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The dynamic evolution with frictional contact of a viscoelastic body is considered. The assumptions on the functions used
in modelling the contact are broad enough to include both the normal compliance and the Tresca models. The friction law
uses a friction coefficient which is a non-monotone function of the slip. The existence and uniqueness of the solution are
proved in the general three-dimensional case.
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1. Introduction

Duvaut and Lions (1976) obtained the first existence and
uniqueness results for contact problems with friction in
elastodynamics. Some years later, the non-penetrability of
mass was relaxed by Martins and Oden (1987) by consid-
ering the normal compliance model of contact with fric-
tion. In order to obtain existence and uniqueness results
they considered only the viscous case (see also Kutller,
1997).

All the above results involve a fixed friction coeffi-
cient µ. In the study of many frictional processes (stick-
slip motions, earthquakes modelling, etc.) the friction co-
efficient has to be considered variable during the slip. The
simplest variation ofµ is the discontinuous jump from a
‘static’ value µs down to a ‘dynamic’ or ‘kinetic’ value
µd. Three current models of such a variation are con-
sidered in mechanics and geophysics. The first one, dis-
cussed latter, corresponds to a smooth dependence of the
friction coefficient on the slipuT , i.e.µ = µ(|uT |). The
second one considers a slip rate dependence of the fric-
tion coefficient (Oden and Martins, 1985; Scholz, 1990),
i.e.µ = µ(|u̇T |). For this model the solution of the math-
ematical problem in dynamic elasticity is not uniquely de-
termined and presents shocks (Ionescu and Paumier, 1993;
1994). However, the problem is well posed in dynamic
viscoelasticity (Ionescu, 2001; Kuttler and Shillor, 1999).
The third model, called the Dieterich and Ruina model,
uses a rate- and state-dependent friction law (see, e.g., Di-

eterich, 1994; Perrinet al., 1995; Rice and Ruina, 1983;
Ruina, 1983). Though it tries to accommodate both slip
and slip rate dependences, the qualitative behaviour of
the solution is very close to the slip rate friction model
(Favreauet al., 1999b).

The physical model of slip-dependent friction was in-
troduced by Rabinowicz (1951) in the geophysical con-
text of earthquakes’ modelling to explain the stick-slip
phenomenon. Generally speaking, the dependence of the
friction forces upon the surface displacements is usually
accepted when the slip is very small on laboratory scales
(see, e.g., Ohnakaet al., 1987; Scholz, 1990). Ohnakaet
al. (1987) pointed out the good agreement of this model
with experimental data. More recently, the slip weaken-
ing model (i.e. the decrease of the friction force with slip)
was intensively used in the description of earthquake ini-
tiation (Campillo and Ionescu, 1997; Dascaluet al., 2000;
Favreauet al., 1999a; Ionescu and Campillo; 1999). In-
deed, since the model is rate independent, it can describe
a large variation of the slip rate during the initiation phase.

The first mathematical results for the slip weakening
model of friction in elastostatics were obtained by Ionescu
and Paumier (1996). They proved the existence of a so-
lution and gave sufficient conditions for uniqueness and
stability. Moreover, they analyzed the bifurcation points
between different branches of solutions. More recently,
the quasi-static evolution of an elastic body with slip-
dependent friction was studied in Corneschiet al. (2001).
An existence result for a sufficiently small friction coeffi-
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cient was proved. As far as we know, there is no existence
and uniqueness result in dynamic elasticity involving slip-
dependent friction.

The aim of this paper is to study the dynamic evolu-
tion of a viscoelastic body which is in frictional contact
with a rigid foundation. The assumptions on the functions
used in modelling the contact are general enough to in-
clude both the normal compliance and the Tresca models.
For a constant normal stress (displacement) the friction
force may exhibit a slip weakening behaviour. The main
result is the existence and uniqueness of the solution in the
general three-dimensional case. The proof, based on the
Galerkin method, is constructive.

2. Problem Statement

Let Ω ⊂ Rd (d = 2, 3) be a bounded domain, repre-
senting the interior of a viscoelastic body, with a smooth
boundaryΓ = ∂Ω divided into three disjoint partsΓ =
Γ̄d ∪ Γ̄c ∪ Γ̄f with meas (Γd) > 0. The mechanical
problem (MP) consists in finding the displacement field
u : [0, T ]× Ω −→ Rd such that

σ(t) = Aε
(
u(t)

)
+ ηCε

(
u̇(t)

)
in Ω, (1)

ρü(t) = div σ(t) + r(t) in Ω (2)

u(t) = 0 on Γd, (3)

σ(t)n = F (t) on Γf , (4)

σN (t) = −mN (u+
N (t)) on Γc (5)

σT (t) = −mT

(
u+

N (t)
)
µ
(
|uT (t)|

) u̇T (t)
|u̇T (t)|

if u̇T (t) 6= 0 on Γc,

(6)

∣∣σT (t)
∣∣ ≤ mT (u+

N (t))µ
(
|uT (t)|

)
if u̇T (t) = 0 on Γc,

(7)

u(0) = u0, in Ω, (8)

u̇(0) = u1 in Ω, (9)

whereη > 0 is a viscosity coefficient,ρ > 0 is the den-
sity, A, C are fourth-order tensors,σ is the stress tensor,
ε(u) = (1/2)(∇u +∇T u) is the small strain tensor,n is
the unit outward normal vector onΓ, σN = σn · n is the
normal stress,σT = σn − σNn is the tangential stress,
uN = u ·n is the normal displacement,u+

N is its positive
part, anduT = u − uNn is the tangential displacement.
Here r represents given body forces andF is the load
on Γf .

Equations (5)–(7) represent the contact with slip-
dependent friction along a potential surfaceΓc with a

rigid and fixed body. If there exists a normal gapggap

between the viscoelastic body and the foundation, mea-
sured in the undeformed configuration, thenu+

N has to be
replaced by(uN − ggap)+.

In (5) the normal stressσN is a function of the pen-
etration u+

N . Two cases are often used in the literature.
In the first one, the Tresca model, the normal stress is
given, i.e. mN (s) = mT (s) = SN , hence the contact
surface is known. The second one is the normal compli-
ance model often characterized by a power-law relation-
ship, i.e.mN (s) = |s|hn ,mT (s) = |s|hT .

Equations (6) and (7) assert that if there is con-
tact, the tangential (friction) stress is bounded by a func-
tion of the penetrationu+

N multiplied by the value of
the ‘friction coefficient’ µ(|uT (t)|). If such a limit is
not attained, sliding does not occur. Otherwise the fric-
tion stress is opposite to the slip rate and its absolute
value depends on the slip. As a matter of fact, if we
put mT (s) = R(mN (s))mN (s), then we getν =
|σT |/|σN | = R(|σN |)µ(|uT |), which corresponds to a
generalization of Coulomb’s friction law. Indeed, in this
case the coefficient of frictionν is no more constant, and
it accommodates the dependence on the normal stress and
on the slip.

Sinceµ is a function ofuT , the friction model con-
sidered here is slip dependent. Indeed, for a constant nor-
mal stress (displacement) the friction force may have a
slip-weakening behaviour. The physical model of slip-
dependent friction was introduced in the geophysical con-
text of earthquake modelling. In this context it is usual to
suppose that the slip ratėuT (on the fault) has a single
direction and a single sense during the slip, i.e. there ex-
ists a tangential vectorT and a scalarU̇ , with U̇ ≥ 0 (or
U̇ ≤ 0) such thatu̇T = U̇T . Even in this case, only the
sequence ‘stick-slip-stick’ (i.e.̇U = 0; U̇ > 0; U̇ = 0)
has to be considered. Indeed, without an explicit load-
ing/unloading criterion, the slip-dependent friction model
(in the form used here) is more related to a surface po-
tential than to a friction law, except for local monotonic
loading.

3. Assumptions, Notation and Preliminaries

In the study of the problem (1)–(9) the following assump-
tions are used:A and C are symmetric and positive-
definite fourth-order tensors, i.e.

Aijkl, Cijkl ∈L∞(Ω), A(x)ε : σ = A(x)σ : ε,

C(x)ε : σ = C(x)σ : ε,
(10)

∃ α > 0 such that

A(x)ε : ε ≥ α|ε|2, C(x)ε : ε ≥ α|ε|2,
(11)

a.e.x ∈ Ω, ∀ i, j, k, l = 1, d and for all σ, ε ∈ Rd×d
S .
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Let us suppose that the friction coefficientµ: Γc ×
R+ −→ R+ is differentiable with respect to the second
variable, and there existM1, µ0 > 0 such that

0 ≤ µ(x, u) ≤ µ0 a.e. x ∈ Γf , ∀ u ∈ R+, (12)∣∣∂uµ(x, u)
∣∣ ≤ M1, ∀ u ∈ [0,+∞[ a.e. x ∈ Γc, (13)

and the functionsx → µ(x, u) and x → ∂uµ(x, u) are
measurable for allu ∈ R+. As for the functionsmn and
mT , we suppose that

m
N

(x, u) ≥ m
N

(x, 0), ∀ u ∈ R+, a.e. x ∈ Γc , (14)

x → mi(x, u) is measurable for allu ∈ R+, u →
mi(x, u) is differentiable, and there existCi, Di, Ei ≥ 0
and pi ≥ 1 such that∣∣mi(x, u)

∣∣ ≤ Ci + Di|u|pi , (15)∣∣mi(x, u1)−mi(x, u2)
∣∣

≤Ei

(
1 + |u1|pi−1 + |u2|pi−1

)
|u1 − u2|,

(16)

a.e.x ∈ Γc, and for all u, u1, u2 ∈ R+, with i = N
or i = T . Set qN = PN + 1, qT = qT + 1, q =
max{qN , qT } and suppose that

q < 3 if d = 3. (17)

We also suppose that the densityρ ∈ L∞(Ω) is posi-
tive, i.e. there existsρ0 such thatρ(x) ≥ ρ0 > 0. Finally,
the loadF and the body forcesr are assumed to satisfy

F ∈ W 1,2
(
0, T, [L2(Γf )]N

)
, (18)

r ∈ W 1,2
(
0, T, [L2(Ω)]N

)
. (19)

Set H := [L2(Ω)]d endowed with the inner product

(u, v) :=
∫

Ω

ρu · v dx, ∀ u, v ∈ H,

which generates an equivalent norm denoted by| · |. De-
note by | · |

q,Γc
the norm in Lq(Γc) and by ‖ · ‖ the

norm in [H1(Ω)]d. Let V0 be the closed subspace of
[H1(Ω)]N given by

V0 :=
{
v ∈ [H1(Ω)]d; v = 0 on Γd

}
,

and suppose that
u0, u1 ∈ V0. (20)

If we denote bya, c: V0 × V0 → R the following
bilinear and symmetric applications:

a(u, v) :=
∫

Ω

Aε(u) : ε(v),

c(u, v) :=
∫

Ω

Cε(u) : ε(v), ∀ u, v ∈ V0,

then from (10) we findM > 0 such that

|a(u, v)| ≤ M‖u‖ ‖v‖,

|c(u, v)| ≤ M‖u‖ ‖v‖, ∀ u, v ∈ V.
(21)

From (11) and the Korn inequality, we deduce that there
existsD > 0 such that

a(v, v) ≥ D‖v‖2, c(v, v) ≥ D‖v‖2, ∀ v ∈ V. (22)

Finally, we defineM : V0 → V ′0 , j: V0 × V0 × V0 → R
and f : V0 → V ′0 as follows:〈

M(w), v
〉

=
∫

Γc

m
N

(
s, [w

N
]+

)
v

N
ds, v ∈ V0, (23)

j(u, v, w) =
∫

Γc

m
T

(
s, [u

N
]+

)
µ
(
s, |u

T
|
)
|w

T
|ds,

u, v, w ∈ V0, (24)

〈f(t), v〉 = (r(t), v) +
∫

Γ
f

F (t) · v ds, v ∈ V0. (25)

Using this notation, one can easily deduce that any
solution of (1)–(8) satisfies the following variational
problem:

(VP) Find u : [0, T ] −→ V0 such that〈
ü(t), v−u̇(t)

〉
+ a

(
u(t), v − u̇(t)

)
+ηc

(
u̇(t), v − u̇(t)

)
+

〈
M(u(t)), v − u̇(t)

〉
+j

(
u(t), u(t), v

)
− j

(
u(t), u(t), u̇(t)

)
≥

〈
f(t), v − u̇(t)

〉
, (26)

u(0, x) = u0(x), u̇(0, x) = u1(x). (27)

4. Existence and Uniqueness of the Solution

The main result of this section is the following:

Theorem 1. There exists a unique solution of (VP) with
the following regularity:

u ∈ W 1,∞(0, T, V ) ∩W 2,2(0, T, H). (28)

We recall here from (Ionescu, 2001) the following
lemma, which will be useful in the proof of the theorem:

Lemma 1. Let Ω ⊂ Rd be as above and letα ∈ [2, 2(d−
1)/(d − 2)] if d ≥ 3 and α ≥ 2 if d = 2. Then, for
β = [d(α− 2) + 2]/2α if d ≥ 3 or if d = 2 and α = 2,



I.R. Ionescu and Q.-L. Nguyen74

and for all β ∈ ](α− 1)/α, 1[ if d = 2 and α > 2, there
exists a constantC = C(β) such that

‖v‖Lα(Γ) ≤ C‖v‖1−β
L2(Ω)‖v‖

β
H1(Ω), ∀ v∈H1(Ω). (29)

Proof of Theorem 1.(Uniqueness) Letu1 and u2 be
two solutions of (26)–(27) with regularity (28) and write
w =: u1 − u2. If we write the variational inequality (VP)
successively foru1 and u2 taking v = u̇2(t) in the first
inequality andv = u̇1(t) in the second one, and add the
resulting inequalities, we obtain〈

ẅ(t), ẇ(t)
〉

+ a
(
ẇ(t), w(t)

)
+ ηc

(
ẇ(t), ẇ(t)

)
+

〈
M(u1(t))−M(u2(t)), ẇ(t)

〉
+

∫
Γc

[
m

T

(
[u1N

(t)]+
)
µ
(
|u1T

(t)|
)

− m
N

(
[u2N

(t)]+
)
µ
(
|u2T

(t)|
)]

×
[
|u̇1T

(t)| − |u̇2T
(t)|

]
ds ≤ 0.

Since the integrand of the last integral can be majorized by∣∣m
T
([u1N

(t)]+)−m
T
([u2N

(t)]+)
∣∣µ(|u1T

(t)|)

+ m
T
([u2T

(t)]+)
∣∣ µ(|u1T

(t)|)− µ(|u2T
(t)|)

∣∣,
we deduce that
1
2

d
dt

[
|ẇ(t)|2 + a

(
w(t), w(t)

)]
+ ηc

(
ẇ(t), ẇ(t)

)
≤E

N

∫
Γc

(
|u1N

(t)|pn−1+|u2N
(t)|pn−1

)
|w

N
(t)| |ẇ

N
(t)|ds

+µoET

∫
Γc

(
|u1N

(t)|pT
−1+|u2N

(t)|pT
−1

)
×|w

N
(t)| |ẇ

T
(t)|ds +

∫
Γc

(C
T

+ D
T
|u1N

(t)|pT )

×|w
T
(t)| |ẇ

T
(t)|ds. (30)

The first two integrals on the right-hand side of (30)
can be majorized using the Hölder inequality for (q/(q −
2); q; q) as follows:∫

Γc

|u1N
(t)|pn−1|w

N
(t)| |ẇ

N
(t)|ds

≤|u1(t)|
q−2

q,Γc
|w(t)|

q,Γc
|ẇ(t)|

q,Γc

≤C1‖u1‖
q−2

L∞(0,T ;V0)
‖w(t)‖ ‖ẇ(t)‖,

which implies∫
Γc

|u1N
(t)|pn−1|w

N
(t)| |ẇ

N
(t)|ds

≤C2

η
‖w(t)‖2 +

η

6
‖ẇ(t)‖2.

In order to estimate the third integral, we use

C
T

∫
Γc

|w
T
(t)| |ẇ

T
(t)|ds ≤ C3

η
‖w(t)‖2 +

η

6
‖ẇ(t)‖2,

and the Hölder inequality for((q + 1)/(q − 1); q + 1;
q + 1)∫

Γc

|u1N
(t)|pT |w

T
(t)| |ẇ

T
(t)|ds

≤|u1(t)|
q−1

q+1,Γc
|w(t)|

q+1,Γc
|ẇ(t)|

q+1,Γc

≤C4‖u1‖
q−1

L∞(0,T ;V0)
‖w(t)‖ ‖ẇ(t)‖

to obtain

D
T

∫
Γc

|u1N
(t)|pT |w

T
(t)| |ẇ

T
(t)|ds

≤C5

η
‖w(t)‖2 +

η

6
‖ẇ(t)‖2.

From the above inequalities and (30), we get

1
2

d
dt

[
|ẇ(t)|2 +a(w(t), w(t))] + ηc(ẇ(t), ẇ(t))

≤ C6‖w(t)‖2 + η‖ẇ(t)‖2.

If we integrate this inequality from0 to t, and use the
coercivity of the bilinear applicationsa(·, ·) et c(·, ·) and
the initial conditionsw(0) = ẇ(0) = 0, then

|w(t)|2+‖w(t)‖2≤C6

∫ t

0

(
|w(τ)|2+‖w(τ)‖2

)
dτ (31)

By using the Gronwall lemma in (31), the uniqueness fol-
lows.

(Existence) In order to prove the existence of the solu-
tion u to (VP), we shall use the Faedo-Galerkin method.
For this let us considerφi ∈ V as a sequence of linearly
independent functions such thatV =

⋃∞
m=1 Vm, where

Vm = Span{φ1, φ2, . . . , φm}. Since u0, v0 ∈ V , let
um

0 , vm
0 ∈ Vm be such that

um
0 −→ u0, um

1 −→ u1 strongly in V. (32)

If we consider the family of convex and differentiable
functionsΨε: Rd → R given by

Ψε(v) =
√
|v|2 + ε2 − ε, v ∈ Rd

for all positive ε, then we have

0 ≤ Ψε(v) ≤ |v|, ∀ v ∈ Rd, (33)

|Ψ′ε(v)(w)| ≤ |w|, ∀ (v, w) ∈ Rd × Rd, (34)

|Ψε(v)− |v|| ≤ ε, ∀ v ∈ Rd. (35)
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Next we definej
ε
: V0 × V0 × V0 → R, a family of

regularized frictional functionals depending onε > 0,

jε(u, v, w) =
∫

Γc

m
T
(s, [u

N
]+)µ(s, |v

T
|)Ψε(wT

) ds,

∀u, v, w ∈ V0.

The functionaljε is Gâteaux-differentiable with respect
to the third argument and represents an approximation of
j, i.e. there exists a constantC such that

|j
ε
(u, v, w)−j(u, v, w)|

≤Cε
(
1 + ‖u‖q−1

)
, ∀u, v, w ∈ V0. (36)

We denote byJε : V0×V0×V0 → V ′0 the derivative
of jε with respect to the third variable given by

〈Jε(u, v, w), z〉

=

∫
Γc

mT (s, [uN ]+)µ(s, |vT |)Ψ
′
ε(wT )(zT ) ds,

u, v, w, z∈V0.

We can introduce now the following variational prob-
lem with regularized friction in the finite-dimensional
spaceVm:

(VPm
ε ) : Find um

ε : [0, T ] −→ Vm

such that

〈üm
ε

(t), v〉+ a(um
ε

(t), v) + ηc(u̇m
ε

(t), v)

+〈M(um
ε

(t), v〉

+〈J
ε
(um

ε
(t), um

ε
(t), u̇m

ε
(t)), v〉

= 〈f(t), v〉, (37)

um
ε

(0) = um
0 , u̇m

ε
(0) = um

1 . (38)

Since (u; v) → J
ε
(u, v, v) is a locally Lips-

chitz continuous function onVm × Vm, we deduce
that (37)–(38) has a unique maximal solutionum

ε
∈

C2([0, Tm
ε ];Vm).

The continuation of the proof is divided into three
parts. We begin by proving that each problem has a unique
solution um

ε for all ε > 0 and all m ∈ N. To do this,
we need somea priori estimates, which will be deduced
in the first two parts of the proof. Only after that shall we
prove that whenε → 0 and m −→ +∞, the limit of um

ε ,
in an appropriate sense, is the solution to (VP).

In order to simplify the notation, we shall omit the
indicesε and m in the first two parts of the proof.

(i) A priori estimates I

Since 〈J
ε
(u, v, w), w〉 ≥ 0 for all u, v, w ∈ V0,

settingv = u̇(t) in (37) we obtain

d
dt

[
1
2
|u̇(t)|2 +

1
2
a(u(t), u(t))

]
+ η c(u̇(t), u̇(t))

+ 〈M(u(t)), u̇(t)〉 ≤ 〈f(t), u̇(t)〉. (39)

Let us introduce the following notation:

m̃
N

(s, u) = m
N

(s, u)−m
N

(s, 0), ∀u ∈ R+,

P (s, u) =
∫ u

0

m̃
N

(s, v) dv,

m̂(u) =
∫

Γc

P (s, u(s)) ds, ∀u ∈ L2(Γ
c
)

a.e.s ∈ Γc . From (14) we find that the energy associated
with the normal compliancêm([u

N
]+) is positive, i.e.

m̂([u
N

(t)]+) ≥ 0, ∀u ∈ L2(0, T ;V0).

For all v ∈ L2(0, T, V0), we have

〈M(v(t)), v̇(t)〉 −
∫

Γc

m
N

(s, 0)v̇
N

(t) dx

=
∫

Γc

m̃
N

(s, [v
N

(t)]+)v̇
N

(t) dx,

and after differentiation of the associated energym̂(v),
we get

d
dt

m̂([v
N

(t)]+)=
∫

Γc

d
dt

P (s, [v
N

(t)]+) dx

=
∫

Γc

m̃
N

(s, [v
N

(t)]+)H(v
N

(t))v̇
N

(t) dx,

where H(x) is the Heaviside function. Sincẽm
N

(s, 0)
= 0, we obtain

m̃
N

([v
N

(t)]+)H(v
N

(t))v̇
N

(t) = m̃
N

([v
N

(t)]+)v̇
N

(t),

and the following equality follows:

〈M(v(t)),v̇(t)〉

=
d
dt

m̂([v
N

(t)]+) +
∫

Γc

m
N

(s, 0)v̇
N

(t, s) ds,

v ∈ L2(0, T ;V0).

Bearing in mind thatm̂([v
N

(t)]+) ≥ 0, we integrate this
equation to deduce that∫ t

0

〈M(v(τ)),v̇(τ)〉dτ

≥
∫

Γc

m
N

(s, 0)v
N

(t, s) ds

−
∫

Γc

m
N

(s, 0)v
N

(0, s) ds− m̂(v
N

(0)),
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for all v ∈ L2(0, T ;V0). If we integrate (39) over(0, t)
and use the last inequality, then we obtain

|u̇(t)|2 +D‖u(t)‖2 + 2η

∫ t

0

‖u̇(τ)‖2 dτ

≤ |u1 |2 + a(u0 , u0) + m̂([u0N
]+)

+2
∫

Γc

m
N

(s, 0)u0N
ds− 2

∫
Γc

m
N

(s, 0)u
N

(t) ds

+2〈f(t), u(t)〉 − 2〈f(0), u0〉

−2
∫ t

0

〈ḟ(τ), u(τ)〉dτ. (40)

In order to estimate the normal displacement, we have∣∣∣ ∫
Γc

m
N

(s, 0)u
N

(t) ds
∣∣∣ ≤ C

T
mes(Γ

c
)|u(t)|

2,Γc

≤ C

D
+

D

8
‖u(t)‖2.

By using the last inequality in (40), we deduce that

|u̇(t)|2+‖u(t)‖2 + η

∫ t

0

‖u̇(τ)‖2 dτ

≤ C + C

∫ t

0

(
|u̇(τ)|2 + ‖u(τ)‖2

)
dτ. (41)

From the Gronwall lemma we obtain that the solution
t → (um

ε
(t); u̇m

ε
(t)) of (37)–(38) is bounded on its in-

terval of existence, and hencet → (um
ε

(t); u̇m
ε

(t)) is a
global solution, i.e.Tm

ε = T . Moreover, we have{
um

ε

}
m,ε

is bounded inL∞(0, T ;V0), (42){
u̇m

ε

}
m,ε

is bounded inL∞(0, T ;H)∩L2(0, T ;V0). (43)

(ii) A priori estimates II

If we let v = ü(t) in (37) and notice that

〈Jε(u(t), u(t), u̇(t)), ü(t)〉

=
∫

Γc

m
T
([u

N
(t)]+)µ(|u

T
(t)|)Ψ′ε(u̇T

(t))(ü
T
(t)) ds

=
∫

Γc

m
T
([u

N
(t)]+)µ(|u

T
(t)|) d

dt
{Ψε(u̇T

(t))} ds,

then we get

|ü(t)|2+a(u(t), ü(t)) + 〈M(u(t)), ü(t)〉

+
η

2
d
dt
{c(u̇(t), u̇(t))}

+
∫

Γc

m
T
([u

N
(t)]+)µ(|u

T
(t)|) d

dt
{Ψε(u̇T

(t))}ds

= 〈f(t), ü(t)〉.

After integration from0 to t, we obtain∫ t

0

|ü(τ)|2 dτ +
η

2
‖u̇(t)‖2

≤ C +

∫ t

0

a(u̇(τ), u̇(τ)) dτ − a(u(t), u̇(t))

−
∫ t

0

〈M(u(t)), ü(t)〉+〈f(t), u̇(t)〉−
∫ t

0

〈ḟ(τ), u̇(τ)〉dτ

−
∫ t

0

∫
Γc

mT ([uN (τ)]+)µ(|uT (τ)|) d

dτ
{Ψε(u̇T (τ)}ds dτ.

(44)

The virtual power of the normal displacement can be
written as∫ t

0

〈M(u(t)), ü(t)〉

=
∫ t

0

∫
Γc

m
N

(s, [u
N

(τ)]+)ü
N

(τ) dsdτ

= 〈M(u(t)), u̇(t)〉 − 〈M(u0), u1〉

−
∫ t

0

∫
Γc

∂m
N

∂u
([u

N
(τ)]+)H(u

N
(τ))(u̇

N
(τ))2 dsdτ.

Using the above inequalities and

|a(u(τ), u̇(τ))| ≤C‖u(τ)‖ ‖u̇(τ)‖

≤ 2
C2

η
‖u(τ)‖2 +

η

8
‖u̇(τ)‖2,

|〈M(u(t)), u̇(t)〉| ≤
∫

Γc

(C
N

+ D
N
|u(t)|pn )|u̇(t)|ds

≤ C(1 + ‖u(t)‖q−1)
η

+
η

8
‖u̇(t)‖2,

we deduce from (44) that

η‖u̇(t)‖2 +
∫ t

0

|ü(τ)|2 dτ ≤ C + C

∫ t

0

‖u̇(τ)‖2 dτ

+
∣∣∣ ∫ t

0

∫
Γc

|u
N

(τ)|pn−1u̇2
N

(τ) dsdτ
∣∣∣

+
∣∣∣ ∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)µ(|u

T
(τ)|) d

dτ

×{Ψε(u̇T
(τ))} dsdτ

∣∣∣. (45)

The second integral on the right-hand side of (45) can
be estimated as follows:∫

Γc

|u
N

(τ)|pn−1u̇2
N

(τ) ds

≤|u(τ)|q−2

q,Γc
|u̇(τ)|2

q,Γc
≤‖u(τ)‖q−2‖u̇(τ)‖2≤C‖u̇(τ)‖2.
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In order to estimate the last integral of (45), we re-
place the non-differential term|u

T
(τ)| with Ψr(uT

(τ))
(r > 0) to get∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)µ(|u

T
(τ)|) d

dτ

× {Ψε(u̇T
(τ))}dsdτ

=
∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)µ(Ψr(uT

(τ)))
d
dτ

× {Ψε(u̇T
(τ))}dsdτ

+
∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)

[
µ(|u

T
(τ)|)

− µ(Ψr(uT
(τ)))

] d
dτ

{Ψε(u̇T
(τ))}dsdτ,

and, after integration by parts, we have∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)µ(Ψr(uT

(τ)))
d
dτ
{Ψε(u̇T

(τ))}dsdτ

=
∫

Γc

m
T
([u

N
(t)]+)µ(Ψr(uT

(t)))Ψε(u̇T
(t)) ds

−
∫

Γc

m
T
([u0N

]+)µ(Ψr(u0T
))Ψε(u1T

) ds

−
∫ t

0

∫
Γc

[
∂m

T

∂u
([u

N
(τ)]+)H(u

N
(τ))u̇

N
(τ)

× µ(Ψr(uT
(τ)))Ψε(u̇T

(τ)) + m
T
([u

N
(τ)]+)

∂µ

∂u

× (Ψr(uT
(τ)))Ψ′r(uT

(τ))(u̇
T
(τ))Ψε(u̇T

)] dsdτ.

We now use the estimates: (12) forµ, (33) for Ψε,
(34) for Ψ′r, and (15) form

T
, and obtain∣∣∣ ∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)µ(Ψr(uT

(τ)))
d
dτ

× {Ψε(u̇T
(τ))}dsdτ

∣∣∣
≤ C + +C

∫
Γc

(C
T

+ D
T
|u(t)|pT )|u̇

T
(t)|ds

+ C

∫ t

0

∫
Γc

|u(τ)|pT
−1|u̇

T
(τ)|2dsdτ

+ C

∫ t

0

∫
Γc

(C
T

+ D
T
|u(τ)|pT )|u̇

T
(τ)|2dsdτ.

Using (35) to estimate the difference between
Ψr(uT

(τ)) and |u̇
T
(τ)|, we have∣∣∣ ∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)[µ(|u

T
(τ)|)− µ(Ψr(uT

(τ)))]
d
dτ

{Ψε(u̇T
(τ))}dsdτ

∣∣∣ ≤ C(ε, m
T
, µ)r,

where C(ε, m
T
, µ) is a constant independent ofr. We

pass to the limitr → 0 to obtain∣∣∣ ∫ t

0

∫
Γc

m
T
([u

N
(τ)]+)µ(|u

T
(τ)|) d

dτ
{Ψε(u̇T

(τ))}dsdτ
∣∣∣

≤ C + C

∫
Γc

(C
T

+ D
T
|u(t)|pT )|u̇

T
(t)|ds

+C

∫ t

0

∫
Γc

|u(τ)|pT
−1|u̇

T
(τ)|2dsdτ

+C

∫ t

0

∫
Γc

(C
T

+ D
T
|u(τ)|pT )|u̇

T
(τ)|2dsdτ. (46)

If we use the Hölder inequality in the second part of
(46), then the following estimates are obtained:∫

Γc

|u(t)|pT |u̇
T
(t)|ds ≤ |u(t)|q−1

q,Γc
|u̇

T
(t)|

q,Γc

≤ ‖u(t)‖q−1‖u̇(t)‖,∫
Γc

|u(τ)|pn−1|u̇(τ)|2ds ≤ |u(τ)|q−2

q,Γc
|u̇(τ)|2

q,Γc

≤ ‖u(τ)‖q−2‖u̇(τ)‖2,∫
Γc

|u(τ)|pT |u̇
T
(τ)|2ds ≤ |u(τ)|q−1

q,Γc
|u̇

T
(τ)|2

q,Γc

≤ ‖u(τ)‖q−1‖u̇(τ)‖2.

Since the functionsu and u̇ are bounded in
L
∞

(0, T ;V ) and L2(0, T ;V )), respectively, from the
above estimates and (45) we deduce that

‖u̇(t)‖2 +
∫ t

0

|ü(τ)|2dτ ≤ C + C

∫ t

0

‖u̇(τ)‖2dτ. (47)

Using the Gronwall lemma, we conclude that{
u̇m

ε

}
m,ε

is bounded in L∞(0, T ;V0), (48){
üm

ε

}
m,ε

is bounded inL2(0, T ;H). (49)

(iii) Passage to the limit inm and ε

From (42), (43), (48), (49) we deduce that there
exists a subsequence of

{
um

ε

}
m,ε

(again denoted by

{um
ε
}

m,ε
), such that

um
ε

∗
⇀ u weak* in L

∞
(0, T ;V0), (50)

u̇m
ε

∗
⇀ u̇ weak* in L

∞
(0, T ;V0), (51)

üm
ε

∗
⇀ ü weak* in L

∞
(0, T ;H), (52)
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as ε → 0 and m → +∞. If we write

ΩT = Ω × ]0, T [,

then{
um

ε

}
m,ε

,
{
u̇m

ε

}
m,ε

are bounded inH1(ΩT ).

Since the embedding ofH1(ΩT ) in L2(ΩT ) =
L2(0, T ;H) is compact, we find that there exists a sub-
sequence of{um

ε
} (again denoted by{um

ε
}), such that

um
ε
→u strongly in L2(0, T ;H), (53)

u̇m
ε
→ u̇ strongly in L2(0, T ;H). (54)

Moreover, since the trace map fromH1(ΩT )
to L2(∂ΩT ) is a compact operator and∂ΩT =
∂Ω×]0, T [

⋃
Ω× {0}

⋃
Ω× {T}, we deduce that

um
ε

(T )→u(T ) strongly in H, (55)

u̇m
ε

(T )→ u̇(T ) strongly in H, (56)

and from (50)–(52) we have

um
ε

(T ) ⇀ u(T ) weakly in V.

We only have to verify thatu is the solution of (26)
and (27). Letw ∈ L2(0, T ;V0) be fixed and letwm ∈
L2(0, T ;Vm) be a sequence such that

wm → w strongly in L2(0, T ;V0).

If we let v = wm(t) − u̇m
ε

(t) in (37) and use the
inequality

j
ε
(u, v, w)− j

ε
(u, v, z) ≥ 〈J

ε
(u, v, z), w − z〉,

∀ u, v, w, z ∈ V0,

after integration of (37) from0 to T , we have∫ T

0

{(üm
ε

(t), wm(t)− u̇m
ε

(t))+a(um
ε

(t), wm(t)− u̇m
ε

(t))

+ ηc(u̇m
ε

(t), wm(t)− u̇m
ε

(t))

+ 〈M(um
ε

(t)), wm(t)− u̇m
ε

(t)〉}dt

+
∫ T

0

[
j

ε
(um

ε
(t), um

ε
(t), wm(t))

− j
ε
(um

ε
(t), um

ε
(t), u̇m

ε
(t))

]
dt

≥
∫ T

0

〈f(t), wm(t)− u̇m
ε

(t)〉dt.

If we use the estimate (36), after some algebra we
obtain

Cε(1 + ‖um
ε
‖

L2(0,T ;V )
) +

∫ T

0

(üm
ε

(t), wm) dt

+
1
2
|u1 |2 −

1
2
|u̇m

ε
(T )|2 +

∫ T

0

a(um
ε

(t), wm) dt

+a(u0 , u0) + η

∫ T

0

c(u̇m
ε

(t), wm) dt

+
∫ T

0

[
j(um

ε
(t), um

ε
(t), wm)

−j(um
ε

(t), um
ε

(t), u̇m
ε

(t))
]
dt

+
∫ T

0

〈M(um
ε

(t)), wm〉dt

+m̂([um
εN

(T )]+)− m̂([u0N
]+)

−
∫

Γc

m
N

(s, 0)
[
um

εN
(T )− u0N

]
ds

≥ a(um
ε

(T ), um
ε

(T )) + η

∫ T

0

c(u̇m
ε

(t), u̇m
ε

(t)) dt

+
∫ T

0

〈f(t), wm(t)− u̇m
ε

(t)〉dt. (57)

Now let us verify the convergence of the terms of the
left-hand side of (57). First, we prove that form → +∞
and ε → 0 we have∫ T

0

j(um
ε

(t), um
ε

(t), u̇m
ε

(t)) dt

→
∫ T

0

j(u(t), u(t), u̇(t)) dt. (58)

Indeed, after some algebra, we get

|j(um
ε

(t), um
ε

(t), u̇m
ε

(t))− j(u(t), u(t), u̇(t))|

≤ C
[(
|um

ε
(t)|q−2

q,Γc
+ |u(t)|q−2

q,Γc

)
|um

ε
(t)− u(t)|

q,Γc

× |u̇m
ε

(t)|
q,Γc

+
(
1 + |u(t)|q−1

q+1,Γc

)
× |um

ε
(t)− u(t)|

q+1,Γc
|u̇m

ε
(t)|

q+1,Γc

+
(
1 + |u(t)|q−1

q,Γc

)
|u̇m

ε
(t)− u̇(t)|

q,Γc

]
.

If we use now Lemma 1 for

β =
3(q − 1) + 2

2(q + 1)
< 1 if d = 3
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and for
β ∈ ]

q

q + 1
, 1[ if d = 2,

we obtain

|um
ε

(t)− u(t)|
q+1,Γc

≤ C|um
ε

(t)− u(t)|1−β

× (‖um
ε
‖

L
∞ (0,T ;V0)

+ ‖u‖
L
∞ (0,T ;V0)

)β ,

|u̇m
ε

(t)− u̇(t)|
q+1,Γc

≤ C|u̇m
ε

(t)− u̇(t)|1−β

× (‖u̇m
ε
‖

L
∞ (0,T ;V0)

+ ‖u̇‖
L
∞ (0,T ;V0)

)β .

From the last three inequalities we deduce that∫ T

0

∣∣j(um
ε

(t), um
ε

(t), u̇m
ε

(t))− j(u(t), u(t), u̇(t))
∣∣ dt

≤ C

[
‖um

ε
− u‖1−β

L2(0,T ;H)
+ ‖u̇m

ε
− u̇‖1−β

L2(0,T ;H)

]
,

and, by using (53) asm → +∞ and ε → 0, we obtain
(58). In a similar way, we conclude that∫ T

0

〈M(um
ε

(t)), wm(t)〉dt →
∫ T

0

〈M(u(t)), w(t)〉dt,

and therefore

m̂([um
εN

(T )]+) → m̂([u
N

(T )]+)

as m → +∞ and ε → 0.

Indeed, we have the estimate∣∣m̂([um
εN

(T )]+)− m̂([u
N

(T )]+)
∣∣

≤
∫

Γc

∣∣P (s, [um
εN

(T )]+)− P (s, [u
N

(T )]+)
∣∣ ds

≤
∫

Γc

(
|um

ε
(T )|q−1 + |u(T )|q−1

)
|um

ε
(T )− u(T )|ds.

Using the Hölder inequality and Lemma 1, we deduce that∫
Γc

|um
ε

(T )|q−1|um
ε

(T )− u(T )|ds

≤ ‖um
ε
‖q−1

L
∞ (0,T ;V )

|um
ε

(T )− u(T )|
q,Γc

≤ C‖um
ε
‖q−1

L
∞ (0,T ;V )

|um
ε

(T )− u(T )|1−β

× (‖um
ε
‖

L
∞ (0,T ;V )

+ ‖u‖
L
∞ (0,T ;V )

)β ,

and from (55) we get the strong convergence of the asso-
ciated energy.

If we pass to the limit in (57) asm → +∞ and
ε → 0, and we bear in mind the strong convergence
proved above, we obtain∫ T

0

(ü(t), w(t)) dt +
1
2
|u1 |2 −

1
2
|u̇(T )|2 + a(u0 , u0)

+
∫ T

0

a(u(t), w(t)) dt + η

∫ T

0

c(u̇(t), w(t)) dt

+
∫ T

0

[j(u(t), u(t), w(t))− j(u(t), u(t), u̇(t))] dt

+
∫ T

0

〈M(u(t)), w(t)〉dt + m̂([u
N

(T )]+)

− m̂([u0N
]+) dt−

∫
Γc

m
N

(s, 0) [u
N

(T )− u0N
] ds

≥ lim inf
m→+∞,ε→0

[
a(um

ε
(T ), um

ε
(T ))

+ η

∫ T

0

c(u̇m
ε

(t), u̇m
ε

(t)) dt

]
+

∫ T

0

〈f(t), w(t)− u̇(t)〉dt

≥ a(u(T ), u(T )) + η

∫ T

0

c(u̇(t), u̇(t)) dt

+
∫ T

0

〈f(t), w(t)− u̇(t)〉dt.

Finally, for all w ∈ L2(0, T ;V0) we have∫ T

0

[ (ü(t), w(t)− u̇(t)) + a(u(t), w(t)− u̇(t))

+ ηc(u̇(t), v − u̇(t)) + 〈M(u(t)), v − u̇(t)〉

+ j(u(t), u(t), w(t))− j(u(t), u(t), u̇(t))] dt

≥
∫ T

0

〈f(t), w(t)− u̇(t)〉dt,

and the pointwise inequality (26) follows.
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