈ ]0, T [. Let us denote by θc the fusion/solidification temperature.
At time t ∈ ]0, T [, the open bounded domain Ω ⊂ �

is partitioned as follows:

Ω = ΩL (t) ∪ ΩS (t) ∪ S (t) , (2)
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where

ΩL (t) = {x ∈ Ω | θ (x, t) > θc} , (3)

ΩS (t) = {x ∈ Ω | θ (x, t) < θc} , (4)

S (t) = {x ∈ Ω | θ (x, t) = θc} . (5)

The interface S (t) separating the solid and liquid phases is a free boundary and is
an unknown of the problem. The domain Ω is shown in Fig. 1.

�
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Fig. 1. The geometry of the domain.

We introduce the following notation:

Q = Ω× ]0, T [ , (6)

QL =
⋃

t∈]0,T [

(

ΩL
(

t
)

× {t}
)

, (7)

QS =
⋃

t∈]0,T [

(

ΩS (t)× {t}
)

, (8)

Σ =
⋃

t∈]0,T [

(

S (t)× {t}
)

. (9)

Let functions θ0 ∈ H1 (Ω) and θ∂Ω ∈ L2 (∂Ω) be given such that the following
compatibility condition is satisfied:

θ0 (x) = θ∂Ω (x) , a.e. x ∈ ∂Ω.
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Thus the unknowns (θ,QL) are the solutions of the following evolution free-boundary
problem:

(P1)



















































































































Find θ and QL such that

∂θ

∂t
− div (C (θ)∇θ) = 0 in QL ∪QS ,

C (θ) =

{

cs if θ < θc,

cl if θ > θc,

θ (x, 0) = θ0 (x) , x ∈ Ω,

θ (x, t) = θ∂Ω (x) , x ∈ ∂Ω, t ∈ ]0, T [ ,

θ (x, t) < θc, (x, t) ∈ QS ,

θ (x, t) > θc, (x, t) ∈ QL,

θ (x, t) = θc, (x, t) ∈ Σ,
[

C (θ)∇θ· →n
]

S(t)
= λV · →n, x ∈ S (t) , t ∈ ]0, T [ .

Here λ is the latent heat of the material (a strictly positive coefficient), V signifies
the velocity of the free boundary, cs means the diffusivity of the solid part, cl stands
for the diffusivity of the liquid part (cs and cl are strictly positive coefficients), and
n is the unitary normal to S (t) pointing towards ΩL (t).

The major difficulty in a direct problem lies in the fact that the moving bound-
ary is utilized explicitly in the equation for the thermal state of the system. This
difficulty is circumvented in Section 2, using the characteristic function of the liquid
region. Such a formulation transforms the initial problem into a partial differential
equation valid on the whole cavity occupied by the material. In Section 3 we re-
call the regularization method proposed in (Humeau and Souza del Cursi, 1993). In
Section 4 we discretize the regularization problem and study the convergence of the
proposed scheme. Section 5 estabilishes an approximation of the free boundary for
the obtained stationary problem using a shape optimization method. The existence of
the free boundary, details of the shape gradient computation, and numerical results
are provided.

2. Problem Reformulation

Let us introduce the following spaces:

H = L2 (Ω) , V = H1 (Ω) , V0 = H
1
0 (Ω) , (10)

with their usual scalar products

H = L2 (0, T ;H) , B = L2 (0, T ;V ) , B0 = L2 (0, T ;V0) , (11)
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respectively. Let (·, ·) denote the scalar product on H corresponding to the norm
‖·‖.

Consider the real-valued function

χQL (x, t) =

{

1 if (x, t) ∈ QL,
0 otherwise.

(12)

The problem equivalent to (P1) can be written as follows:

(P2)























































































Find θ ∈ B and QL ⊂ Q such that
∂θ

∂t
−∇ · (C (θ)∇θ) = −λ ∂

∂t
χQL in Q,

θ (x, t) = θ∂Ω (x) , x ∈ ∂Ω, t ∈ ]0, T [ ,

θ (x, 0) = θ0 (x) , x ∈ Ω,

θ (x, t) > θc, (x, t) ∈ QL,

θ (x, t) < θc, (x, t) ∈ QS ,

θ (x, t) = θc, (x, t) ∈ Σ.

3. Problem Regularization

In order to overcome some numerical difficulties due to the discontinuity of the func-
tion C (θ), we consider the regularization method proposed in (Humeau and Souza
del Cursi, 1993). Introduce φ :

� −→ �
given by

φ (β) = 3β − 2β2. (13)

Let ε > 0 be a fixed parameter. We set

Cε (β) =















C (β) if β /∈ (θc − ε, θc + ε) ,

csφ

(

ε− β + θC
2ε

)

+ clφ

(

β + ε− θC
2ε

)

otherwise.

Hence Cε can be considered as a Lipschitz continuous approximation of C.
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Fig. 2. Regularization of C.

The regularized problem associated with (P2) can be formulated as follows:

(P3)























































































Find θε ∈ B and QL ⊂ Q such that

∂θε
∂t
−∇ · (Cε (θε)∇θ) = −λ

∂

∂t
χQL in Q,

θε (x, t) = θ∂Ω (x) , x ∈ ∂Ω, t ∈ ]0, T [ ,

θε (x, 0) = θ0 (x) , x ∈ Ω,

θε (x, t) > θc, (x, t) ∈ QL,

θε (x, t) < θc, (x, t) ∈ QS,

θε (x, t) = θc, (x, t) ∈ Σ.

For notational convenience, in what follows the index ε will be omitted, so θε and
Cε will be denoted respectively by θ and C. Consider a function g ∈ H1 (Ω) such
that

g (x) =

{

θ0 (x) if x ∈ Ω,
θ∂Ω (x) if x ∈ ∂Ω.

(14)

Introduce the change of variables

u (x, t) = θ (x, t)− g (x) in Q. (15)
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Then Problem (P3) can be written as follows:

(P4)























































Find u ∈ B0 and QL ⊂ Q such that
∂u

∂t
−∇ · (C (u+ g)∇ (u+ g)) = −λ ∂

∂t
χQL in Q,

u (x, 0) = 0, x ∈ Ω,

u+ g > θc, (x, t) ∈ QL,
u+ g < θc, (x, t) ∈ QS ,
u+ g = θc, (x, t) ∈ Σ.

Consider now the problem

(P5)























Find u ∈ B0 such that
∂u

∂t
−∇ ·

(

C (u+ g)∇ (u+ g)
)

= −λ ∂
∂t
χQL in Q,

u (x, 0) = 0, x ∈ Ω.
Let V be a closed subspace of B0 defined by

V =
{

v ∈ B0
∣

∣

∣

∣

∂v

∂t
∈ H and v (x, 0) = v (x, T ) = 0, x ∈ Ω

}

(16)

and equipped with the scalar product

(u, v)V = (u, v)B0 +

(

∂u

∂t
,
∂v

∂t

)

H

. (17)

The variational formulation associated with (P5) is as follows:

(PV5)























Find u ∈ B0 such that
(

∂

∂t
u, v

)

+
(

C (u+ g)∇ (u+ g) ,∇v
)

= −λ
(

∂

∂t
χQL , v

)

, ∀v ∈ V ,

u (x, 0) = 0, x ∈ Ω.
The existence and uniqueness of the solution to (P5) are established in (Haggouch,
1997; Humeau and Souza del Cursi, 1993), using the elliptic regularization method,
cf. (Lions, 1969).

In the next section, we shall discretize Problem (P5) in time and then study the
convergence of the proposed scheme.

4. Time Discretization

Consider a strictly positive integer N > 0 which implies the discretization step
τ = T/N , and denote by tn the grid points of [0, T ] : tn = nτ, 0 ≤ n ≤ N . We
define

ΩnL =
{

x ∈ Ω | θ (x, tn) > θc
}
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and

χΩn
L
(x) = χΩL (x, tn) =

{

1 if θ (x, tn) > θc,

0 otherwise.

Let

un (x) ' u (x, tn) , u0n (x) = u0 (x, tn) = θ0 (x, tn)− g (x) . (18)

Then the discretization of Problem (P5) can be written down as follows:

(Pn)











Find (un+1)0≤n≤N−1 ⊂ V N0 such that
un+1 − un

τ
+∇ ·

(

C (un + g)∇ (un+1 + g)
)

= −λ
χΩn+1

L

− χΩn
L

τ
in Ω.

Note that we have a linear problem that changes with each value of n. That means
that solution to (Pn) requires N steps.

The variational problem associated with (Pn) is as follows:

(PVn)



























Find (un+1)0≤n≤N−1 ⊂ V N0 such that
(

un+1 − un
τ

, v

)

+
(

C(un + g)∇(un+1 + g),∇v
)

= −λ
(χΩn+1

L

− χΩn
L

τ
, v

)

, ∀v ∈ V0.

Proposition 1. The function un being a solution to (PVn) satisfies the following
discrete a-priori estimates:

max
0≤n≤N

‖un‖ ≤ C1,

N−1
∑

n=0

‖un+1 − un‖2 ≤ C2,

τ

N
∑

n=1

‖∇un‖2 ≤ C3,

where C1, C2 and C3 are constants independent of τ .

Proof. Setting k1 = min(cs, cl) and k2 = max(cs, cl), we have

k1 ≤ C (σ) ≤ k2. (19)

Choosing v = un+1 in (PVn) and applying the following elementary equality:

2p (p− q) = p2 − q2 + (p− q)2 , ∀ (p, q) ∈ � 2 , (20)

we see that

‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2 + 2τk1 ‖∇un+1‖2

+ 2τk1
(

∇ (g) ,∇un+1
)

+ 2λ
(

χΩn+1
L

− χΩn
L
, un+1

)

≤ 0. (21)
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Moreover, applying the Young inequality to the last terms of (21) yields

2τk1
(

∇(g),∇un+1
)

≤ 2τk1 ‖∇g‖ ‖∇un+1‖

≤ k21 ‖∇g‖
2

ε
+ ετ2 ‖∇un+1‖2 , ∀ ε > 0 (22)

and

2λ
(

χΩn+1
L

− χΩn
L
, un+1

)

≤ 2λ
∥

∥

∥
χΩn+1

L

− χΩn
L

∥

∥

∥
‖un+1‖

≤ 4λ
√
mesΩ ‖un+1‖

≤ 4λ
2mesΩ

β
+ β ‖un+1‖2 , ∀β > 0. (23)

Therefore, choosing arbitrary β and ε such that (1− β) > 0 and (2k1 − ετ) > 0,
we get

(1− β) ‖un+1‖2 − ‖un‖2 + ‖un+1 − un‖2 + τ (2k1 − ετ) ‖∇un+1‖2

≤ k21 ‖∇g‖
2

ε
+
4λ2mesΩ

β
≤ c.

Summing this inequality over n, 0 ≤ n ≤ p− 1, 1 ≤ p ≤ N , and using the fact that
u0 = 0, we get

(1− β) ‖up‖2 +
p−1
∑

n=0

‖un+1 − un‖2 + (2k1 − ετ)
p
∑

n=1

τ ‖∇un‖2 ≤ β
p−1
∑

n=1

‖un‖2 + pc.

By the discrete Gronwall inequality (Raviart and Girault, 1981), we obtain

(1− β) ‖up‖2 +
p−1
∑

n=0

‖un+1 − un‖2 + (2k1 − ετ)
p
∑

n=1

τ ‖∇un‖2 ≤ pceβ p.

Hence there exist constants C1, C2 and C3 independent of τ such that

max
0≤n≤N

‖un‖ ≤ C1,
N−1
∑

n=0

‖un+1 − un‖2 ≤ C2,
N
∑

n=1

τ ‖∇un‖2 ≤ C3,

which completes the proof.

Using these estimations and non-linear analysis, we can show the following the-
orems (Humeau and Souza del Cursi, 1993):

Theorem 1. Problem (Pn) has a unique solution un in V0.
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Consider

ti+ 1
2
= ti +

τ

2
, ti− 1

2
= ti −

τ

2
, Ii =

[

ti− 1
2
, ti+ 1

2

]

∩ ]0, T [ ,

Ii =
{

1 if t ∈ Ii,
0 otherwise

and

uN (x, t) =

N
∑

n=0

un (x) In (t) .

Theorem 2. The sequence
{

uN
}

N>0
converges weakly in B0 to a solution u to

Problem (P5) as N →∞.

5. Error Analysis

In this paragraph, we use a regularization of χΩL to obtain a continuous function
χΩL such that ∂χΩL/∂t and ∂

2χΩL/∂t
2 are regular. We consider, for example, the

following regularization: For ε > 0, define

χεΩL
(

u (x, t)
)

=











χΩL
(

u (x, t)
)

if u (x, t) /∈ (0, ε) ,

ψ

(

u (x, t)

ε

)

otherwise,
(24)

where ψ is a function of C1 (Q). For notational simplicity, in place of χεΩL we will
write χΩL .

In the following, we suppose that

∂u

∂t
∈ L2 (0, T ;V0) ,

∂2u

∂t2
∈ L2

(

0, T ;V
′

)

,
∂2χΩL
∂t2

∈ L2
(

0, T ;V
′

)

. (25)

Then we can deduce that

u ∈ C0 (0, T ;V0) ,
∂u

∂t
∈ C0 (0, T ;H) ,

χΩL ∈ C0 (0, T ;V0) ,
∂χΩL
∂t
∈ C0 (0, T ;H) .

(26)

First of all, we show that the consistency error is of order one and that the proposed
scheme is stable.
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5.1. Estimate of the Consistency Error

Let χΩL (t) and u (t) be two functions defined on Ω by

χΩL (t) : x −→ χΩL
(

u (x, t)
)

and

u (t) : x −→ u (x, t) .

We define the consistency error εn ∈ V
′

by

〈εn, υ〉 =
1

τ

(

u (tn+1)− u (tn) , v
)

+
(

C
(

u (tn) + g
)

∇
(

u (tn+1) + g
)

,∇v
)

+
λ

τ

(

χΩL (tn+1)− χΩL (tn) , v
)

, (27)

where V
′

is the dual space of V , and 〈·, ·〉 denotes the duality product between V
and V

′

.

Lemma 1. (Lions, 1969) When n = 2, all the elements ϕ of V0 satisfy

‖ϕ‖L4(Ω) ≤ 2
1
4 ‖ϕ‖

1
2 ‖∇ϕ‖

1
2 .

Suppose that a constant M > 0 exists such that for all t ∈ [0, T ] we have
(H)

∥

∥∇
(

u (t) + g
)∥

∥

L4(Ω)
< M.

Consider

∂

∂t

(

u (tn+1) , v
)

+
(

C
(

u (tn+1) + g
)

∇
(

u (tn+1) + g
)

,∇v
)

+ λ
∂

∂t

(

χΩL (tn+1) , v
)

= 0. (28)

Calculating the difference of (27) and (28), we get

〈εn, υ〉 =
(

u (tn+1)− u (tn)
τ

− ∂u

∂t
(tn+1) , v

)

+ λ

(

χΩL (tn+1)− χΩL (tn)
τ

− ∂

∂t
χΩL (tn+1) , v

)

−
(

C
(

u (tn+1) + g
)

− C
(

u (tn) + g
)

∇
(

u (tn+1) + g
)

,∇v
)

.

By Taylor’s formula with integral remainder, defined by

1

τ

(

f (tn+1)− f (tn) , v
)

=

(

∂

∂t
f (tn+1) , v

)

+
1

τ

∫ tn+1

tn

(t− tn+1)
〈

∂2

∂t2
f (t) , v

〉

dt (29)
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for f = u and f = χΩL , we obtain

〈εn, v〉 =
1

τ

∫ tn+1

tn

(t− tn+1)
〈

∂2u

∂t2
(t) , v

〉

dt

+
λ

τ

∫ tn+1

tn

(t− tn+1)
〈

∂2

∂t2
χΩL (t) , v

〉

dt

−
((

C
(

u (tn+1) + g
)

− C
(

u (tn) + g
))

∇
(

u (tn+1) + g
)

,∇v
)

. (30)

But

∣

∣

((

C
(

u (tn+1) + g
)

− C
(

u (tn) + g
))

∇
(

u (tn+1) + g
)

,∇v
)∣

∣

≤
∥

∥

(

C
(

u (tn+1) + g
)

− C
(

u (tn) + g
))

∇
(

u (tn+1) + g
)∥

∥ ‖∇v‖

≤ max
σ∈

�

∣

∣C
′

(σ)
∣

∣

∥

∥

(

u (tn+1)− u (tn)
)

∇
(

u (tn+1) + g
)∥

∥ ‖∇v‖

≤ max
σ∈

�

∣

∣C
′

(σ)
∣

∣

∥

∥

(

u (tn+1)− u (tn)
)∥

∥

L4(Ω)

∥

∥∇
(

u (tn+1) + g
)∥

∥

L4(Ω)
‖∇v‖ .

From Lemma 1 and the hypothesis (H), we deduce that

∣

∣

((

C
(

u (tn+1) + g
)

− C
(

u (tn) + g
))

∇
(

u (tn+1) + g
)

,∇v
)∣

∣

≤ c1
∥

∥

(

u (tn+1)− u (tn)
)
∥

∥

1
2
∥

∥∇
(

u (tn+1)− u (tn)
)
∥

∥

1
2 ‖∇v‖ ,

where

c1 = 2
1
4 M max

σ∈
�

∣

∣C
′

(σ)
∣

∣ (31)

Since the embedding H1(Ω)→ L2(Ω) is compact and u (tn) ∈ H10 (Ω), we obtain

∣

∣

((

C
(

u (tn+1) + g
)

− C
(

u (tn) + g
))

∇
(

u (tn+1) + g
)

,∇v
)∣

∣

≤ c2
∥

∥∇
(

u (tn+1)− u (tn)
)∥

∥ ‖∇v‖ . (32)

Let

u (tn+1)− u (tn) =
∫ tn+1

tn

∂u (t)

∂t
dt. (33)
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Then we have

∥

∥

∥

∥

∫ tn+1

tn

∂u (t)

∂t
dt

∥

∥

∥

∥

2

V0

=

∫

Ω

[

∇
∫ tn+1

tn

∂u (t)

∂t
dt

]2

dx =

∫

Ω

[
∫ tn+1

tn

∇∂u (t)
∂t
dt

]2

dx

≤
∫

Ω

[

τ

∫ tn+1

tn

∣

∣

∣

∣

∇∂u (t)
∂t

∣

∣

∣

∣

2

dt

]

dx

≤ τ

∫ tn+1

tn

[

∫

Ω

∣

∣

∣

∣

∇∂u (t)
∂t

∣

∣

∣

∣

2

dx

]

dt

≤ τ

∫ tn+1

tn

∥

∥

∥

∥

∂u (t)

∂t

∥

∥

∥

∥

2

V0

dt. (34)

By the definition of the norm ‖ · ‖V ′ :

‖εn‖V ′ = sup
v∈V

〈εn, v〉
‖v‖V

, (35)

from (30) we get

‖εn‖V ′ ≤
1

τ

∫ tn+1

tn

(t− tn+1)
∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

V ′
dt

+
λ

τ

∫ tn+1

tn

(t− tn+1)
∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

V ′
dt

+ c2

(

τ

∫ tn+1

tn

∥

∥

∥

∥

∂u (t)

∂t

∥

∥

∥

∥

2

V0

dt

)
1
2

. (36)

But

1

τ

∫ tn+1

tn

(t− tn+1)
∥

∥

∥

∥

∂2u (t)

∂t2

∥

∥

∥

∥

V ′
dt

≤ 1
τ

(
∫ tn+1

tn

(t− tn+1)2
)

1
2

(

∫ tn+1

tn

∥

∥

∥

∥

∂2u (t)

∂t2

∥

∥

∥

∥

2

V ′
dt

)
1
2

≤
(

τ

∫ tn+1

tn

∥

∥

∥

∥

∂2u (t)

∂t2

∥

∥

∥

∥

2

V ′
dt

)
1
2

(37)
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and

1

τ

∫ tn+1

tn

(t− tn+1)
∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

V ′
dt

≤ 1
τ

(
∫ tn+1

tn

(t− tn+1)2
)

1
2

(

∫ tn+1

tn

∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

2

V ′
dt

)
1
2

≤
(

τ

∫ tn+1

tn

∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

2

V ′
dt

)
1
2

. (38)

Substituting (37) and (38) into (36), we get

‖εn‖V ′ ≤
(

τ

∫ tn+1

tn

∥

∥

∥

∥

∂2u (t)

∂t2

∥

∥

∥

∥

2

V ′
dt

)
1
2

+ λ

(

τ

∫ tn+1

tn

∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

2

V ′
dt

)
1
2

+ c2

(

τ

∫ tn+1

tn

∥

∥

∥

∥

∂u (t)

∂t

∥

∥

∥

∥

2

V0

dt

)
1
2

. (39)

Then

‖εn‖2V ′ ≤ cτ
[

∫ tn+1

tn

{

∥

∥

∥

∥

∂2u (t)

∂t2

∥

∥

∥

∥

2

V ′
+

∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

2

V ′
+

∥

∥

∥

∥

∂u (t)

∂t

∥

∥

∥

∥

2

V0

}

dt

]

. (40)

Summing this inequality over n, 0 ≤ n ≤ p− 1, 1 ≤ p ≤ N , we obtain

τ

p−1
∑

n=0

‖εn‖2V ′ ≤ cτ2

[

∥

∥

∥

∥

∂2u (t)

∂t2

∥

∥

∥

∥

2

L2(0,T ;V ′)
+

∥

∥

∥

∥

∂2

∂t2
χΩL (t)

∥

∥

∥

∥

2

L2(0,T ;V ′)

+

∥

∥

∥

∥

∂u (t)

∂t

∥

∥

∥

∥

2

L2(0,T ;V0)

dt

]

. (41)

Using (25), we get the following result:

Proposition 2. Suppose that u satisfies the regularity conditions (25) and that there
exists a constant M > 0 such that for all t ∈ [0, T ] we have ‖∇ (u (t) + g)‖L4(Ω) <
M . Then the consistency error is of order 1, i.e.

(

τ

p−1
∑

n=0

‖εn‖2V ′
)

1
2

≤ cτ, 1 ≤ p ≤ N, (42)

where c > 0 is a constant independent of τ .
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5.2. Stability of the Scheme

For all n ∈ {0, . . . , N − 1}, we have

1

τ
(un+1 − un, v) +

(

C (un + g) ∇ (un+1 + g) ,∇v
)

+
λ

τ

(

χΩn+1
L

− χΩn
L
, v
)

= 0. (43)

Set

en = u (tn)− un. (44)

Proposition 3. If u0 = u (t0), the following stability criterion holds for 1 ≤ p ≤ N :

‖ep‖2 +
p−1
∑

n=0

∥

∥en+1 − en
∥

∥

2
+ τk1

p
∑

n=1

‖∇en‖2 ≤
(

2τ

k1

p−1
∑

n=0

‖ε∗n‖
2
V ′

)

exp(cT ),

where c > 0 is a constant independent of τ and k1 = min(cs, cl).

Proof. Subtracting (27) from (43) yields

(

en+1 − en, v
)

+ τk1
(

∇en+1,∇v
)

+ τ
((

C
(

u (tn) + g
)

− C (un + g)
)

∇
(

u (tn+1) + g
)

,∇v
)

≤ τ 〈εn, v〉 , ∀v ∈ V0, 0 ≤ n ≤ N − 1. (45)

Taking v = en+1 in (45) and applying the inequality

∣

∣C (α)− C (β)
∣

∣ ≤ max
σ∈

�

∣

∣C
′

(σ)
∣

∣ |α− β| , (46)

we see that

∥

∥en+1
∥

∥

2 − ‖en‖2 +
∥

∥en+1 − en
∥

∥

2
+ 2τk1

∥

∥∇en+1
∥

∥

2

≤ 2τ
〈

εn, e
n+1
〉

+ 2τ max
σ∈

�

∣

∣C
′

(σ)
∣

∣

(

en∇
(

u (tn+1) + g
)

,∇en+1
)

. (47)

The right-hand side is estimated as follows:

2
∣

∣

〈

εn, e
n+1
〉
∣

∣ ≤ 2 ‖εn‖V ′
∥

∥en+1
∥

∥

V

≤ 2
k1
‖εn‖2V ′ +

k1
2

∥

∥∇en+1
∥

∥

2
. (48)
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Using Lemma 1 and the assumption (H), we get

2
(

en∇
(

u (tn+1) + g
)

,∇en+1
)

≤ 2 ‖en‖L4(Ω)
∥

∥∇
(

u (tn+1) + g
)∥

∥

L4(Ω)

∥

∥∇en+1
∥

∥

≤ 2M 2 14 ‖en‖
1
2 ‖∇en‖

1
2

∥

∥∇en+1
∥

∥

≤ c1

[

1

ε

(

‖en‖ ‖∇en‖
)

+ ε
∥

∥∇en+1
∥

∥

2
]

≤ c1

[

1

ε

(

1

2δ
‖en‖2+ δ

2
‖∇en‖2

)

+ ε
∥

∥∇en+1
∥

∥

2
]

, (49)

where ε > 0 and δ > 0 are arbitrary. Hence we have the estimate

2τ max
σ∈

�

∣

∣C
′

(σ)
∣

∣

(

en∇
(

u (tn+1) + g
)

,∇en+1
)

≤ k1
4
τ
(

‖∇en‖2 +
∥

∥∇en+1
∥

∥

2
)

+ τc2 ‖en‖2 . (50)

Substituting (48) and (50) into (47), we get

∥

∥en+1
∥

∥

2 − (1 + τc2) ‖en‖2 +
∥

∥en+1 − en
∥

∥

2
+
5k1
4
τ
∥

∥∇en+1
∥

∥

2

≤ k1
4
τ ‖∇en‖2 + 2τ

k1
‖εn‖2V ′ . (51)

If we sum this last relation over n, 0 ≤ n ≤ p− 1, 1 ≤ p ≤ N , and use the fact that
e0 = 0, then we obtain

‖ep‖2 +
p−1
∑

n=0

∥

∥en+1 − en
∥

∥

2
+ τk1

p
∑

n=1

‖∇en‖2

≤ τc2
p−1
∑

n=1

‖en‖2 + 2τ
k1

p−1
∑

n=0

‖εn‖2V ′ .

The discrete Gronwall inequality gives

‖ep‖2 +
p−1
∑

n=0

∥

∥en+1 − en
∥

∥

2
+ τk1

p
∑

n=1

‖∇en‖2 ≤
(

2τ

k1

p−1
∑

n=0

‖εn‖2V ′
)

exp(c2pτ)

≤
(

2τ

k1

p−1
∑

n=0

‖εn‖2V ′
)

exp(c2T ). (52)
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Combining Propositions 2 and 3, we derive immediately the following result:

Theorem 3. Under the assumptions of Proposition 2, there exists a constant c > 0
independent of τ such that

max
0≤n≤N

‖u (tn)− un‖+
(

τ

p−1
∑

n=0

‖u (tn)− un‖2V

)

1
2

≤ cτ. (53)

6. Formulation in the Framework of Shape Optimization

Under some regularity of the free boundary, we shall expose a new formulation of the
semi-discrete problem associated with (P3), using the shape optimization techniques.
The existence results for an optimal domain and the shape gradient are presented. For
the computation of the gradient, we suggest the material derivative (Zolésio, 1981)
and the duality methods (Lions, 1968).

The partial differential equation in Problem (P3) is approximated as

θn+1 − θn
τ

−∇·
(

C (θn)∇θn+1
)

= −λ
χΩn+1

L

− χΩn
L

τ
, ∀n ∈ {0, . . . , N − 1} . (54)

We introduce functions an and bn defined as follows:

an (x) = τC
(

θn (x)
)

, x ∈ Ω,

bn (x) = λχΩn
L
+ θn (x) , x ∈ Ω.

Thus we get the following semi-discretized problem associated with (P3):

(P6)











































































Find (θn+1)0≤n≤N−1 ⊂ V N and
(

Ωn+1L
)

0≤n≤N−1
⊂ (Oad)N such that

θn+1 > θc in Ω
n+1
L ,

θn+1 < θc in Ω
n+1
S ,

θn+1 = θc on S
n+1,

and θn+1 is the solution of the problem

P
(

Ωn+1L
)















Find θn+1 ∈ V such that
θn+1 −∇ · (an∇θn+1) = −λχΩn+1

L

+ bn in Ω,

θn+1 = θ∂Ω on ∂Ω,

where Oad is the set of admissible domains that will be defined later.
For notational convenience, we eliminate the indices n, and the sequences

θn, Ω
n
S , Ω

n
L, S

n, an and bn are denoted by θ, ΩS , ΩL, S, a and b, respectively.
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Introduce the cost functional

J (ΩL) ≡ J
(

ΩL, θ (ΩL)
)

=
1

2

∫

Ω

χΩS

[

(

θ (ΩL)− θc
)+
]2

dx+
1

2

∫

Ω

χΩL

[

(

θc − θ (ΩL)
)+
]2

dx. (55)

The optimal shape design problem is formulated as follows:

(Pop)







min
ΩL∈Oad

J (ΩL) such that

θ (ΩL) is the solution of P (ΩL) .

By setting

F =
{(

ΩL, θ (ΩL)
)

| ΩL ∈ Oad and θ (ΩL) is the solution to P (ΩL)
}

, (56)

the optimization problem can be written as

(Pop)
{

minimize J (ΩL) | (ΩL, θ (ΩL)) ∈ F
}

. (57)

The new formulation we propose makes use of the regularity of the free boundary.
The existence of the latter was proved in (Baiocchi et al., 1973; Lions, 1969; Saguez,
1980). As in (Lions, 1969), we assume that the free boundary is of measure zero on
Ω and, moreover, we suppose that it is defined by a curve described by the equation
x2 = α (x1), where α is a regular function. Then there exists a solution in F such
that J (ΩL) = 0. We deduce easily the equivalence of Problems (P6) and (Pop). In
the next section, we shall study Problem (Pop).

6.1. Existence Result

The existence of an optimal solution to (Pop) requires the choice of an adequate
topology on the admissible domain, permitting to obtain the compactness of Oad
and the lower semicontinuity of J .
The set of admissible functions which parameterize the free boundary S is defined

as follows:

Uad =
{

α ∈ C
(

[0, 1]
)

∣

∣

∣

∣

∣α (x1)− α (x1)
∣

∣ ≤ k |x1 − x1| ∀ x1, x1 ∈ [0, 1] ,

α (0) = c1, α (1) = c2 and α (x1) < c3, x1 ∈ [0, 1]
}

.

The constants k c1, c2 and c3 are chosen in such a way that Uad is not empty. Uad
is equipped with the following norm:

‖α‖∞ = max0≤x1≤1

∣

∣α (x1)
∣

∣, α ∈ Uad. (58)

We define

αn
�

n→∞
α in [0, 1] ⇐⇒ ‖αn − α‖∞ →

n→∞
0, (59)
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and the convergence in Uad by

‘αn →
n→∞

α’ in Uad ⇐⇒ αn
�

n→∞
α in [0, 1] . (60)

The different regions can be characterized by

ΩL (α) =
{

x ∈ Ω | x2 > α (x1)
}

, (61)

ΩS (α) =
{

x ∈ Ω | x2 < α (x1)
}

, (62)

S (α) =
{

x ∈ Ω | x2 = α (x1)
}

, (63)

and

χΩL(α) =

{

1 if x2 > α (x1) ,

0 otherwise.

We consider Oad as the set of the admissible domains

Oad =
{

Ω (α) ⊂ Ω | α ∈ Uad
}

, (64)

where

Ω (α) = ΩL (α) ∪ ΩS (α) ∪ S (α) .

We require Oad to be equipped with the appropriate topology and convergence de-
fined by

‘Ωn →
n→∞

Ω’ ⇐⇒ ‘αn →
n→∞

α’ in Uad, (65)

where Ωn = Ω(αn) and Ω = Ω (α).

Let α ∈ Uad. For any ΩL (α) we consider the following boundary-value problem:

P (α)















Find θ (α) ∈ V such that

θ (α)−∇ ·
(

a∇θ (α)
)

= −λ χΩL(α) + b in Ω,
θ (α) = θ∂Ω on ∂Ω.

The cost functional is given by

J (α) ≡ J
(

α, θ (α)
)

=
1

2

∫

Ω

χΩS(α)

[

(

θ (α)− θc
)+
]2

dx +
1

2

∫

Ω

χΩL(α)

[

(

θc − θ (α)
)+
]2

dx. (66)

We set

F =
{(

α, θ (α)
) ∣

∣ α ∈ Uad and θ (α) is the solution to P (α)
}

, (67)
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endowed with the topology defined by the following convergence:

‘
(

ΩL (αn) , θ (αn)
)

→
n→∞

(

ΩL (α) , θ (α)
)

’

⇐⇒







ΩL (αn) →
n→∞

ΩL (α) in Oad,

θ (αn) ⇀
n→∞

θ (α) (weakly) in B.
(68)

Thus the optimization problem is written as

Pop (α)
{

minimize J (α)
∣

∣

(

α, θ (α)
)

∈ F
}

.

Using the approach presented in (Haslinger and Neittaanmäki, 1988), we have
the following results, and the details of the proofs are given in (Haggouch, 1997).

Proposition 4. Let θn = θ (αn) be the solutions of P (αn) , αn ∈ Uad and ΩnL =
ΩL (αn). Then there exist a subsequence of {(αn, θn)} (again denoted by {(αn, θn)})
and elements α ∈ Uad, θ ∈ V such that

‘ΩnL →n→∞ ΩL(α)’ in Oad and θn ⇀
n→∞

θ (weakly) in B

Moreover, θ solves P (α).

Proposition 5. The function α→ J (α) is continuous on Uad.

Using these propositions, we establish our next theorem.

Theorem 4. There exists at least one solution to Problem Pop (α) , α ∈ Uad.

Proof. We define q by

q = inf
α∈Uad

J (α) . (69)

Let ΩnL = ΩL (αn) , αn ∈ Uad be a minimizing sequence, i.e.

lim
n→∞

J (αn) = q, (70)

and θ (αn) be the solution to Problem P (αn).

Proposition 2 implies that there exist a subsequence
{(

αnj , θ
(

αnj
))}

⊂
{(αn, θ (αn))} and an element {(α∗, θ (α∗))} ∈ F such that

αnj
�

j→∞
α∗ in [0, 1] (71)

and

θ
(

αnj
)

⇀
j→∞

θ (α∗) (weakly) in V. (72)
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By Proposition 3, we have

lim
j→∞
J
(

αnj
)

= J (α∗) . (73)

The uniqueness of the limit implies

inf
α∈Uad

J (α) = J (α∗) . (74)

6.2. Numerical Approximation of the Free Boundary

6.2.1. Existence of the Gradient

Consider a vector field W , defined on [0, β]×U with values in � 2 , U being an open
neighborhood of Ω and β > 0. Let W ∈ C

(

[0, β] ,Dk
(

U,
� 2)) , k ≥ 1. We transform

Ω into Ωτ through the function Tτ defined by

Tτ (X) = x (τ,X) , (75)

where x (τ,X) is the unique solution to the differential equation

P











d

dτ
x (τ,X) = W

(

τ, x (τ,X)
)

,

x (τ, 0) = X.

We suppose that this transformation makes the domain Ω invariant and preserves
the functional spaces, i.e.

φ ∈ H1(Ω)⇐⇒ φ ◦ T−1τ ∈ H1(Ω). (76)

Note that Tτ transforms the open domains ΩL and ΩS onto the open domains ΩτL
and ΩτS , and maps the associated boundaries ∂ΩL and ∂ΩS onto the boundaries
∂ΩτL and ∂Ω

τ
S , respectively.

Let τ ∈ [0, β] and θτ be the solution to the problem

P (ΩτL)















Find θτ ∈ V such that
θτ −∇ · (a∇θτ ) = −λ χΩτ

L
+ b in Ω,

θτ = θ∂Ω on ∂Ω.

The variational formulation associated with P (ΩτL) is given by

PV (ΩτL)























Find θτ ∈ V such that ∀φ ∈ V0,
∫

Ω

θτ φ dxτ +

∫

Ω

a∇θτ · ∇φ dxτ = −λ
∫

Ω

χΩτ
L
φ dxτ +

∫

Ω

b φ dxτ ,

θτ = θ∂Ω in ∂Ω.
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Applying the change of variable xτ = Tτ (X) (x) to the first equation of PV (ΩτL),
we obtain

∫

Ω

θτ φ γ (τ) dx +

∫

Ω

A (τ) a∇θτ · ∇φ dx

= −λ
∫

ΩL

φ
∣

∣

Ωτ
L

◦ Tτ γ (τ) dx+
∫

Ω

b φ γ (τ) dx, (77)

where θτ = θτ ◦ Tτ , γ (τ) = det (DTτ ) and A (τ) = γ (τ)DT −1τ .T
(

DT −1τ
)

.

We define the material derivative of θ (ΩL) as the solution to P (ΩL) in the
direction of the vector field W , i.e.

•

θ (Ω,W) = lim
τ→0

1

τ

(

θ (Ωτ ) ◦ Tτ − θ (Ω)
)

, (78)

provided that this limit exists. Thus, deriving (77) with respect to τ at τ = 0, we
get the variational problem associated with the material derivative of θ as a solution
to P (ΩL):

(
•

P )























Find
•

θ∈ V0 such that ∀φ ∈ V0,
∫

Ω

•

θ φ dx+

∫

Ω

a∇
•

θ ·∇φ dx +
∫

Ω

θ φ div (W ) dx+
∫

Ω

A
′

(0) a∇θ · ∇φ dx

= −λ
∫

ΩL
div (φW ) dx,

where A
′

(0) = divW (0) I −
(

DW (0) +T DW (0)
)

.

Consider the shape derivative θ
′

=
•

θ −∇θ ·W of the solution to P (ΩL). We show
that θ

′

exists in H and is determined as the solution to the following variational
problem:

(

P
′)











Find θ
′ ∈ H such that θ′ = 0 on ∂Ω and

∫

Ω

θ
′

φ dx+

∫

Ω

a∇θ′ · ∇φ dx = −λ
∫

ΩL

div (φW ) dx, ∀φ ∈ D (Ω) .

(θ
′

= 0 on ∂Ω because W = 0 on ∂Ω). The Eulerian derivative of the functional
J (ΩL) at ΩL in the direction of a vector field W is defined as the limit

dJ (ΩL,W) = lim
τ→0

1

τ

(

J (Ωτ )−J (Ω)
)

(79)

provided that this limit exists.
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Based on the foregoing results, one can deduce that the following theorem takes
place:

Theorem 5. For any vector field W ∈ C
(

[0, β] ,Dk
(

U,
� 2)), the Eulerian derivative

of the functional J (ΩL) at ΩL in the direction of a vector field W exists and is
given by

dJ (ΩL,W) =
∫

ΩS

[

(θ − θc)+
]

θ
′

dx+

∫

ΩS

div

(

1

2

[

(θ − θc)+
]2W (0)

)

dx

−
∫

ΩL

[

(θc − θ)+
]

θ
′

dx+

∫

ΩL

div

(

1

2

[

(θc − θ)+
]2W (0)

)

dx,

where θ and θ
′

are the solutions to P (ΩL) and (P
′

), respectively.

6.2.2. Calculation of the Gradient

Consider the Lagrangian functional defined by

L (ΩL, θ, φ) = J (ΩL) + (θ, φ)H + (a∇θ,∇φ)H
+ λ

(

χΩL(α), φ
)

H
− (b, φ)H , ∀φ ∈ V0. (80)

To determine the adjoint state p, one can solve the following equation:

lim
ω→0

∂

∂ω
L (ΩL, θ + ωφ, p) = 0, ∀φ ∈ V0. (81)

Then we obtain the adjoint problem

(Pa)























Find p ∈ V0 such that ∀φ ∈ V0
∫

Ω

pφ dx +

∫

Ω

a∇p · ∇φ dx

= −
∫

ΩS

(θ − θc)+ φ dx+
∫

ΩL

(θc − θ)+ φ dx.

Taking φ = θ
′

in (Pa) and φ = p in (P
′

), we get the final expression for the Eulerian
derivative of the functional J (ΩL) at ΩL in the direction of a vector field W :

dJ (ΩL,W) =
∫

ΩS

div

(

1

2

[

(θ − θc)+
]2W

)

dx

+

∫

ΩL

div
[

(

1

2

[

(θc − θ)+
]2
+ λp

)

W
]

dx.

The Hadamard formula (Zolésio, 1979) implies the existence of a scalar distribution
G on S such that

dJ (ΩL,W) =
∫

S

GW · n dσ. (82)
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Note that our aim is to minimize the functional J (ΩL) using some descent
method. Accomplish this in practice, we must solve the following variational problem:

(Pu)











Find u ∈ V0 such that
∫

Ω

∇u · ∇φ dx =
∫

S

Gv · n dσ, ∀v ∈ V0.

Problem (Pu) permits us to compute a descent direction in order to approximate S.

We can avoid solving this accessory problem by using the duality method (Lions,
1968) to compute the gradient and deform the domain. We recall that

ΩL = ΩL (α) =
{

x ∈ Ω | x2 > α (x1)
}

. (83)

Set

J (α) = 1
2

∫ 1

0

∫ α(x1)

0

[

(

θ (α)− θc
)+
]2

dx+
1

2

∫ 1

0

∫ 1

α(x1)

[

(

θc − θ (α)
)+
]2

dx, (84)

where θ (α) is the solution to the variational problem

PV (ΩL)























Find θ ∈ V such that ∀φ ∈ V0,
∫

Ω

θφ dx+

∫

Ω

a∇θ · ∇φ dx = −λ
∫ 1

0

∫ 1

α(x1)

φ dx+

∫

Ω

bφ dx,

θ = θ∂Ω in ∂Ω.

We consider the Lagrangian L defined for all φ ∈ V0 by

L (θ, α, φ) = J (α) +
∫

Ω

θφ dx +

∫

Ω

a∇θ · ∇φ dx+ λ
∫ 1

0

∫ 1

α(x1)

φ dx−
∫

Ω

bφ dx, (85)

θ (α) being the solution to (PV )6. We solve the equation
(

∂L
∂θ
(θ (α) , α, p) , δθ

)

= 0, ∀ δθ ∈ V0 (86)

to determine the adjoint state p (α). Then we get
∫

Ω

p (α) φ dx +

∫

Ω

a∇p (α) · ∇φ dx

=

∫ 1

0

∫ 1

α(x1)

(

θc − θ (α)
)+
φ dx −

∫ 1

0

∫ α(x1)

0

(

θ (α)− θc
)+
φ dx, (87)

and the adjoint problem is given by

(Pa)































Find p ∈ V0 such that ∀φ ∈ V0,
∫

Ω

pφ dx +

∫

Ω

a∇p · ∇φ dx

= −
∫ 1

0

∫ α(x1)

0

(θ − θc)+ φ dx+
∫ 1

0

∫ 1

α(x1)

(θc − θ)+ φ dx.
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Set

J ′ (α) =
∂L (θ (α) , α, p (α))

∂α
. (88)

If θ (α) is the solution to the state problem, then

J (α) = L
(

θ (α) , α, p
)

, ∀p ∈ V0.

In particular, for p = p (α) we get

(

∇J (α) , δα
)

=

(

∂ L
∂α

(

θ (α) , α, p (α)
)

, δα

)

. (89)

Therefore
(

∂ L(θ (α) , α, p (α))
∂α

, δα

)

=
1

2

∫ 1

0

[

(

θ
(

x1, α (x1)
)

− θc
)+
]2

δα (x1) dx1

− 1
2

∫ 1

0

[

(

θc − θ
(

x1, α (x1)
))+
]2

δα (x1) dx1

− λ
∫ 1

0

p
(

x1, α (x1)
)

δα (x1) dx1.

Then

∇J (α) = 1
2

[

(

θ
(

x1, α (x1)
)

− θc
)+
]2

− 1
2

[

(

θc − θ
(

x1, α (x1)
))+
]2

− λp
(

x1, α (x1)
)

. (90)

6.2.3. Algorithm

Let ω be a real parameter such that ω > 0, and let an initial free boundary α0 be
given. The optimization method considered consist in generating a sequence (αk)k>0
with the following iterations:

αk+1 = αk − ω uk, (91)

where uk = u(αk) = ∂J /∂αk. If we write θk = θ
(

αk
)

and pk = p
(

αk
)

, then

uk =
1

2

[

(

θk − θc
)+
]2

− 1
2

[

(

θc − θk
)+
]2

− λpk, (92)

where θk is the unique solution to the problem

P
(

ΩkL
)















Find θk ∈ V such that

θk −∇ ·
(

a∇θk
)

= −λχΩL(αk) + b in Ω,
θk = θ∂Ω on ∂Ω,
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and pk is the adjoint state, associated with θk, the unique solution to the problem

(

P ka
)



























Find pk ∈ V such that

pk −∇ ·
(

a∇pk
)

=
(

χΩL(αk) − 1
) (

θk − θc
)+

+χΩL(αk)
(

θc − θk
)+

in Ω,

pk = 0 on ∂Ω.

Algorithm:

Step 0. Input θ0, α0, the maximal number of iterations kmax, the coefficient ω,
the precision for temperature ε and that for the free boundary EPS.

Step 1. Given αk and χΩL(αk), compute θk , the solution to the state Prob-

lem P
(

ΩkL
)

.

Step 2. Compute pk, the adjoint state associated with θk, the solution to Prob-
lem

(

P ka
)

.

Step 3. Compute the gradient uk by using (92).

Step 4. Test:

if
∥

∥θk − θk−1
∥

∥ < ε or
∥

∥uk
∥

∥ < EPS or k > kmax then αopt = α
k,

otherwise set αk+1 = αk − ωuk and return to Step 1.

Solution of the partial differential equations under consideration is performed
by a standard Finite Element Method (FEM): the region Ω is partitioned using
a uniform grid involving steps h1 = 1/N1, h2 = 1/N2 and nodes Pi,j = ((i −
1)h1, (j − 1)h2) for 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. A triangular mesh is generated
by the diagonals connecting Pi+1,j to Pi,j+1. The functions are approximated by
piecewise constant ones on each triangle. For example, α and θ are approximated
by piecewise constant functions having the values αij and θij at Pi,j , respectively.
Such a method is standard and will not be detailed here. We limit ourselves to the
observation that the FEM reduces Problems (P (ΩL)) and (Pa) to a linear system.
In the numerical experiments, solutions to all the linear systems were obtained using
an iterative method of relaxation.

6.3. Numerical Experiments

In order to obtain situations where the exact solution is known, we consider an ad-
ditional source term g on the right-hand side of the heat equation related to Prob-
lem (P1). We consider the situation where T = 2, λ = 1, cs = 11, cl = 10, θc = 0,

g (x1, x2, t) =

{

exp(−t)− 4cs if x21 + x22 − exp(−t) > 0,
exp(−t)− 4cl otherwise,

(93)
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and θ0 (x1, x2, t) = x21 + x
2
2 − exp(−t). In this case, the exact representation of the

free boundary is given by

α (x1, x2, t) =
√

exp(−t)− x21 − x2, (94)

which is a solution to the equation θ0 (x1, x2, t) = 0. We denote by S (t) the exact
free boundary at time t defined by

S (t) =
{

x = (x1, x2) ∈ Ω | α (x1, x2, t) = 0
}

. (95)

For these methods, we consider the following choices:

� k(n) denotes the last iteration number at time tn. The total number of it-
erations for the whole solution on [0, T ], ktot and the maximum number of
iterations for a time step kmax are respectively given by

ktot =
N
∑

n=1

k(n), kmax = max
1≤n≤N

k(n). (96)

� The free boundary S(tn) at time tn is numerically determined as follows: Let
α0 be an initial free boundary. Compute

αk+1 = αk − ω u(αk) (97)

iteratively for k = 1, . . . , k (n), until getting an approximation of the optimal
solution with a given precision. Setting

αop = αk(n), (98)

we fix i ∈ {1, . . . , N1} and determine j ∈ {1, . . . , N2} such that

α
k(n)
ij < 0 < α

k(n)
ij+1. (99)

The front pass at a point of [Pij , Pij+1] that we approximate by the point
Pij+ 1

2
is

Sij = Pij+ 1
2
=
(

(i− 1)hx1 , (j − 1/2)hx2
)

. (100)

S (tn) is then obtained by linear interpolation from the points Sij when i =
1, . . . , N1.

� Consider

efij(n) =
∣

∣α
k(n)
ij − α(Pij , tn)

∣

∣. (101)
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The absolute error in the position of the free boundary is controlled by

ef(n) =
(

h1h2

N1
∑

i=1

N2
∑

j=1

ef ij(n)
2
)

1/2

. (102)

The global behaviour on [0, T ] is controlled by its mean on the global calcula-
tion, i.e.

ef2 =
1

N

N
∑

n=1

ef(n). (103)

� In the same way, write

etij(n) =
∣

∣θ
k(n)
ij − θ(Pij , tn)

∣

∣. (104)

The absolute error in the field of temperatures is controlled by

et(n) =
(

h1h2

N1
∑

i=1

N2
∑

j=1

etij(n)
2
)

1/2

. (105)

The global behaviour on [0, T ] is controlled by its mean on the global calcula-
tion:

et2 =
1

N

N
∑

n=1

et(n). (106)

� We shall also present the final values of the mean-square norm of the gradient

e2 =
1

N

N
∑

n=1

e(n), (107)

where

e(n) =
(

h1h2

N1
∑

i=1

N2
∑

j=1

(

u
(

α
k(n)
ij

))2 )1/2

. (108)

We analyze the influence of the mesh and the coefficient ω, before giving some results
concerning the field of temperatures and the free-boundary errors.

Table 1. Results for the mesh (20 × 10P ).

P 1 2 3 4 5 6 7

et2 3.3 × 10
−3 3.5 × 10−3 3.5 × 10−3 3.5 × 10−3 3.5 × 10−3 3.5 × 10−3 3.6 × 10−3

ef2 8.3 × 10
−2 7.9 × 10−2 7.6 × 10−2 7.4 × 10−2 7.4 × 10−2 7.4 × 10−2 7.4 × 10−2

e2 8.0 × 10−1 8.3 × 10−1 8.4 × 10−1 8.0 × 10−1 8.0 × 10−1 8.2 × 10−1 8.1 × 10−1

kmax 20 20 20 20 20 20 20
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Table 2. Variation of the coefficient ω for the mesh (20× 50).

ω 0.1 1 5 10 20 30 40

et2 1.8 × 10
−2 5.8 × 10−3 2.1 × 10−3 2.2 × 10−3 3.5 × 10−3 4.2 × 10−3 4.6 × 10−3

ef2 3.4 × 10
−1 1.0 × 10−1 4.1 × 10−2 4.8 × 10−2 7.4 × 10−2 9.6 × 10−2 1.0 × 10−1

e2 3.32 1.5 × 10−1 1.0 × 10−2 3.8 × 10−1 8.0 × 10−1 1.0 1.1

kmax 20 20 20 20 20 20 20

In the simulations, we considered the time step τ = 0.1, T = 4, kmax =
20, prec = 1.0E-5. The regularization parameter was EPS = 1.0E-3. The relax-
ation method involved in the FEM used µ = 0.1, precision precR = 1.0E-5 and the
maximum number of iterations Mmax = 1000.
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Fig. 3. Mean-square error of the temperatures while varying the mesh (ω = 20).

From the numerical experiments, the following conclusions can be drawn:

� According to Table 1, the tests involving different meshes show that their in-
fluence is minor on both the error in the field temperature (Fig. 3) and that in
the free boundary (Fig. 4).

� In Figs. 5 and 6, we consider the convergence of the errors in the field of the
temperatures and the evaluation of the free boundary with respect to the coef-
ficient ω for the mesh 20× 50 (see Table 2). Note that ω = 5 leads to better
convergence for both the errors in the intervals [0, 2.4] and [0, 1.4], respectively,
and ω = 20 in the intervals [2.4, 4] and [1.4, 4].
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Fig. 4. Mean-square error of the free boundary while varying the mesh (ω = 20).

� In Fig. 7, we present the computed and exact positions of the free boundary for
the mesh 20× 50 and the coefficient ω = 20.

� The evolution of the cost function and the gradient versus the number of itera-
tions is established in Figs. 8 and 9, respectively.

7. Conclusion

We have considered a two-phase Stefan model for solidification/melting situations
involving a critical temperature θ. This model assumes that the two phases are sepa-
rated by an unknown free boundary, and leads to evolution equations describing the
temperature θ of the material and the moving boundary. The major difficulty in a
direct problem is the fact that the unknown boundary affects explicitly the equations
for the thermal state of the system. This difficulty was overcome by a reformulation
of the problem: We characterized the different regions using the sign of an unknown
function α. Then we introduced the characteristic function of the region α > 0 that
transformed the initial problem into a partial differential equation valid on the whole
cavity occupied by the material coupled to a scalar equation connecting the signs of
α and θ − θc.
The stability and convergence results of the proposed scheme for the temporal

semi-discretization of the new formulation were established. Then we suggested a
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Fig. 5. Mean-square error of the temperatures while
varying the coefficient ω for the mesh 20 × 20.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

"fc01"
"fc15"
"fc2"

"fc25"
"fe01"
"fe15"

"fe2"
"fe25"

PSfrag replacements

x
2

x1

Fig. 7. Computed and exact positions of the free boundary for
the mesh 20 × 50 and the coefficient ω = 20.

numerical method based on domain optimization techniques which were tested in
a simple situation considered in (Humeau and Souza del Cursi, 1993). We proved
the existence of an optimal domain and a shape gradient. The computations of this
gradient were performed using the material derivative and duality methods.

Introduction of specialized methods for discretization in time may lead to a bet-
ter method. The numerical methods can be simply extended to mixed boundary
conditions, even though the question of the uniqueness of solutions for general mixed
boundary conditions is still open.
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