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The paper presents an approach to improve the efficiency of some two-level optimization algorithms by their implementation
in parallel MIMD multiprocessor systems. Diagonal decomposition dynamic programming and parametric optimization
methods are considered, and some concepts of their parallelization are discussed. Results regarding the implementation of
computations in a parallel multitransputer system are presented. For the analysed problems, the obtained values of speedup
are close to the theoretical maximum values.

Keywords: parallel computations, multitransputer systems, parallel optimization algorithms, two-level optimization
methods

1. Introduction

A number of problems associated with the efficiency
of the application of the dynamic programming method
to dynamic optimization problems in parallel multitrans-
puter systems are presented in (Sadecki, 1996; 2001). Un-
fortunately, solving such problems, in particular for large
dimensions of state and control vectors, can be very time-
consuming even when parallel systems are implemented
(Malinowski and Sadecki, 1990). The efficiency of the
parallel implementation of such computations depends,
in general, on the processor performance and communi-
cation bandwidth of the parallel system. The value of
the communication bandwidth is especially important for
problems for which an exchange of data between each pair
of the processors is required, especially for systems con-
taining very large numbers of processors. Highly parallel
computers contain thousands of processors (Baker, 2000;
Dongarra, 2002; Van der Steen and Dongarra, 2001). If,
for a given problem size, communication will eventually
dominate computation as the number of processors is in-
creased, then the speedup cannot scale with large numbers
of processors without introducing additional levels of par-
allelism (Eldred and Hart, 1998).

A broad class of optimization algorithms is often re-
ferred to as two-level methods (Findeisen, 1974), which
can be easily implemented as parallel computations using
one or more levels of parallelism. Decomposition is not
a new idea. It is well known as a method which permits
to reduce computational requirements arising, e.g., in the
control of large dynamic systems (Birge and Rosa, 1995;

Findeisenet al., 1980; Karbowski and Niewiadomska-
Szynkiewicz, 2001; Titliet al., 1978). The implementa-
tion of two-level methods in parallel multiprocessor sys-
tems allows us to solve problems whose sizes made them
previously unsolvable (Averick and More, 1994; Birge
and Rosa, 1995), and can lead to very good results in
terms of the speedup. These results can be sometimes
significantly better than those obtained for currently avail-
able parallel computers, especially when a large number
of processors are used (Dongarra, 2002). The analysis
presented in this paper is directed at two-level algorithms,
in particular related to dynamic programming methods
(Bellman, 1957). Apart from the basic version of the
dynamic programming method, there is a wide group of
its modifications characterized by much better properties
with respect to both memory and time consumption re-
quirements (Larson, 1968; Sadecki, 1987). One of such
methods is e.g. the diagonal decomposition dynamic pro-
gramming (DDDP) method (Collins, 1970).

In this paper parallel implementations of this method
and a two-level algorithm to control a water resource sys-
tem are presented. Parallel computations were imple-
mented in the multitransputer SUPER NODE 1000 sys-
tem (Interi, 1991; Occam 2, 1988; TAN, 1989; Wysocki
and Kwolek, 1994). Transputer systems permit to achieve
a very good speedup of computations, especially for the
analysed two-level algorithms. As will be shown, similar
results can be obtained for currently available integrated
highly parallel computers characterised by a good perfor-
mance of processor elements and a comparatively good
communication bandwidth. Some effective solutions are
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presented to improve the efficiency of parallel implemen-
tations of two-level algorithms.

2. Two-Level Optimization Problem

Computational burdens encountered when solving com-
plex control problems of multidimensional processes can
be essentially reduced by decomposing them into a num-
ber of subproblems and by solving a set of subtasks as-
sociated with some coordination task (Findeisen, 1974;
Findeisenet al., 1980; Titli et al., 1978).

The following optimization problem is considered:

max
uuu∈U

Q(u). (1)

It is assumed that the problem (1) can be rewritten in the
following form:

max
uuu∈U

Q(u) = max
uuu1∈U1(v),...,uuuP∈UP (vvv),vvv∈V

Q
[
Q1(u1,v),

Q2(u2,v), . . . , QP (uP ,v)
]
, (2)

where v denotes the vector of coordination variables,
ui’s are some subsets of the control vectoru and Q is
a function of the elementsQ1, Q2, . . . , QP , whereasQi

depends only onui and v. Moreover, it is assumed that
the constraint relations concerning the vectoru can be
formulated in such a manner thatP separate groups of
constraints could arise inu1,u2, . . . ,uP dependent on
the vectorv and subject to some constraints on the vec-
tor v itself.

A two-level solution of the problem (1), making use
of a decomposition determined by the relation (2), is pos-
sible when ui’s are disjoint subsets ofu and when it
is possible to perform a separate optimization with re-
spect to eachui, i.e., when the performance criterionQ
is either in additive or multiplicative (with the condition
Qi(ui,v) ≥ 0, i = 1, 2, . . . , P ) or mixed forms (the lat-
ter including both additive and multiplicative parts).

The solution of the problem (2) is then reduced to
solving the local tasks of the form

max
uuui∈Ui(vvv)

Qi(ui,v) = Q̂i(v), i = 1, 2, . . . , P, (3)

and the coordination task

max
vvv∈V

Q
[
Q1(v), Q2(v), . . . , QP (v)

]
. (4)

On the other hand, during the solution of the successive lo-
cal tasks, the values of̂ui , Qi(ûi,v) and, if necessary,
those of the gradient∇Qi(ûi,v), i = 1, 2, . . . , P , are
computed and then utilized for solving the coordination
task whose purpose is to determine the successive approx-
imations for the value ofv. The gradient∇Qi(ûi,v),

i = 1, 2, . . . , P is computed when gradient algorithms
are used for solving the coordination task. A graphical
scheme of the above algorithm is presented in Fig. 1.
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Fig. 1. Structure of a two-level algorithm.

Assuming a set of all operations required to be car-
ried out for solving one local task as the least portion of
a task which can be performed by a processor, the dis-
cussed two-level algorithm can be implemented in a sim-
ple manner parallelly in a multiprocessor system (Sadecki,
1987). Notice that the Master-Slave structure, being natu-
ral for methods of this type, is less effective for transputer
systems with a large number of processors in particular
(Sadecki, 2001).

Furthermore, in distributed memory systems, each of
the tasks specified in a given algorithm should be solved
in a parallel way, i.e., in the case of the methods consid-
ered the coordination algorithm also ought to be solved
parallelly. A general diagram of such an algorithm is pre-
sented in Fig. 2. The vertical communication corresponds
in principle to a data exchange between two algorithms
implemented by the same processor, namely, between the
algorithm implementing a local task and a fragment of the
coordination algorithm implemented parallelly, allocated
to this processor. On the other hand, the horizontal com-
munication corresponds to the one between particular pro-
cessors, including the exchange of data necessary for the
correct implementation of the coordination algorithm.

A decrease in the computation time resulting from a
parallel realization of the two-level optimization problem
is rather evident. But decomposition can lead to a decrease
in the communication requirements, too, especially for the
each-to-each communication problem (bidirectional data
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Fig. 2. Diagram of a parallel two-level algorithm.
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transmission between each pair of processors). For exam-
ple, the number of required communication tasksLs for
the last problem is determined as

Ls = P (P − 1),

whereP denotes the number of processors.

If we divide all processors intoL groups, each of
them containing approximatelyP/L processors, the total
number of communication tasks required to perform the
same exchange of data is determined as follows:

Ld =
P

L

(
P

L
− 1

)
L + L(L− 1) +

(
P

L
− 1

)
L,

where (P/L)(P/L − 1)L denotes the number of re-
quired communication tasks in all groups of processors,
L(L−1) denotes the number of communication tasks be-
tween all groups, and(P/L−1)L denotes the total num-
ber of communication tasks permitting to send data ob-
tained from other groups to all processors in each group.

Figure 3 presents the values of the factorSd =
Ls/Ld as a function of the number of processor groups
L for a given value ofP . This graph shows that the com-
munication requirements can be significantly decreased as
a consequence of the realised decomposition.
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Fig. 3. Communication requirements for the two-level parallel
each-to-each communication.

3. Diagonal Decomposition Method

The DDDP method, being a direct two-level optimization
method with a particularly simple coordination strategy,
constitutes one of numerous versions of algorithms used
to improve the properties of dynamic programming. It
can, however, be employed for a comparatively narrow
class of optimization problems (Collins, 1970; Collins and
Law, 1970; Larson, 1968; Sadecki, 1987; 1992; Sadecki
and Galewicz, 1991).

Consider the general optimization problem described
by the relations (5)–(7). A control process is given and it
is described by the system of state equations

x(k + 1) = f
[
x(k),u(k), k

]
,

k = 0, 1, . . . ,K − 1, x(0) = x0, (5)

where x is the n-dimensional state vector(x ∈ Rn),
u denotes them-dimensional control vector(u ∈ Rm),
and f stands for ann-dimensional vector function. The
performance index is defined in the form of the functional

J
[
x,u

]
=

K−1∑
k=0

l
[
x(k),u(k), k

]
+ Ψ

[
x(K),K

]
, (6)

where l is a scalar cost function andΨ denotes a scalar
terminal cost function.

Moreover, some restrictions are imposed on the state
and control variables, which can be generally formulated
as the following relations:

x(k) ∈ Ωx[k], Ωx ⊂ Rn, k = 0, 1, . . . ,K,

u(k) ∈ Ωu

[
x(k), k

]
, Ωu ⊂ Rm, k = 0, 1, . . . ,K − 1.

(7)

The optimization task consists in finding a control vector
u(k), k = 0, 1, . . . ,K − 1 such that if (5) and (7) are
satisfied, it minimizes the performance index (6).

It is assumed that Eqn. (5) will be linear in both the
state variablesx and the control onesu:

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, . . . ,K − 1,

x(0) = x0, (8)

where A and B are n × n matrices and, additionally,
B is a diagonal matrix.

Furthermore, it is assumed that the functions
l[x,u, k] and Ψ[x(K),K], occurring in the performance
index (6), are separated with respect to all the components
of the vectorsx and u, i.e., they can be written in the
form

l[x,u, k] =
n∑

i=1

{
hi

[
xi(k)

]
+ qi[ui(k)]

}
,

k = 0, 1, . . . ,K − 1, (9)

Ψ
[
x(K),K

]
=

n∑
i=1

pi

[
xi(K)

]
. (10)

Owing to the above assumptions, the only quantity which
reflects the relationship between particular components of
the vectorx is the matrixA.
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The basic idea of the diagonal decomposition method
consists in decomposing the matrixA into two matrices
as follows:

A = Q + D, (11)

where the matrixQ comprises the diagonal elements of
the matrix A, whereas the matrixD contains all the
other elements of this matrix. Assuming further that the
initial value is known for the trajectoryx(0)(k), k =
0, 1, . . . ,K, Eqn. (8) can be written in the form

x(k + 1) = Qx(k) + Bu(k) + Dx(0)(k),

k = 0, 1, . . . ,K − 1, x(0) = x0. (12)

As a result of the decomposition of the matrixA, n in-
dependent one-dimensional problems are to be solved in-
stead of ann-dimensional problem. The state equation
and the performance criterion for such local tasks assume
the following forms:

xi(k + 1) = aiixi(k) + biiui(k) + dix
(0)(k), (13)

and

min
ui∈Ωu

Ji[xi, ui]

=
K−1∑
k=1

{
hi

[
xi(k)

]
+ qi

[
ui(k)

]}
+ pi

[
xi(K)

]
, (14)

respectively, wherexi(0) = x0i, i = 1, 2, . . . , n, k =
0, 1, . . . ,K − 1. Here aii and bii are the diagonal el-
ements of the matricesA and B, respectively, anddi

stands for thei-th row of the matrixD.

Assuming the initial value of x(0)(k), k =
0, 1, . . . ,K, each of these problems is solved in suc-
cession, achieving a new solution ofx(1)(k), k =
0, 1, . . . ,K. The obtained solution is substituted for
x(0)(k), k = 0, 1, . . . ,K and the computing process
is repeated until the required accuracy of the solution is
achieved. The advantages resulting from the application
of the dynamic programming method are rather obvious.
If in the basic dynamic programming method the compu-
tational requirements increase exponentially with the in-
crement in the dimension of the state vector, then in the
diagonal decomposition method this increase will be ap-
proximately of a linear character.

4. Parallel Implementation of
Computations

The diagonal decomposition method can be easily imple-
mented in a parallel multiprocessor system. The coordi-
nation algorithm can be only reduced to carrying out some
communication procedures, consisting in the exchange

between processors of the successive approximation for
the trajectoryx

(l)
i (k), k = 0, 1, . . . ,K, i = 1, 2, . . . , n,

where l denotes the number of the iteration. As the small-
est portion of a task which can be performed by one pro-
cessor it is assumed to consider a set of all the opera-
tions that should be performed in order to solve one lo-
cal task (13) and (14). Thus, the parallel algorithm can be
formulated as follows:

Parallel diagonal decomposition algorithm:

(i) Each processor solves one (whenn = P ) or several
(when n > P ) local tasks, whereP denotes the
number of processors used.

(ii) Each processorPi, i = 1, 2, . . . , P sends the val-
ues of x(l)

i (k), k = 0, 1, . . . ,K calculated by itself
(l signifies the iteration number) to all the other pro-
cessors whenA is a dense matrix, or only to some
of them whenA is a band matrix (cf. Fig. 4).

(iii) Steps (i) and (ii) are repeated until the required accu-
racy of the solution is achieved.

sA :

Pii

i

Fig. 4. Structure of the matrixA.

Information referring to communication, namely, to
the issue with which processors each of them should com-
municate (Step (ii)) can be determined on the basis of the
structure of the matrixA and the number of processors
P used for computations.

If the matrix A is a band one with the bandwidth
equal to s, the number of processors used for computa-
tions will be P = 8 (cf. Fig. 4) and, in general, thei-th
processor will make computations for thei-th group of lo-
cal tasks, then at the stage of communication it will have
to exchange data only with other four processors, namely,
with those which perform computations for the local tasks
denoted by the indicesi− 2, i− 1, i + 1, i + 2.

The efficiency analysis of the parallel implemen-
tation of the diagonal decomposition method has been
carried out on the basis of the following optimization
problem:

Example 1. A control process is described by the system
of state equations:

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, . . . ,K − 1,
(15)
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where A is the matrix with a dominant main diagonal
and consists of the elementsaij , i, j = 1, 2, . . . , n de-
termined in the interval[0, 1]. Furthermore, it is assumed
that bii = 1 and xi(0) = 2, i = 1, 2, . . . , n. We wish
to determine controlu which minimizes the value of the
performance criterion

min
uuu∈Ωu

J [x,u] =
K−1∑
k=0

n∑
i=1

[
x2

i (k) + u2
i (k)

]
. (16)

Constraints are specified for both state and control vari-
ables in the form

xi(k) ∈ [−2, 2], ui(k) ∈ [−1, 1],

i = 1, 2, . . . , n, k = 0, 1, . . . ,K. (17)

Each of the local tasks, obtained as a result of the decom-
position of the problem (16) and (17), is solved making
use of the conventional dynamic programming algorithm.
Hence for these tasks, both the state variables,xi, i =
1, 2, . . . , n, and the control ones,ui, i = 1, 2, . . . , n, are
digitized. The numbers of discrete levels for these vari-
ables are denoted byN and M , respectively.

The analysis associated with the assessment of the ef-
ficiency of the discussed parallel algorithms is carried out
based on the speedup (Brochard, 1989; Sadecki, 2001):

S(P ) =
T (1)
T (P )

, (18)

whereP denotes the number of processor units employed
in computations,T (1) is the implementation time of the
sequential algorithm on one processor, which is made par-
allel, and T (P ) denotes the implementation time of the
parallel algorithm considered.

The results of the computations ilustrating the ob-
tained values of the speedup are presented in Figs. 5–7.
Figure 5 refers to solving the above problem forn = 18
with the use of P = 2, 3, . . . , 9 transputers and for
N = M = K = 10.

Figure 6 deals with two different dimensions of the
state vector,n = 50 and n = 100, for several values
of P , as well as for several variants of the values for
N, M, K. The results presented in both the figures
are obtained for aP -transputer system of the linear chain
structure (Sadecki, 2001). One can observe very clearly
a negative effect of non-uniformity in the distribution of
tasks upon the computing speedup, appearing for the val-
ues ofP and n for which n is not divisible byP .

On the other hand, in the cases in which the processor
load is identical, very good values of the speedup are ob-
tained. In fact, they differ very little from the theoretical
maximum ones. On the other hand, such a good unifor-
mity of the processor load on the level of the local tasks is
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Fig. 5. Parallel diagonal decomposition algorithm:S =
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obtained due to the same structure of the local tasks and
the same values ofN, M, K for all local tasks.

Figure 7 illustrates the influence of the load as-
sociated with the interprocessor communication on the
speedup of parallel computations atP = 16 and for sev-
eral values ofn in computations made in systems config-
ured as a linear chain and square structures. The load for
the method considered depends in principle on the band-
width of the matrix A denoted bys in Fig. 4. As can
be seen from Fig. 7, the effect is very small. This illus-
trates the power of multitransputer systems, in particular
due to effective interprocessor communication algorithms,
as well as the high efficiency of the parallel application of
the diagonal decomposition method itself.

If a large number of processors are available(P �
n), then the computing performance can be increased by
adding the next level of parallelism concerning the parallel
realization of the local tasks.

Transputers were most popular in Europe from the
end of 1980s to the mid 1990s. An important question
can be formulated as follows: Can these quite good re-
sults in terms of the speedup be comparable with the re-
sults which can be obtained for currently available highly
parallel computers?

As was mentioned above, the efficiency of the paral-
lel implementation of a broad class of algorithms depends,
in general, on the processor performance and the commu-
nication bandwidth of the parallel system. This efficiency
depends approximately on some coefficientα, being the
ratio of the processor performance to the communication
bandwidth.

A parallel system has a good performance when it
consists of processor elements with a good performance
and with a comparatively good communication band-
width. For the analysed transputer system, the value of
this coefficient is quite good, i.e.,α = 0.025. For the
current highly parallel computers, the values of this co-
efficient are approximately of the same magnitude. So, it
can be said that a parallel realization of the DDDP method
in those systems can lead to comparable results (as regards
the speedup) with those obtained for transputers. This is
shown in Fig. 8. The plots present the results of a sim-
ple theoretical simulation for various systems with dif-
ferent processor performances and communication band-
widths. As can be seen, the results obtained for trans-
puters are comparable with those obtained for systems
with high processor performance and high speed commu-
nication (Van der Steen and Dongarra, 2001). Of course,
this concerns only the speedup values. This factor is of-
ten used to compare optimization and create parallel algo-
rithms (Sadecki, 2001).

Figure 9 presents the influence of the processor per-
formance and communication bandwidth on the parallel
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Fig. 8. Influence of the processor performance and com-
munication bandwidth on the speedup.
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Fig. 9. Influence of the processor performance and
communication bandwidth on the parallel sys-
tem performance.

system performance. The performance guaranteed for
parallel systems results from the performances of the pro-
cessor elements used and the speeds of interprocessor
communication.

The DDDP algorithm is a direct two-level optimiza-
tion method with a particularly simple coordination strat-
egy. The next example concerns a two-level control prob-
lem with a more complex coordination strategy realised
by the gradient algorithm. �

Example 2. The discussed two-level method is used for
solving the dynamic optimization problem associated with
the control of a water resource system. This example con-
cerns the control problem for a system ofn reservoirs
connected in cascade, wheren is the number of reser-
voirs (n = P ), and P denotes the number of processors
used for computations (cf. Fig. 10).
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x
 1 x

 2 x i x P
u 1 u 2 u i u P

in v 1 v 2 vi -1 v i v P-1 out

xi = xi(k), vi = vi(k), k = 0, 1, . . . , K,
ui = ui(k), k = 0, 1, . . . , K − 1.

Fig. 10. Diagram of the connection network in the
system ofP water reservoirs.

The problem considered is described by the system
of state equations of the following form:

x1(k + 1) = x1(k)− u1(k)− v1(k) + in,

x2(k + 1) = x2(k)− u2(k)− v2(k) + v1(k),
...

xi(k + 1) = xi(k)− ui(k)− vi(k) + vi−1(k),
... (19)

xP−1(k + 1) = xP−1(k)− uP−1(k)

− vP−1(k) + vP−2(k),

xP (k + 1) = xP (k)− uP (k) + vP−1(k)− out,

wherek = 1, 2, . . . ,K − 1, xi(0) = x0i, xi(K) =
xKi, i = 1, 2, . . . , P, xi ∈ [0, ximax ], ui ∈
[0, uimax ], i = 1, 2, . . . , P, vi ∈ [0, vimax ], i =
1, 2, . . . , P − 1.

The control problem consists in computing controls
u1(k), u2(k), . . . , uP (k), k = 0, 1, . . . ,K − 1, which
would ensure the required characteristics of water intakes
from P water reservoirs during twenty four hours, deter-
mined by the parametersc1(k), c2(k), . . . , cP (k), k =
0, 1, . . . ,K − 1.

The performance criterion is of the form

min
ui∈[0,uimax ]
i=1,2,...,P

Q(x,u) =
K∑

k=0

P∑
i=1

[ci(k)− ui(k)]2

+ a
P∑

i=1

[xi(K)− xKi]
2
, (20)

where a is positive constant weighting factor deciding
upon the accuracy of satisfying the terminal condition.

Assuming the flowsvi, i = 1, 2, . . . , P −1 as coor-
dination variables, we can decompose the above problem
to obtainP local tasks (corresponding to the index values

equal to1, 2, . . . , P ):

xi(k + 1) = xi(k)− ui(k)− vi(k) + in,
for i = 1,

xi(k + 1) = xi(k)− ui(k)− vi(k) + vi−1(k),
for 1 < i < P,

xi(k + 1) = xi(k)− ui(k) + vi−1(k)− out,
for i = P,

k = 0, 1, . . . ,K − 1,

(21)

min
ui∈[0,umax]

Qi(xi, ui) =
K∑

k=0

[ci(k)− ui(k)]2

+a [xi(K)− xKi]
2
, (22)

and one coordination task of the general form

min
vi, i=1,2,...,P−1

[
J1(v1) + J2(v1, v2) + · · ·

+ JP−1(vP−2, vP−1) + JP (vP−1)
]
. (23)

�

The problem formulated in Example 2 is solved
parallelly making use of decomposition and coordina-
tion implemented according to the parametric optimiza-
tion method as described above (Findeisenet al., 1980).
The local tasks are solved by the dynamic programming
method, whereas the coordination algorithm is imple-
mented based on a simple gradient method including the
constraints by means of a penalty function. The num-
bers of discrete levels for the state variablesxi, i =
1, 2, . . . , P and control onesui, i = 1, 2, . . . , P , are de-
noted by N and M , respectively. The assumption that
n = P results from a desire to avoid non-uniformity in
the allocation of tasks. In the case ofn > P , the non-
uniformity will be negligible whenn is divisible by P .
Then each processor would solve not one but two, three
or more local tasks. In casen is not divisible by P ,
a portion of processors would solve one more local task
than the remainder of the processors. The effect of such
non-uniformity in the distribution of tasks on the global
speedup can be essential and it was shown before (Figs. 5
and 6).

Moreover, in the problem considered it is assumed
that the water level in the water reservoirs should be con-
tained within some strictly specified boundaries, and that
the throughput of both channelsu1, u2, . . . , uP and those
of v1, v2, . . . , vP−1 is constrained. For simplicity, the
same constraints are assumed for particular components
of the vectorsx, u and v, namely,

xi(k) ∈ [0, 15], ui(k) ∈ [0, 10], x0i = 5, xKi = 5,

i = 1, 2, . . . , P,

vi(k) ∈ [0, 7], i = 1, 2, . . . , P − 1.
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The function in (t) assumes constant values in particu-
lar time intervals, varying from 3 to 5 during twenty four
hours.

The results obtained as a consequence of the imple-
mentation of the above algorithm in a multitransputer sys-
tem are presented in Figs. 11 and 12. They depict the
values of the speedup associated with the implementation
of this algorithm onP = n transputers as compared to
the implementation time of the same algorithm with the
use of one transputer.

Computations were made in the system configured
as a linear chain, with several variants of digitization ac-
cepted for the dynamic programming method used on
a low level of the algorithm. Figure 11 refers to the
case whenP = n = 2, 3, 4, . . . , 10 transputers are
applied in computations. Figure 12 presents the results
for a larger number of transputers, i.e.,P = n =
5, 10, 15, . . . , 45, 50. In turn, Fig. 13 presents times of
parallel solutions of the problem considered for the cases
as in Fig. 12. Even a rough analysis of the obtained results
shows that very good values of the speedup are acquired,
approaching the level ofS = 48 at P = 50.

Almost a linear character of the increment in the ob-
tained diagrams results from the fact that, in the variants
considered, the number of the processors used is equal to
the dimension of the analysed problem (P = n), which
ensures a good uniformity in the distribution of tasks al-
located to particular processors. Such good results in the
range of the obtained speedups show that the idea of paral-
lel computations applied to complex problems can be very
effective and can constitute the second important stage
of improving their efficiency, in addition to the decom-
position and coordination methods used at the first stage.
These results can also be a sort of encouragement to con-
duct further investigations in this direction.

In order to supplement the results presented above,
Fig. 14 presents an example of the solution to the prob-
lem formulated in Example 2 forn = 5. In particular,
the solutions forx(t), u(t) and v(t) are presented, as
well as the values of the factorc(t) for the middle water
reservoir.

5. Conclusions

Two-level algorithms presented in the paper have been
implemented parallelly making use of dynamic program-
ming methods. To a great extent, these methods have
affected speedups. A dynamic programming algorithm
enables us to achieve rather high uniformity in the dis-
tribution of tasks among particular processors. Further-
more, the dynamic programming method enables us to
take account of many types of constraints in a simple
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Fig. 11. Two-level control of a water resource system:S =
S(P = n), n ranging from 2 to 10.
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Fig. 12. Two-level control of the water resource system:S =
S(P = n), n ranging from 5 to 50.
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Fig. 13. Two-level control of the water resource system:
computation timet = t(P = n), n ranging from 5
to 50.
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Fig. 14. Solution of the analysed two-level control of
the water resource system forn = 5 for the
middle water reservoir.

way. The applied decomposition method is a key step to-
wards the effective parallelization of complex optimiza-
tion computations. Two examples of parallel implementa-
tions of these methods in a multitransputer system are pre-
sented. The efficiency of the parallel two-level algorithms
depends on the efficiency of the parallel algorithm used
to solve the coordination task, the efficiency of the algo-
rithm applied to solving local tasks, as well as the ability
to obtain uniformity in the distribution of tasks on both
levels. The presented algorithms enable us to achieve a
high efficiency of parallel computations in terms of high
speedups, on both levels of optimization computations. In
many cases, the obtained values of the speedup are not
considerably different from the value ofS(P ) = P , the-
oretically the best value to be obtained. The discussed
models of parallel computations can be easily applied to
more than two-level parallel computation. If a large num-
ber of processors are available, then parallel computation
can be implemented on local levels, too.
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