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CIRCLE CRITERION AND BOUNDARY CONTROL

SYSTEMS IN FACTOR FORM:

INPUT–OUTPUT APPROACH

Piotr GRABOWSKI∗, Frank M. CALLIER∗∗

A circle criterion is obtained for a SISO Lur’e feedback control system consist-
ing of a nonlinear static sector-type controller and a linear boundary control
system in factor form on an infinite-dimensional Hilbert state space H previ-
ously introduced by the authors (Grabowski and Callier, 1999). It is assumed
for the latter that (a) the observation functional is infinite-time admissible, (b)
the factor control vector satisfies a compatibility condition, and (c) the trans-
fer function belongs to H∞(Π+) and satisfies a frequency-domain inequality of
the circle criterion type. We also require that the closed-loop system be well-
posed, i.e. for any initial state x0 ∈ H the truncated input and output sig-
nals uT , yT belong to L

2(0, T ) for any T > 0. The technique of the proof
adapts Desoer-Vidyasagar’s circle criterion method (Desoer and Vidyasagar,
1975, Ch. 3, Secs. 1 and 2, pp. 37–43, Ch. 5, Sec. 2, pp. 139–142 and Ch. 6,
Secs. 3 and 4, pp. 172–174), and uses the input-output map developed by the
authors (Grabowski and Callier, 2001). The results are illustrated by two trans-
mission line examples: (a) that of the loaded distortionless RLCG type, and
(b) that of the unloaded RC type. The conclusion contains a discussion on
improving the results by the loop-transformation technique.

Keywords: infinite-dimensional control systems, semigroups, input-output

relations

1. Introduction

In a Hilbert space H with a scalar product 〈·, ·〉H consider the SISO model of bound-
ary control in factor form (Grabowski and Callier, 1999),

{
ẋ(t) = A

[
x(t) + u(t)d

]
,

y = c#x.
(1)

We assume that A : (D(A) ⊂ H) −→ H generates a linear exponentially sta-
ble (EXS), C0-semigroup {S(t)}t≥0 on H, d ∈ H is a factor control vector,
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u ∈ L2(0,∞) is a scalar control function, y is a scalar output defined by an A-
bounded linear observation functional c#. The restriction of c# to D(A) is repre-
sentable as c#|D(A) = h∗A for some h ∈ H (for q ∈ H, q∗ denotes the bounded
linear functional q∗x := 〈x, q〉H, x ∈ H).
Define two operators:

V ∈ L
(
H,L2(0,∞)

)
, (V x)(t) := h∗S(t)x

W ∈ L(L2(0,∞),H), Wu :=
∫ ∞

0

S(t) du(t) dt.

Recall that L and R = L∗,

Lf = f ′, D(L) = W1,2(0,∞),
Rf = −f ′, D(R) =

{
f ∈W1,2(0,∞) : f(0) = 0

}
,

are the generators of the semigoups of left- and right-shifts on L2(0,∞), respectively.

Definition 1. The observation functional c# is called admissible if the observability
operator

P = V A, D(P ) = D(A)

is bounded. The factor control vector d ∈ H is called admissible if

Range(W ) ⊂ D(A).

From (Grabowski and Callier, 1999, Thm. 4.1, p. 100; 2001, eqn. (1.8)) the fol-
lowing result may be concluded:

Lemma 1. If c# is admissible, then P , the closure of P , has the form

Range(V ) ⊂ D(L), P = LV,

while if d is admissible, then the reachabi l i ty operator Q = AW is in
L(L2(0,∞),H).

Furthermore, from (Grabowski and Callier, 2001, Sec. 3) it follows that if the
compatibility condition

d ∈ D(c#) (2)

holds, then the function

ĝ(s) := sc#(sI −A)−1d− c#d = sh∗A(sI −A)−1d− c#d (3)

is well-defined and analytic on the complex right half-plane Π+ = {s ∈ �
: Re s > 0}.
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If, apart from (2), c# is admissible, then:

(i) ĝ(s) = s
(
P̂ d
)
(s)− c#d with P̂ d ∈ H∞(Π+)∩H2(Π+), where H∞(Π+) denotes

the Banach space of analytic functions f on Π+, equipped with the norm
‖f‖H∞(Π+) = sups∈Π+ |f(s)|, and H2(Π+) is the Hardy space of functions f
analytic on Π+ such that supσ>0

∫∞
−∞
|f(σ + jω)|2 dω < ∞, where f(jω) :=

limσ→0+ f(σ+ jω) exists for almost all ω ∈ � . The space H2(Π+) is unitarily
isomorphic with L2(0,∞) through the normalized Laplace transform. To be
more precise,

〈f, g〉L2(0,∞) =
1

2π

∫ ∞

−∞

f̂(jω)ĝ(jω) dω,

where f̂ and ĝ are the Laplace transforms of f and g, respectively. The latter
facts are fundamental ingredients of the Paley-Wiener theory (Duren, 1970,
Ch. 11).

(ii) The convolution operator K with kernel Pd, i.e. Ku := Pd ? u, belongs to
L(L2(0,∞)), and it maps the domain of R into itself.

Finally, by (Grabowski and Callier, 2001, Thm. 4.1) the following result holds:

Lemma 2. If (2) is satisfied, c# is admissible and

ĝ ∈ H∞(Π+), (4)

then the inpu t -ou tpu t operator F ,

F = −KR− c#dI, D(F ) = D(R),

is bounded and its closure F is given by

Range(K) ⊂ D(R), F = −RK − c#dI.

Moreover, ĝ is then the trans fer funct ion of the system (1).

2. Additional Properties of the Input-Output Map

Definition 2. The operator H ∈ L(L2(0,∞)) is called causal or nonanticipative if

(HuT )T = (Hu)T , ∀u ∈ L2(0,∞),

where uT denotes the truncation of u at time T > 0,

uT (t) =

{
u(t) if t < T,

0 otherwise.
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Lemma 3. The closure F of the input-output map F has the following properties:

(i) F is causal.

(ii) If k1 < 0 and k2 > 0 are such that

inf
ω∈ �

[
k1k2 |ĝ(jω)|2 − (k1 + k2) Re ĝ(jω) + 1

]
≥ δ > 0, (5)

then for any u ∈ L2(0,∞) we have
〈
(I − k1F )u, (I − k2F )u

〉
L2(0,∞)

≥ δ ‖u‖2
L2(0,∞) , (6)

and the operator (I − k1F ∗)(I − k2F ) is s tr ict ly passive (Desoer and
Vidyasagar, 1975, p. 173), i.e.

〈[
(I − k1F )uT

]
T
,
[
(I − k2F )uT

]
T

〉
L2(0,T )

≥ δ ‖uT ‖2L2(0,T ) , ∀T > 0. (7)

Proof. As for (i), observe that

(
Fu
)
T
=





d

dt

∫ t

0

Pd(t− τ)u(τ) dτ, t < T

0, t > T




− c#duT ,

FuT =
d

dt

∫ t

0

Pd(t− τ)
{
u(τ), τ < T

0, τ > T

}
dτ − c#duT

=





d

dt

∫ t

0

Pd(t− τ)u(τ) dτ, t < T

d

dt

∫ T

0

Pd(t− τ)u(τ) dτ, t > T




− c#duT ,

so that
(
FuT
)
T
=
(
Fu
)
T
and F is nonanticipative.

As for (ii), applying the Paley-Wiener theory, for any u ∈ L2(0,∞) we get
〈
(k1F − I)u, (k2F − I)u

〉
L2(0,∞)

=
1

2π

∫ ∞

−∞

[
k1ĝ(jω)− 1

]
û(jω)[k2ĝ(jω)− 1] û(jω) dω

=
1

2π

∫ ∞

−∞

[
k1k2 |ĝ(jω)|2 − (k1 + k2) Re ĝ(jω) + 1

]
|û(jω)|2 dω

≥ inf
ω∈ �

[
k1k2 |ĝ(jω)|2 − (k1 + k2) Re ĝ(jω) + 1

] 1
2π

∫ ∞

−∞

|û(jω)|2 dω

≥ δ ‖u‖2L2(0,∞) .



Circle criterion and boundary control systems in factor. . . 1391

By (6) with u = uT we have
〈
(I−k1F )uT , (I−k2F )uT

〉
L2(0,∞)

≥ δ ‖uT ‖2L2(0,∞) = δ ‖uT ‖
2
L2(0,T ) , ∀T > 0, (8)

but
〈
(I − k1F )uT , (I − k2F )uT

〉
L2(0,∞)

= ‖uT ‖2L2(0,∞) − k1
〈
FuT , uT

〉
L2(0,∞)

− k2
〈
uT , FuT

〉
L2(0,∞)

+ k1k2
∥∥FuT

∥∥2
L2(0,∞)

= ‖uT ‖2L2(0,T ) − k1
〈 (
FuT
)
T
, uT
〉
L2(0,T )

− k2
〈
uT ,
(
FuT
)
T

〉
L2(0,T )

+ k1k2
∥∥FuT

∥∥2
L2(0,∞)

.

Since
∥∥FuT

∥∥2
L2(0,∞)

≥
∥∥(FuT

)
T

∥∥2
L2(0,T )

and k1k2 < 0, we obtain the estimate

k1k2
∥∥FuT

∥∥2
L2(0,∞)

≤ k1k2
∥∥(FuT

)
T

∥∥2
L2(0,T )

.

Finally,
〈
(I − k1F )uT , (I − k2F )uT

〉
L2(0,∞)

≤
〈 [
(I − k1F )uT

]
T
,
[
(I − k2F )uT

]
T

〉
L2(0,T )

,

and (7) follows from (8).

Remark 1. A similar result is found in (Desoer and Vidyasagar, 1975, Ex. 1, p. 174).
Since F is causal, its adjoint operator F ∗ is anticausal (Desoer and Vidyasagar, 1975,
Lemma 9.1.8, p. 201).

Remark 2. The frequency-domain inequality (5) means geometrically that the plot
of the transfer function ĝ(jω) is located strictly inside the circle with centre at(
k−11 + k

−1
2

)
/2 and radius

(
k−12 − k−11

)
/2.

3. The Circle Criterion

For the feedback system given in Fig. 1, we assume the following:

(A1) The linear part of the feedback system from u to y is our boundary control
system in factor form, where A generates a linear EXS semigroup {S(t)}t≥0
on H, c# is admissible, d ∈ D(c#) and ĝ ∈ H∞(Π+). Hence, for any x0 ∈ H,
its input-output equation in L2(0, T ) for any T > 0 is given by

yT =
(
Px0
)
T
+
(
Fu
)
T
=
(
Px0
)
T
+
(
FuT
)
T
. (9)

The last equality is due to the causality of F .
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�
y(t)

CONTROLLER

u(t)

PLANT

f(y)

ẋ(t) = A
[
x(t) + du(t)

]

x(0) = x0

y(t) = c#x(t)

� ��

Fig. 1. The Lur’e control system.

(A2) The nonlinearity f(y) is assumed to lie in the sector [k1, k2], i.e. with y and
f(y) in � ,

[
f(y)− k1y

][
f(y)− k2y

]
≤ 0.

Moreover, f is supposed to be piecewise continuous with f(0) = 0 and f
continuous at 0.

(A3) The extended input-output map F of the boundary control system satisfies
the frequency-domain inequality (5).

(A4) The feedback system given in Fig. 1 is well-posed, i.e. for any x0 ∈ H the
truncated loop signals uT and yT belong to L

2(0, T ) for any T > 0.

Remark 3. For reasons of mathematical elegance, the usual sign inversion is absent
in the feedback loop of Fig. 1. The standard setting of the circle criterion as in, e.g.
(Vidyasagar, 1993, Sec. 5.6, Thm. 37, Case (iii), p. 227) is recovered by replacing
f(y) by −f(y), and k1 and k2 by −k2 and −k1, respectively.

Theorem 1. (Version of the circle criterion) Consider the feedback system of Fig. 1,
where assumptions (A1)÷(A4) hold. Then

(i) u and y ∈ L2(0,∞).

(ii) If, in addition, d ∈ H is an admissible factor control vector, then the null
equilibrium point of H is g loba l l y s t rong ly asymptot ica l l y s tab le, i.e.
it is Lyapunov - s t ab l e and global ly strongly attract ing.

Proof. By assumptions (A4) and (A2) and from u = f(y), it follows that yT and uT
satisfy

〈uT − k1yT , uT − k2yT 〉L2(0,T ) ≤ 0, ∀T > 0. (10)
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As regards (i), the substitution of (9) into (10) gives
〈
uT − k1(Px0)T − k1(FuT )T , uT − k2(Px0)T − k2(FuT )T

〉
L2(0,T )

=
〈[
(I − k1F )uT

]
T
,
[
(I − k2F )uT

]
T

〉
L2(0,T )

− k1
〈
(Px0)T ,

[
(I − k2F )uT

]
T

〉
L2(0,T )

− k2
〈[
(I − k1F )uT )

]
T
, (Px0)T

〉
L2(0,T )

+ k1k2
∥∥(Px0)T

∥∥2
L2(0,T )

≤ 0, ∀T > 0.

Note now that (7) holds by (A3) and Lemma 3. Hence

δ ‖uT ‖2L2(0,T ) ≤ k1
〈
(Px0)T ,

[
(I − k2F )uT

]
T

〉
L2(0,T )

− k1k2
∥∥(Px0)T

∥∥2
L2(0,∞)

+ k2
〈[
(I − k1F )uT

]
T
, (Px0)T

〉
L2(0,T )

≤ |k1|
∥∥P
∥∥ ‖x0‖

∥∥I − k2F
∥∥ ‖uT ‖L2(0,T )

+ k2
∥∥P
∥∥ ‖x0‖

∥∥I − k1F
∥∥ ‖uT ‖L2(0,T ) + |k1| k2

∥∥P
∥∥2 ‖x0‖2 .

This is a trinomial inequality with respect to ‖uT‖. Examining its properties, we
conclude that there exists a constant γ which depends on ‖P‖, ‖F‖, |k1|, k2 but
does not depend on T such that for all T > 0

‖uT ‖L2(0,T ) ≤ γ ‖x0‖H , ∀x0 ∈ H.

Since ‖uT ‖ is an increasing function of T , we finally get
‖u‖L2(0,∞) ≤ γ ‖x0‖ , ∀x0 ∈ H. (11)

But

‖y‖L2(0,∞) ≤
∥∥P
∥∥ ‖x0‖+

∥∥F
∥∥ ‖u‖L2(0,∞)

and therefore by (11) there exists a constant ρ > 0, again independent of T , such
that

‖y‖L2(0,∞) ≤ ρ ‖x0‖ , ∀x0 ∈ H. (12)

As for (ii), if, in addition, d ∈ H is an admissible factor control vector, then
x(t) = S(t)x0 +QRtu, t ≥ 0,

where {S(t)}t≥0 ⊂ L(H) is a C0-semigroup which is EXS, Q ∈ L(L2(0,∞),H)
denotes the reachability map and Rt denotes the reflection operator at t > 0,

(Rtu)(τ) :=

{
u(t− τ), τ ∈ [0, t),
0, τ ≥ t.

The mapping 0 ≤ t 7−→ x(t) ∈ H is strongly continuous. Employing (11), we conclude
that there exists a constant ε > 0, independent of T , such that

‖x(t)‖H ≤ ε ‖x0‖H , ∀x0 ∈ H, ∀t ≥ 0. (13)

The stability of the null equilibrium follows easily from (13).
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As regards state attraction to zero, ‖S(t)‖ tends to zero exponentially fast as t→
∞. Hence we may without loss of generality consider x(t) = QRtu. For any fixed u ∈
L2(0,∞), the function t 7−→ Rtu is in BUC [0,∞; L2(0,∞)), where BUC [0,∞; Z)
stands for the Banach space of bounded, uniformly continuous functions defined on
[0,∞) and taking values in a Hilbert space Z, equipped with standard supremum
norm ‖f‖BUC[0,∞;Z) := supt≥0 ‖f(t)‖Z, f ∈ BUC[0,∞; Z). Indeed,

‖Rtu−Rsu‖2L2(0,∞)

=

∫ ∞

0

[{
u(t− τ), 0 ≤ τ < t
0, τ ≥ t

}
−
{
u(s− τ), 0 ≤ τ < s
0, τ ≥ s

}]2
dτ.

Let s > t. Then

‖Rtu−Rsu‖2L2(0,∞) =
∫ ∞

0








u(t− τ) − u(s− τ) if 0 ≤ τ < t
−u(s− τ) if t ≤ τ < s
0 if τ ≥ s








2

dτ

=

∫ t

0

[
u(t− τ) − u(s− τ)

]2
dτ +

∫ s

t

u2(s− τ) dτ

=

∫ t

0

[
u(ξ)− u(s− t+ ξ)

]2
dξ +

∫ s−t

0

u2(ξ) dξ

≤ ‖u− T (s− t)u‖2L2(0,∞) +
∫ s−t

0

u2(ξ) dξ,

where {T (t)}t≥0 stands for the semigroup of left-shifts on L2(0,∞) with infinitesimal
generator L. Similarly, for t > s we get

‖Rtu−Rsu‖2L2(0,∞) ≤ ‖T (t− s)u− u‖2L2(0,∞) +
∫ t−s

0

u2(ξ) dξ.

Both these estimates yield

‖Rtu−Rsu‖2L2(0,∞) ≤ ε(|t− s|), ∀t, s ≥ 0,

ε(δ) := ‖T (δ)u− u‖2L2(0,∞) +
∫ δ

0

u2(ξ) dξ.

The uniform continuity and boundedness hold as the function ε is continuous, non-
negative and bounded on [0,∞) with the upper bound 5‖u‖2L2(0,∞), and ε(0) = 0.
The sharpest upper bound for the function t 7−→ Rtu directly follows from the ob-
servation that the reflection operator is a contraction on L2(0,∞).
Since Q ∈ L(L2(0,∞),H), the function t 7−→ QRtu is in BUC[0,∞; H). Thus

the linear operator given by (Gu)(t) := QRtu belongs to L(L2(0,∞),BUC[0,∞; H))
as

‖Gu‖BUC[0,∞;H) = sup
t≥0
‖QRtu‖H ≤ ‖Q‖ � (L2(0,∞),H)‖u‖L2(0,∞), ∀u ∈ L2(0,∞).
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Consider now the subspace BUC0[0,∞; H) of those functions of BUC[0,∞; H) that
have zero limit at infinity. If u ∈ D(L)1, then by (Pazy, 1993, Cor. 2.10, p. 109):

QRtu = A

∫ t

0

S(t− τ)du(τ) dτ = d
dt

∫ t

0

S(t− τ)du(τ) dτ − du(t)

=

∫ t

0

S(t− τ)du̇(τ) dτ + S(t)du(0)− du(t). (14)

Since ‖S(·)d‖H and u̇ ∈ L2(0,∞), the first term in (14) tends to 0 as t → ∞
(Desoer and Vidyasagar, 1975, Ex. 4, p. 242). The second term in (14) decays expo-
nentially, while the third term tends to 0 as t → ∞ because u ∈ D(L). Thus we
have proved that Gu ∈ BUC0[0,∞; H) for u belonging to a dense subspace D(L) of
L2(0,∞), where BUC0[0,∞; H) is a closed subspace of BUC[0,∞; H). By the con-
tinuity of G, the inverse image of BUC0[0,∞; H) is a closed subspace of L2(0,∞).
But it contains a dense subspace which proves that the image of L2(0,∞) under G
equals BUC0[0,∞; H), whence limt→∞ x(t) = 0.

4. Examples

In this section we discuss two examples of electrical transmission lines illustrating the
results of Section 3.

4.1. Distortionless RLCG–Transmission Line

The distortionless transmission line is an RLCG transmission line for which α :=
R/L = G/C. Following (Grabowski and Callier, 2001, Sec. 5.1), consider such a line
loaded by a resistance R0. On the Hilbert space H = L

2(−r, 0) ⊕ L2(−r, 0) with
r =
√
LC, equipped with the standard scalar product, its dynamics is governed by

the abstract model in the factor form (1). To be more precise,

� The state space operator A takes the form

{
Ax = x′,

D(A) =
{
x ∈W1,2(−r, 0)⊕W1,2(−r, 0) : x(0) = CSx(−r)

}
,
(15)

where

CS =

[
0 1

−b 0

]
, b =

κ

ρ2
, κ =

R0 − z
R0 + z

, z =

√
L

C
, ρ = eαr.

The operator A generates a C0-semigroup {S(t)}t≥0 on H (or even a C0-
group if detCS 6= 0). This semigroup is EXS iff |λ(CS)| < 1 or, equivalently,
|b| < 1 (Górecki et al., 1989, pp. 148–154), which is the case.

1 The proof goes through with D(L) replaced by D(R). In this case u(0) = 0.
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� The observation functional c# is given by

c#x = cT0 x(−r), D(c#) =
{
x ∈ H : cT0 x is right-continuous at − r

}
, (16)

where

c0 =

[
0

a

]
, a =

1 + κ

ρ
≥ 0.

It is representable on D(A) as

c#
∣∣
D(A)
= h∗A, h = ϑ

[
b1

−1

]
∈ H, ϑ := a

1 + b
,

where 1 denotes the constant function taking the value 1 on [−r, 0]. The
admissibility of c# was implicitly discussed in (Grabowski, 1994, p. 363). The
Lyapunov proof of this fact is presented in (Grabowski and Callier, 2001).

� The factor control vector is identified as

d =
−1
1 + b

d0, d0 =

[
1

1

]
∈ H, (17)

and d is admissible (Grabowski and Callier, 2001).

The system dynamics can also be described by

{
w(t) = CSw(t − r) + u(t)b0
y(t) = cT0 w(t− r)

}
, b0 =

[
0

1

]
. (18)

The compatibility condition (2) holds with c#d = −ϑ, and by (3) the transfer function
of the system is obtained as

ĝ(s) =
ae−sr

1 + be−2sr
. (19)

This can be confirmed by applying the Laplace transform directly to (18). Moreover,

‖ĝ‖H∞(Π+) =
a

1− |b| ,

and thus (4) is satisfied. The situation is even better in that g is in the Callier-Desoer
algebra A−(0). All these results and many others can be found in (Grabowski and
Callier, 2001).



Circle criterion and boundary control systems in factor. . . 1397

The closed-loop linear system operator corresponding to the linear feedback law
f(y) = µy takes the form

Aµx = x
′,

D(Aµ) =
{
x ∈W1,2(−r, 0)⊕W1,2(−r, 0) : x(0) =

[
CS + µb0c

T
0

]
x(−r)

}
.

Indeed, D(Aµ) consists of these x for which x + µdc
#x ∈ D(A). This holds if x ∈

W1,2(−r, 0)⊕W1,2(−r, 0) and x(0)+µdc#x = CS
[
x(−r) + µdc#x

]
or, equivalently,

if x(0) =
[
CS + µb0c

T
0

]
x(−r). The semigroup generated on H = L2(−r, 0)⊕L2(−r, 0)

by Aµ is EXS iff all the eigenvalues of the matrix CS + µb0c
T
0 are in the open unit

disk (Górecki et al., 1989). This is the case if

|µ| < 1 + b
a
. (20)

The linear stability condition (20) yields the Hurwitz sector which has to be compared
with a sector (k1, k2) generated by the frequency-domain inequality

1− (k1 + k2) Re
[
ĝ(jω)

]
+ k1k2 |ĝ(jω)|2 ≥ 0, ∀ω ∈ � . (21)

By (20) it is clear that the upper limit for k2 is (1 + b)/a and the lower limit for k1
is −(1 + b)/a.
We have the following possibilities:

1. If b ≤ 0, then by substituting k2 = −k1 = (1 + b)/a into (21) we obtain

1−
(
1 + b

a

)2
|ĝ(jω)|2 = −4b sin2 ωr

(1− b)2 + 4b cos2 ωr ≥ 0, ∀ω ∈ � ,

and therefore the Hurwitz sector (20) coincides with that implied by (21).

2. If b > 0, then for k1 = −(1 + b)/a we cannot take k2 = (1 + b)/a. Here the
Hurwitz sector (20) is essentially larger than the sector implied by (21) and
another choice of k1 and k2 has to be proposed. Assuming k1 = −(1 + b)/a,
we look for a maximal allowed value of k2 for which (21) is satisfied. Since

1− (k1 + k2) Re
[
ĝ(jω)

]
+ k1k2 |ĝ(jω)|2

=
(1 + b)2 cos2 ωr + (1− b)2 sin2 ωr + [(1 + b)2 − k2a(1 + b)] cosωr − k2a(1 + b)

(1 + b)2 cos2 ωr + (1− b)2 sin2 ωr
,

treating the numerator as a polynomial in cosωr, we find the maximal allowed
value of k2 for which the frequency domain inequality (21) holds,

k2 =
1 + b

a
− 8b

a(1 + b)
. (22)

Then

1− (k1 + k2) Re[ĝ(jω)] + k1k2 |ĝ(jω)|2 =
4b(1 + cosωr)2

(1 + b)2 cos2 ωr + (1− b)2 sin2 ωr
≥ 0.
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Replacing k1 and k2 by k1 + ε and k2 + ε, respectively, where ε > 0 is sufficiently
small, we obtain (5) from (21). Indeed, from (21) and (19) we get for ε ∈ (0, k2− k1)

1− (k1 + ε+ k2 − ε) Re
[
ĝ(jω)

]
+ (k1 + ε)(k2 − ε) |ĝ(jω)|2

= 1− (k1 + k2) Re
[
ĝ(jω)

]
+ k1k2 |ĝ(jω)|2 +

[
ε(k2 − k1)− ε2

]
|ĝ(jω)|2

≥
[
ε(k2 − k1)− ε2

]
inf
ω∈ �
|ĝ(jω)|2 =

[
ε(k2 − k1)− ε2

] a2

(1 + |b|)2
> 0.

Suppose now that condition (A4) of Theorem 1 holds. Then by the same theorem
u and y ∈ L2(0,∞), and the null equilibrium point is globally strongly asymptotically
stable for any continuous nonlinearity f vanishing at 0 and lying in the sector
[k1 + ε, k2 − ε], where

k1 = −
1 + b

a
, k2 =





1 + b

a
if b ≤ 0,

1 + b

a
− 8b

a(1 + b)
if b ≥ 0,

and ε > 0 is sufficiently small. It should be stressed that Lemma 3 and Theorem 1
are proved under the assumption that k1 < 0, k2 > 0, which is not the case for
b ∈ [3− 2

√
2, 1), 3− 2

√
2 ≈ 0.1716. The application of the circle criterion for finite-

dimensional systems as well as some results on the Lyapunov approach to the circle
criterion for boundary control systems in factor form (Grabowski and Callier, 2000)
show that the restriction imposed on the signs of k1 and k2 is artificial and can be
removed. This can be done by applying the loop transformation technique, which will
be presented in the last section. A simple application of this technique shows that our
stability result is actually valid for all b ∈ (0, 1).

4.2. RC–Transmission Line

Following (Grabowski and Callier, 2001, Sec. 5.2), in the Hilbert space H = L2(0, 1)
with standard scalar product the dynamics of the unloaded RC transmission line can
be modelled by (1) with the following choices:

� The state-space operator is

Ax = x′′, D(A) =
{
x ∈ H2(0, 1) : x′(1) = 0, x(0) = 0

}
(23)

which generates an EXS analytic self-adjoint semigroup on H. This is because
A = A∗ < 0.

� The observation functional

c#x = x(1), D(c#) =
{
x ∈ L2(0, 1) : x is left-continuous at 1

}
⊃ C[0, 1], (24)

whose restriction to D(A) reads as c#|D(A) = h∗A with h(θ) = −θ, 0 ≤ θ ≤ 1.
It was proved in (Grabowski, 1994) that c# is admissible.
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� The factor control vector d is identified as

d = −1 ∈ L2(0, 1), 1(θ) = 1, 0 ≤ θ ≤ 1 (25)

and is not admissible. For a proof see (Grabowski and Callier, 1999, Sec. 3.3)
or, more briefly, (Grabowski and Callier, 2001, App. B).

It is easy to see that (2) holds with c#d = −1, and using (3) we find the transfer
function

ĝ(s) =
1

cosh
√
s
, s ∈ Π+. (26)

Moreover,

‖ĝ‖H∞(Π+) = 1, (27)

where the norm is attained at s = 0. For a more exhaustive discussion of these facts
and many others consult again (Grabowski and Callier, 2001).

From (27) it follows that (21) is satisfied for k2 = −k1 = 1. The closed-loop
linear system operator corresponding to the linear feedback f(y) = µy is given by

Aµx = x
′′, D(Aµ) =

{
x ∈ H2(0, 1) : x′(1) = 0, x(0) = µx(1)

}
.

It is proved in (Grabowski, 1990) that Aµ generates an analytic semigroup on L
2(0, 1)

which is EXS for µ ∈ (− coshπ, 1) with coshπ ≈ 11.592. Hence the Hurwitz sector
is essentially larger than the sector mentioned above obtained by (21).

The method of converting (21) into (5) by reducing the width of the sector used
in the first example is a general one if

inf
ω∈ �
|ĝ(jω)|2 > 0,

which is not the case here, because lim|ω|→∞ ĝ(jω) = 0. However, we can use the fact
that for k2 = 1 we have

|ĝ(jω)|2 ≤ ‖ĝ‖2H∞(Π+) =
1

k22
.

By this estimate, for a sufficiently small ε > 0 we obtain

1− (k2 − ε)2 |ĝ(jω)|2 ≥
ε(2k2 − ε)
k22

> 0,

which means that replacing k2 = −k1 by k2− ε yields the desired conversion of (21)
into (5).

Suppose now that condition (A4) of Theorem 1 holds. Then by the same theorem
u and y ∈ L2(0,∞) for any continuous nonlinearity f vanishing at 0 and lying in
the sector [−1 + ε, 1− ε], where ε > 0 is sufficiently small.
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5. Discussion and Conclusions

Theorem 1 is valid under the restrictive assumption that k1 < 0 and k2 > 0. However,
this restriction is not essential because any boundary control system in factor form
satisfying (21) can be reduced to a standard form with k1 = −k2 < 0 by the loop
transformation technique, see, e.g., (Desoer and Vidyasagar, 1975, Ch. 3, Sec. 6.3,
p. 51). The main ideas are presented below. One starts with rewriting the closed-loop
system equation as2

{
A−1ẋ = x+ df(y),

y = c#x = c#(A−1ẋ− df) = c#A−1ẋ− c#df = h∗ẋ− c#df.
(28)

Let µ0 := (k1 + k2)/2, i.e. µ0 is the slope of the straight line being the centre of the
sector (k1, k2). Thus if the function f is in the sector (k1, k2), then the function f0,

f0(y) := f(y)− µ0y, y ∈ � , (29)

is in the sector (−(k2 − k1)/2, (k2 − k1)/2). Substituting (29) into (28), we get




A−1ẋ = x+ µ0dc
#x+ df0(y),

y = c#x =
1

1 + µ0c#d
h∗ẋ− c#d

1 + µ0c#d
f0(y).

For any z ∈ D(c#) the equation (I + µ0dc#)x = z has a unique solution
x ∈ D(c#) given by

x =
(
I − µ0
1 + µ0c#d

dc#
)
z.

Hence, since A−1ẋ and d are both in D(c#), we can solve the first system equation
with respect to x and get





[
A−1 − µ0

1 + µ0c#d
dh∗
]
ẋ = x+

1

1 + µ0c#d
df0(y),

y = c#x =
1

1 + µ0c#d
h∗ẋ− c#d

1 + µ0c#d
f0(y).

(30)

The transfer function of the linear part of (28) obtained by replacing f(y) by a
control u is given by (3) as we have

sh∗A(sI −A)−1d = sh∗(sA−1 − I)−1d.
2 Since for w ∈ D(A∗) we have

d

dt
〈w, x〉H =

d

dt
〈A∗w,A−1x〉H = 〈A

∗w,A−1ẋ〉H = 〈A
∗w,x+ df(y)〉H ,

any weak solution of the original closed-loop system ẋ = A[x+ df(y)], y = c#x satisfies (28)
in the classical sense.
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Observe that the linear part of the system (30) has the same form as in (28) upon
replacing A−1 by A−1−µ0dh∗/(1 + µ0c#d) and multiplying h and d by the scaling
factor (1 + µ0c

#d)−1. Hence by (3) the transfer function of the linear part of (30) is
given by

ĝ0(s) =
s

(1 + µ0c#d)2
h∗
[
sA−1 − sµ0

1 + µ0c#d
dh∗ − I

]−1
d− c#d

1 + µ0c#d
.

But
[
sA−1 − sµ0

1 + µ0c#d
dh∗ − I

]−1
=
{
(sA−1 − I)

[
I − sµ0
1 + µ0c#d

(sA−1 − I)−1dh∗
]}−1

=
[
I − sµ0
1 + µ0c#d

(sA−1 − I)−1dh∗
]−1
(sA−1 − I)−1

=
[
I +

sµ0
1− µ0ĝ(s)

(sA−1 − I)−1dh∗
]
(sA−1 − I)−1,

and therefore

ĝ0(s) =
ĝ(s) + c#d

(1 + µ0c#d)2

[
1 +
µ0ĝ(s) + µ0c

#d

1− µ0ĝ(s)

]
− c#d

1 + µ0c#d
=

ĝ(s)

1− µ0ĝ(s)
,

as was to be expected.

The last step of the loop transformation technique implies that the frequency-
domain inequality (21) holds iff

1− 1
4
(k2 − k1)2|ĝ0(jω)|2 ≥ 0, ∀ω ∈ � . (31)

Indeed, we have

1− 1
4
(k2 − k1)2|ĝ0(jω)|2 =

[1− µ0ĝ(jω)][1− µ0ĝ(jω)]− 14 (k2 − k1)2|ĝ(jω)|2
|1− µ0ĝ(jω)|2

,

and thus (31) is satisfied iff the numerator is non-negative for all ω ∈ � . This is valid
iff (21) holds.

The considerations above show that any boundary control system in factor form
satisfying (21) with arbitrary constants k1 and k2 can be reduced to a standard form
with k1 and k2 replaced by (k1 − k2)/2 < 0 and (k2 − k1)/2 > 0, respectively.
Another method for getting a circle criterion for boundary control systems in

factor form is the Lyapunov approach, which relies on the construction of a Lyapunov
functional in quadratic form. This is studied in detail in (Grabowski and Callier, 2000).
In (Bucci, 2000), a version of Popov’s criterion was successfully obtained, using the
Lyapunov method (and improved in (Bucci, 1999) with the aid of former Popov’s
approach combined with regularity results for the solution to the closed loop), for the
infinite-dimensional Lur’e system of indirect control,

{
ẋ(t) = A

{
x(t) + df

[
σ(t)
]}
,

σ̇(t) =
〈
q, x(t)

〉
H
− ρf
[
σ(t)
]
.
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Regarding the variable σ as the system output, one can readily notice that here
the output is differentiable. This is in contrast to (1) with u(t) = f [y(t)], where the
output y is generally not differentiable. In (Logemann, 1991), the circle criterion was
derived for the Pritchard-Salamon class of control systems. It was proved in (Grabows-
ki, 1994) that the system described in our first example does not belong to that class.
This is also the case of the second system. In (Logemann and Curtain, 2000), a circle
criterion was derived, using the Lyapunov method, for a nonlinear feedback system
having an integrator in its feedback loop and a sector nonlinearity in front of an
infinite-dimensional Salamon-Weiss linear plant. Due to the smoothing action of the
integrator, the results of (Logemann and Curtain, 2000) are not comparable with
those of the present paper.

The relation of boundary control systems in factor form to the Salamon-Weiss
class of control systems is studied in (Grabowski and Callier, 1999, Sec. 4.5; 2001,
Sec. 7 and App. C). Roughly speaking, up to some conditions, when A is boundedly
invertible there is a one-to-one correspondence between the two classes. In particu-
lar, one may expect that the results of the present paper have counterparts for the
Salamon-Weiss class of control systems. The dynamic models of the Salamon-Weiss
class are a natural generalization of the additive finite-dimensional state space equa-
tions, but they involve an additional space known as H−1. Its characterization may
turn out to be quite complicated and, as a rule, it makes use of distribution theory.
That can make this class less attractive for control engineers. On the other hand,
boundary control systems in factor form do not consider the space H−1 and are also
a natural generalization of finite-dimensional systems. It is thereby hoped that such
systems can also be useful for control engineers to better understand the complicated
tools and methods of infinite-dimensional systems control theory.
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