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WHAT IS NOT CLEAR IN FUZZY CONTROL SYSTEMS?
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The paper presents a number of unclear, unsolved or partly solved problems of fuzzy logic, which hinder precise trans-
formation of expert knowledge about proper control of a plant in a fuzzy controller. These vague problems comprise the
realization of logical and arithmetic operations and another basic problem, i.e., the construction of membership functions.
The paper also indicates how some of the above problems can be solved.
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1. Introduction

Control systems with fuzzy controllers are often success-
fully applied in practice. Their great advantage is the
possibility to introduce the knowledge of human experts
about proper and correct control of a plant in the con-
troller (Piegat, 2001; Yager and Filev, 1994; von Altrock,
1995). Owing to their advantages, fuzzy control systems
were universally accepted by engineers. Many exam-
ples of these systems were mentioned by Prof. L. Zadeh
in his lectures at various international conferences, e.g.,
the 7-th International Conference on Artificial Intelligence
and Soft Computing, ICAISC 2004 in Zakopane, Poland.
Fuzzy controllers were applied to industrial control, qual-
ity control, elevator control and scheduling, train con-
trol, traffic control, loading crane control, reactor con-
trol, automobile transmissions and climate control, auto-
mobile body panting control, automobile engine control,
paper manufacturing, steel manufacturing, power distrib-
ution control, and other applications. Figure 1 presents the
general scheme of the fuzzy control system.
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Fig. 1. General scheme of the fuzzy control system.

A fuzzy controller, often (but not always) a fuzzy
PID one, consists of a dynamic and a fuzzy static part,
see Fig. 2.
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Fig. 2. Inner structure of the fuzzy PID controller.

The static fuzzy part of the controller contains lin-
guistic knowledge about proper plant control. It also has
its inner structure presented in Fig. 3.

Below we shall present uncertainty issues and vague
problems connected with fuzzy control systems.

2. Uncertainty Connected with the Control
Algorithm

Uncertainty connected with the control algorithm is
mainly contained in the rule base and especially in linguis-
tic notions such as very small, mean, large, etc. Below, an
expert rule base for the control of a bridge trolley, which
transports containers from a store place to a loading place,
Fig. 4, is presented (Piegat, 2001).

The rule base contains the following rules:

R1: IF (d = large) THEN (P = positive large),
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Fig. 3. Static part of the fuzzy PID controller: Ri – control rules, Bj – singletons representing output
fuzzy sets. The block “Rule base” contains the inference engine of the controller.
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Fig. 4. Transport of containers with a bridge crane.

R2: IF (d = small) AND (Θ = negative large)
THEN (P = negative medium),

R3: IF (d = small) AND (Θ = negative small OR zero OR
positive small) THEN (P = positive medium),

R4: IF (d = small) AND (Θ = positive large) THEN (P =
positive large),

R5: IF (d = zero) AND (Θ = positive large OR small)
THEN (P = negative medium),

R6: IF (d = zero) AND (Θ = zero) THEN (P = zero),

R7: IF (d = zero) AND (Θ = negative small) THEN (P =
positive medium),

R8: IF (d = zero) AND (Θ = negative large) THEN (P =
positive large),

where:
d – the distance between the trolley and the destination

place expressed with the linguistic evaluations large
(L), small (S), zero (Z),

Θ – the angular displacement of the container line ex-
pressed with the linguistic evaluations positive large
(PL), positive small (PS), zero (Z), negative small
(NS), negative large (NL),

P – the electrical power supplying the motor (opera-
tor controls the power shifting the lever) expressed
with the evaluations negative large (NL), negative
medium (NM ), zero (Z), positive medium (PM ),
positive large (PL).

Linguistic evaluations used by the crane control ex-
pert are of uncertain character. They are described by the
membership functions presented in Fig. 5.

The parameters of these functions are identified by
the expert interview. The expert is usually unable to pre-
cisely give the parameters of fuzzy notions because they
are partly settled in his or her subconsciousness. There-
fore, he or she can give these parameters only roughly.
Also, control rules given by the plant expert are not al-
ways certain because two different control experts of the
same plant can sometimes give different control rules.

3. Uncertainty in the Realization of Logical
Operations in Fuzzy Controllers

An inherent part of fuzzy control rules are the logical con-
nections AND and OR . An example can be the rule R3
of the crane control:

R3: IF (d = small) AND (Θ = negative small OR zero OR
positive small) THEN (P = positive medium).
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Fig. 5. The membership functions of the linguistic
variables: distance (d), angular displacement
(Θ) and power supply (P ).

Scientists do not know precisely how people math-
ematically realize logical operations in their mind. This
problem was recognized very early and described, e.g.,
in (Zimmermann, 1980). Therefore, scientists elaborated
many proposals for implementing these operations (Dri-
ankov et al., 1993; Yager and Filev, 1994; Piegat, 2001).
Some of these proposals satisfying certain conditions are
specified as t-norms (AND – operators) and s-norms (OR
– operators). The operators proposed by scientists are, as
a matter of fact, a hypothesis of how logical operations
are accomplished in the human brain. However, it is pos-
sible that each person accomplishes these operations in a
different way, which additionally varies with time. It hin-
ders the transformation of expert knowledge in the fuzzy
controller, because we must always insert in the controller
some specific operator AND and OR. We do not know
how the logical operators inserted differ from the opera-
tors used by a plant expert. Table 1 contains some existing
logical AND-operators.

The number of possible AND-operators is by far
higher than the number of operators shown in Table 1.
The application of different operators gives different cal-
culation results in fuzzy controllers. These differences are
sometimes considerable. Figure 6 presents membership
functions of linguistic evaluations of low, medium and
high fever, and Fig. 7 provides the results of the opera-
tion “medium AND high” fever accomplished with five
different t-norm operators.

As can be seen from Fig. 7, the results of various
AND-operators differ considerably. Therefore, a question

1

0
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μ(T)
       low            medium = A            high = B

Fig. 6. Membership functions of linguistic values of fever.

arises: Which AND-operator should be used in the con-
troller to be constructed? Which of the operators cor-
rectly models the logical operator used by the brain of
the expert who provides us with knowledge about the
plant control? An uncertainty identical with that relat-
ing to the operation AND pertains to the operation OR,
where we can also use a large number of operators, e.g.,
maximum, algebraic sum, Hamacher sum, Einstein sum,
drastic sum, bounded sum, etc., and to the implication
operation, where we can use various implication opera-
tors, e.g., the Mamdani operator, Łukasiewicz operator,
Kleene-Dienes operator, Kleene-Dienes-Łukasiewicz op-
erator, Godel operator, Yager operator, Zadeh operator,
etc. The application of each particular implication oper-
ator changes often considerably the results of implication.
Which of the operators is the most suitable one for a given
fuzzy control system?

4. Uncertainty Connected with Arithmetic
Operations Realized in Control
Algorithms and in the Design of Fuzzy
Control Systems

In fuzzy control systems not only logical operations such
as AND, OR, negation and implication are realized, but
also various arithmetic operations, e.g., the calculation of
the control error e = d0 − d and other operations con-
tained in the control algorithm. Let us now analyze the
example of an automatic control system for the distance
between two cars illustrated in Fig. 8.

The control system must not keep here a certain,
strictly determined and constant distance between the cars

d

A B

Fig. 8. Problem of the automatic control for a safe
distance between two cars.
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Table 1. Examples of t-norm operators for the realization of the logical AND operation.

Operator name Formula

minimum (MIN) μA∩B(x) = MIN(μA(x), μB(x))

product (PROD) μA∩B(x) = μA(x) · μB(x)

Hamacher product μA∩B(x) =
μA(x) · μB(x)

μA(x) + μB(x) − μA(x) · μB(x)

Einstein product μA∩B(x) =
μA(x) · μB(x)

2 − (μA(x) + μB(x) − μA(x) · μB(x))

drastic product μA∩B(x) =

�
��
��

MIN(μA(x), μB(x)) for MAX(μA, μB) = 1

0 otherwise

bounded difference μA∩B(x) = MAX(0, μA(x) + μB(x) − 1)

1

0
   38                          39  T (°C)

μA∩B(T)

MIN

0.5

1
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   38                          39  T (°C)

μA∩B(T)
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difference

1
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PROD

0.25

1

0
   38                          39  T (°C)
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0.2

1

0
   38                          39  T (°C)

μA∩B(T)

Hamacher
PROD

0.33

Fig. 7. Membership functions of the fuzzy set “medium AND high” fever calculated with five different t-norm operators.
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Fig. 9. Exemplary membership function of the recommended,
safe distance d0 [m] between two moving cars.

A and B, e.g., the distance of 60 [m]. It is sufficient to
keep the distance lying in some safe interval, e.g., 40–
80 [m]. However, this does not mean that the distance of,
e.g., 39 [m] is a dangerous one. This distance is only less
safe and preferred than 40 or 60 [m]. The preferred value
of the distance between the two cars can be determined by
a membership function. An example of such a function is
presented in Fig. 9.

Apart from the distance, in this automatic control
system we also have another fuzzy quantity. It is the ac-
tual distance d between the cars. This distance is mea-
sured with some error described by the Gaussian function.
Therefore, the actual distance d between the cars can be
described with the membership function of Fig. 10. The
scheme of the automatic control system for the distance
between the two cars is shown in Fig. 11.

In the comparison element of the fuzzy control sys-
tem, the subtraction of two fuzzy numbers must be accom-
plished. Next, arithmetic operations may be contained
in the control algorithm. Arithmetic operations on fuzzy
numbers are realized not only during the operation of the
control system, but also in the design process of the sys-

controller car
e = d0 - d d

_
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d0

�

1

d

�

1

Fig. 11. Uncertain fuzzy signals in the control system for the distance between two cars.
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0

Fig. 10. Exemplary membership function of the actual
distance d between two moving cars.

tem. A fuzzy controller must be designed so that stable
operation of the control system is secured. In the design
process of fuzzy controllers also arithmetic operations on
fuzzy numbers are accomplished. It can be exemplified by
the design of the fuzzy controller based on the Lyapunov
theory presented in (Zhou, 2002).

The author presents his method using the example of
a fuzzy controller stabilizing the angle position x1 of the
inverted pendulum, cf. Fig. 12.

u

x1 x2

Fig. 12. Inverted pendulum and quantities important for
the stabilization of its angle position.

In the problem of the inverted pendulum the follow-
ing quantities are of importance:

x1 – the deviation angle of the pendulum (controlled
quantity),



A. Piegat42

1

0
   2    3       5    6                 10.5                 15                               22.5                                 30   x,y,z

�

          A       B                                            A (·) B

0.5

Fig. 13. Triangular result of multiplying two fuzzy numbers about 3 and about 5 according to the Zadeh extension principle.
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Fig. 14. Non-triangular result of multiplying fuzzy numbers about 3 and about 5 using
the α-cut method (cf. parameters of points in Figs. 13 and 14).

x2 – the angle velocity of the pendulum,

u – the force moving the pendulum base (control quan-
tity).

In the synthesis process of the fuzzy controller the
Lyapunov function candidate

V (x1, x2) =
1
2
(x2

1 + x2
2) (1)

is used. Its derivative is given by

V̇ = x1ẋ1 + x2ẋ2
∼= x2(x1 + u). (2)

In the synthesis process, the derivative of the Lya-
punov function candidate is transformed into the linguistic
form,

LV (V̇ ) = LV x2(LV x1 + LV u), (3)

where LV denotes the linguistic value of the candidate.

There following values are used:

• for the angle x1: LV x1 ∈ {positive, negative},

• for the angular velocity x2: LV x2 ∈ {negative,
positive},

• for the force u: LV u ∈ {negative big, about zero,
positive big}.

To calculate the linguistic value LV (V̇ (x)) accord-
ing to (3), arithmetic operations on fuzzy sets are neces-
sary. An exemplary computation is

LV (V̇ (x)) = positive x2(negative x1 + positive big u).
(4)

The above example of fuzzy controller synthesis
shows that for stability checking of a fuzzy control sys-
tem, performing arithmetic operations on fuzzy (numbers)
sets may be necessary. But, how can these operations be
realized? It appears that there exist various methods of im-
plementing fuzzy arithmetic operations, which give differ-
ent results for one and the same operation. For instance,
consider the multiplication of two fuzzy numbers A and
B that takes place in (4). This operation can be accom-
plished with various methods from which two basic ones
are the Zadeh extension principle:

μA(·)B(z) =
∨

z=x·y

(
μA(x) ∧ μB(y)

)
, (5)

and the α-cut method (Kaufmann and Gupta, 1991):

Aα(·)Bα =
[
a
(α)
1 , a

(α)
2

]
(·)[b(α)

1 , b
(α)
2

]

=
[
a
(α)
1 · b(α)

1 , a
(α)
2 · b(α)

2

]
. (6)

In the above formulas, μ denotes the membership
grade and Aα denotes the α-cut of the fuzzy number at
the α level. The borders of this cut are determined by
[a(α)

1 , a
(α)
2 ]. A similar notation refers to the number B.

Let us consider now, for instance, the multiplication of
two numbers, A = about 3 and B = about 5, pre-
sented in Fig. 13. If the multiplication is realized with the
Zadeh extension principle (5), the result shown in Fig. 13
is achieved. If it is realized with the α-cut method (6), we
get a different result, presented in Fig. 14.

A different method of performing arithmetic oper-
ations on fuzzy numbers was proposed in (Kosi ński et
al., 2003). The method introduces a special, new feature
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of fuzzy numbers called the orientation. It can be pos-
itive (counterclockwise) and negative (clockwise), and it
strongly influences the results of arithmetic operations. If
we add two fuzzy numbers A and B of the same, neg-
ative orientation, we get the result C with the support
being the sum of the supports of A and B , Fig. 15.

1

       -3       -2        -1       0         1         2         3    x,y,z

�

     A                            C = A + B        B

Fig. 15. Addition of ordered, negatively oriented fuzzy numbers
according to the method of (Kosiński et al., 2003).

We achieve a result that is the same as the one
achieved with the Zadeh extension principle (5). However,
if the orientation of the added numbers is not the same but
opposite, we get the result C with a support considerably
smaller than the sum of the supports of A and B , Fig. 16.
The achieved result is different from the one of the Zadeh
extension principle (5) or of the α-cut method (6).

0       1       2       3       4       5       6       7       8    x,y,z

�
            A           B      C = A + B

1

Fig. 16. Addition of ordered fuzzy numbers with
opposite orientation according to the
method of (Kosiński et al., 2003).

Another method of implementing arithmetic opera-
tions on fuzzy numbers is proposed in (Rakus-Anderson,
2003). The addition of two fuzzy numbers, A and B,
according to this method gives a result C with a sup-
port which, in the general case, is not equal to the sum
of the supports of A and B. Accordingly, the compu-
tation results are different from those achieved with the
Zadeh extension principle (5), the α-cut method (6) or the
method proposed by Kosiński et al.. An example is shown
in Fig. 17.

Summing up the above examples, the following con-
clusion can be drawn: there exist various methods of per-
forming arithmetic operations that, in the general case,
give different results for one and the same operation.

0         3       5      7        10   12  13   15        18       x,y,z

�

           A                  B         C = A + B
1

Fig. 17. Addition of two fuzzy numbers A and B according
to the method of Rakus-Anderson.

Which of them should be used in the fuzzy control sys-
tem? Which of them represents in the best way arithmetic
operations realized in the human expert’s brain?

5. Uncertainty Connected with the Essence
of the Membership Function

All logical and arithmetic operations accomplished in
fuzzy control systems are operations on membership func-
tions of fuzzy sets. But, what is the membership func-
tion and what is its substance? An answer to this question
was given by the creator of fuzziness, Professor L. Zadeh
(1978): “. . . the possibility distribution function associ-
ated with X . . . is denoted by πX and is defined to be
numerically equal to the membership function of F , i.e.,

πX � μF . (7)

Thus, πX(u), the possibility that X = u is postu-
lated to be equal to μF (u).”

From the above definition it follows that determining
the membership function of a fuzzy set amounts to the de-
termination of the possibility distribution πX of the set.
For example, to determine a membership function of the
income of a firm to a fuzzy set (linguistic evaluation) high
income, possibility distribution of qualifying by the firm
director particular, possible numerical values of the firm
income as a high income should be identified. But what is
the possibility distribution πX and how can it be identi-
fied? What, in general, is the possibility of the occurrence
of an event (in the case of the membership function the
event is the qualification of the value u of the quantity
X in the fuzzy set F )?

The notions of the possibility and necessity of event
occurrence were introduced by Dubois and Prade (1983).
Since then the authors have used these notions in numer-
ous publications. One of the recent ones is (Dubois et al.,
2004). Apart from their definitions, there also exist other
interpretations of possibility and necessity, e.g., the one
given in (Borgelt and Kruse, 2003). However, the inter-
pretation of Dubois and Prade is most well-known, wide-
spread and used. According to the author of this paper,
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there exist serious doubts as to the definition of the possi-
bility of Dubois and Prade and, consequently, to the sub-
stance of the membership function and to the method of
its identification resulting from the definition. Further on,
the author will explain the doubts. But first of all, the no-
tion of possibility according to (Dubois and Prade, 1983)
will be explained.

5.1. Notion of Possibility According to Dubois
and Prade

Let us assume that a quantity x can take a finite number
n of values xi contained in the domain X = {xi | i =
1, . . . , n}. As an elementary event A we shall further
understand taking by x one of possible values x i from
the domain X , e.g.,

A : x = 7, 7 ∈ X. (8)

As a set event A we shall further understand taking by x
one of many values xi contained in some subset of the
domain X , e.g.,

A : x ∈ {5, 6, 7}, {5, 6, 7} ∈ X. (9)

The possibility of the occurrence of an event A is
generally defined by Dubois and Prade as follows:

possibility(A) = 1 − impossibility(A). (10)

The possibility of event occurrence is full (equal to 1) only
when the impossibility of its occurrence equals zero. If the
impossibility of event occurrence is greater than zero, then
its possibility is not full. But what is the impossibility of
event occurrence and how can it be determined?

The impossibility of the event A is numerically
equal to the necessity N of the occurrence of the opposite
event Ā (of the event complementing the event A to the
domain X), (11).

impossibility(A) = necessity(Ā), A ∪ Ā = X. (11)

Thus, the possibility of the event A is defined by

possibility(A) = 1 − necessity(Ā),

Π(A) = 1 − N(Ā). (12)

However, at this point the next question arises: What
is the necessity N(A) of event occurrence and how can
it be determined? Let us denote by pi the value of the
probability P of an elementary event occurrence x = x i:

pi = P
({xi}

)
,

n∑
i=1

pi = 1. (13)

Dubois and Prade (1983) gave the following defini-
tion of the degree of the necessity of an event:

Definition 1. The degree of the necessity of the event A ⊆
X is the extra amount of the probability of elementary
events in A over the amount of the probability assigned
to the most frequent elementary event outside A. In other
words,

N(A) =
∑
xi∈A

max
(
pi − max

xk /∈A
pk, 0

)
. (14)

This definition is illustrated by Dubois and Prade
with an example of coin tossing with a biased coin, which
gives different probabilities for the head and the tail. How-
ever, further on, the notion of the possibility and necessity
of an event will be explained not with coin tossing, but
with an example of a roulette wheel, which enables us to
explain the problem better.

Example 1. The roulette wheel has been divided into 2
parts: one part with an area of 60% of the full wheel area,
to which the number 1 is assigned, and the other part with
an area of 40% of the full wheel area, to which the num-
ber 2 is assigned, Fig. 18.

revolution

12

40% 60%

A = {1}
Ā = {2}

A ∪ Ā = {1, 2} = X

Fig. 18. Roulette wheel with unequal partition of the area.

Let us define the event A as producing the number 1.
Thus, the opposite, complementing event Ā will be pro-
ducing the number 2. The probabilities of the particular
events are as follows:

P
(
A = {1}) = p1 = 0.6,

P
(
Ā = {2}) = p2 = 0.4. (15)

The necessities of the occurrence of particular events
are calculated as

N(A = {1}) = n1 = max(p1 − p2, 0)

= max(0.6 − 0.4, 0) = 0.2,

N(Ā = {2}) = n2 = max(p2 − p1, 0)

= max(0.4 − 0.6, 0) = 0. (16)
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The probabilistic superiority of the number 1 over 2
(0.6 − 0.4 = 0.2) means its domination or privilege. It
can be said that there exists some fractional necessity of
event A = {1} occurrence. Thus, the number 2 is not
probabilistically privileged in relation to 1 and therefore
its occurrence necessity equals zero.

When is the event A fully necessary (N(A) = 1)?
Such a situation is presented in Fig. 19. If we asign num-

revolution

1 N(A = {1}) = 1

Ā = ∅, X = A ∪ Ā = {1}

Fig. 19. Example of the fully necessary event: n1 = 1.

ber 1 to the full roulette wheel, then producing 1 is fully
necessary because no other number can be produced – the
opposite event does not exist. Figure 20 presents an ex-
ample of a highly necessary event A.

revolution

1

2

10%

90%

N(A = {1}) = max(0.9 − 0.1, 0) = 0.8

Ā = {2}, X = A ∪ Ā = {1, 2}

Fig. 20. Example of a highly necessary event A = {1}
with the necessity of occurrence n1 = 0.8.

The probabilistic domination of the number 1 over 2
in Fig. 20 is very high and equals 0.8. Therefore, we can
say that producing number 1 is highly necessary. Num-
ber 2 has no probabilistic domination over 1 and therefore
its necessity equals zero.

Now let us come back to the example of Fig. 18
where 60% of the roulette wheel was assigned to 1 and
40% of the wheel to the number 2, and let us continue the
calculations. The computed values of the necessity of 1
and 2 enable us to compute the possibilities of producing

these numbers with the use of (12):

possibility
(
A = {1}) = 1 − impossibility

(
A = {1})

= 1 − necessity
(
Ā = {2}),

π1 = 1 − n2 = 1 − 0 = 1, (17)

possibility
(
Ā = {2}) = 1 − impossibility

(
Ā = {2})

= 1 − necessity
(
A = {1}),

π2 = 1 − n1 = 1 − 0.2 = 0.8. (18)

The computational results of the necessity and possi-
bility of particular events analyzed in Example 1 are col-
lected in Fig. 21.

revolution

12

40% 60%

probability p2 = 0.4 probability p1 = 0.6

possibility π2 = 0.8 possibility π1 = 1

necessity n2 = 0 necessity n1 = 0.2

π2 = 1 − n1 π1 = 1 − n2

Fig. 21. Probabilities, possibilities and necessities of the events
A = {1} and Ā = {2} in Example 1.

The possibility of producing the number 1 is full
(equals 1) because the necessity of producing the opposite
the number 2 equals zero. The possibility of producing
number 2 is not full (is less than 1) because the necessity
of producing the opposite number 1 is greater than zero.

�

5.2. Doubts as to the Correctness of the Definition
of Necessity

The necessity N(A) of the occurrence of the event A was
defined by (14). Attention should be drawn to the fact that
in the calculation of the occurrence necessity of the event
A (in the general case, of the set event), the above def-
inition does not take into account the complete opposite
(complementing) event Ā and its total probability P (Ā),
but only one of the elementary events x = xk contained
in that event whose probability pk of occurrence is the
greatest one (the term “max pk for xk ∈ A”).
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In (Dubois and Prade, 1983), some axioms are also
given that are satisfied by the necessity and possibility
function. Thus, we have

N(∅) = 0, N(X) = 1. (19)

The necessity of the occurrence of the empty event
is zero, and the necessity of the occurrence of one of all
events contained in the universe X of events is full (equal
to 1). The axiom

∀A, B ⊆ X N(A ∩ B) = min
(
N(A), N(B)

)
(20)

allows us to calculate the necessity of logical intersection
of two set events. The axiom

∀A ⊆ X Π(A) = 1 − N(Ā) (21)

informs us what the possibility of event A occurrence is
and how it can be calculated. It is a very important axiom.
The axiom

Π(∅) = 0 : Π(X) = 1 (22)

says that the occurrence possibility of the empty event
is zero and the possibility of the occurrence of one of
all events contained in the event universe X is full and
equals 1. The axiom

∀ A, B ∈ X, Π(A ∪ B) = max
(
Π(A), Π(B)

)
(23)

tells us how to calculate the occurrence possibility of the
event being the logical sum of two events A and B. It
results from this axiom that the occurrence possibility of
the event C = A ∪ B is equal to that of the possibilities
Π(A) or Π(B), which is the greatest one. Let us check
now whether (23) is correct.

Example 2. In Example 1 the roulette wheel was split into
two parts. The number 1 was assigned to the greater part
and the number 2 to the smaller part of the wheel, which
is shown in Fig. 22.

Let us now divide the 60% part that was assigned the
number 1 in Example 1 into two parts: the 35% part that
will be assigned the number 3, and the 25% part that will
be assigned number 4. The new partition of the roulette
wheel is shown in Fig. 23.

Now let us consider the event {3, 4} of producing
the numbers 3 or 4 for the roulette wheel from Fig. 23.
This event amounts to producing the number 1 in the case
of the roulette wheel of Fig. 22 because it refers to the
same section of the wheel. The necessity of the event is
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n2 = 0

revolution
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40% 60%

π1 = 1

n1 = 0.2

p

  1       2                     xj

A A

0.6

0.4

Fig. 22. Partition of the roulette wheel in Example 1
and the resulting values of the probability, ne-
cessity and possibility of particular events.
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0.4 0.35
0.25

Fig. 23. Partition of the first part of the roulette wheel
of Example 1 into two parts with the assigned
numbers 3 and 4, and the probabilities of par-
ticular events resulting from the new partition.

calculated using (14):

N(A) = N
({3, 4})

= max(0.35 − 0.4, 0) + max(0.25 − 0.4, 0)

= 0 + 0 = 0,

N(Ā) = N
({2}) = max(0.4 − 0.35, 0) = 0.05,

Π(A) = Π
({3, 4}) = 1 − N

({2}) = 1 − 0.05 = 0.95,

Π(Ā) = Π
({2}) = 1 − N

({3, 4}) = 1 − 0 = 1. (24)

The comparison of calculation results achieved be-
fore the partition of Section 1 of the roulette wheel and
after its further partition into two sections is presented in
Fig. 24.
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Fig. 24. Comparison of computational results of the necessity
and possibility of event occurrence before and after par-
titioning Section 1 into Sections 3 and 4 of the roulette
wheel according to the definition (14).

Example 2 and, especially, Fig. 24 show that the use
of the definition (14) of the necessity of calculating the ne-
cessity and possibility of event occurrence results in para-
doxes. The set event {3, 4}, which means producing num-
bers 3 or 4, has different necessity and possibility (0.2 and
1) than the event of producing the number 1, for which the
necessity and possibility have values 0 and 0.95, respec-
tively. This means that the event {3, 4} has no proba-
bilistic domination over producing the number 2, which is
not true, because such a domination exists and equals 0.2.
Before the partition, the number 2 had no domination over
the number 1. After the partition of the first section, it sud-
denly achieved such superiority over it (N({2}) = 0.05).
A reason behind this paradox is the feature of the defini-
tion (14) consisting in taking into account the probability
of only one component event contained in the complement
and not the probability of the complement.

Because the definition (14) results in calculation
paradoxes and seems to be incorrect, the author of this
publication proposes a new definition of event necessity.

5.3. New Definition of the Necessity of Event
Occurrence

The degree of necessity N(A) of the occurence of a set
event A ⊆ X is the surplus of the sum of the proba-
bilities of all possible outcomes xj contained in A over
the same sum for possible outcomes xk contained in the
complement Ā if this surplus is positive. Otherwise, the
necessity degree equals zero. The degree of necessity can

be calculated as follows:

N(A) = max

⎛
⎝ ∑

xj∈A

pj −
∑

xk∈Ā

pk, 0

⎞
⎠ . (25)

Further on, the new definition of necessity (25) will
be applied to solve the problem of Example 2, see Fig. 23
and the formulas

N(A) = N
({3, 4}) = max(0.6 − 0.4, 0) = 0.2,

N(Ā) = N
({2}) = max(0.4 − 0.6, 0) = 0,

Π(A) = Π
({3, 4}) = 1 − N(Ā) = 1 − 0 = 1,

Π(Ā) = Π
({2}) = 1 − N(A) = 1 − 0.2 = 0.8. (26)

The comparison of results for the necessity and pos-
sibility of events before and after the partition of the
roulette wheel according to the new definition is presented
in Fig. 25. The formula (26) and Fig. 25 illustrate the fact
that the new definition (25) of event necessity facilitates
correct and sensible calculation of the necessity degree
and does not cause paradoxes like the definition (14).

The new definition rests on the assumption that the
necessity of event A occurrence is the surplus of the prob-
ability of this event over the total probability of the com-
plement, i.e., over the probability sum of all component
events contained in the complement and not of only one
component event, as assumed by Dubois and Prade in their
definition (14). The new approach (25) to necessity seems
to be more sensible and convincing than the old one.
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Fig. 25. Comparison of computation results of the ne-
cessity and possibility of events using the new
definition (25) of necessity.
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5.4. Meaning of the Error in the Actual Definition
of Necessity for Fuzzy Control

The definition (14) is the oldest and the most propagated
definition of necessity. It forms a basis for experimen-
tal construction of membership functions of fuzzy sets
used everywhere, also in fuzzy control systems. Methods
of constructing membership functions were elaborated by
Dubois and Prade (1983; 1986), and by other scientists
(Devi and Sarma, 1985) or (Civanlar and Trussel, 1986).
These methods allow constructing a membership function
on the basis of a probability density distribution or its sim-
plified version, i.e., histograms. However, because the ac-
tual definition of necessity is not correct, all methods of
constructing membership functions based on it provide in-
correct membership functions. Investigations made by the
author show that the new definition of necessity (25) gives
quite different shapes of membership functions from those
achieved with the definition of Dubois and Prade. The
author’s investigations also show that the same notion of
membership to a fuzzy set being obligatory today, which
can be found, e.g., in (Dubois and Prade, 1986; Yager and
Filev, 1994; Zimmerman, 1991), is incorrect and should
be revised. How? A proposal is given in (Piegat, 2005).

6. Concluding Remarks

In fuzzy control systems we have to do with many more or
less obscure and unsolved problems. All the time, answers
to the following questions are needed:

• How should logical operations such as AND, OR and
implication in fuzzy control systems be realized if
many operators for the accomplishment of these op-
erations giving different calculation results can be
applied?

• How should arithmetic operations in fuzzy control
systems be realized if there exist many fuzzy arith-
metic concepts, which give different calculation re-
sults?

• What is the membership function of a fuzzy set and
how should it be constructed if the most commonly
applied definition of the necessity of events, which
is a basis for identifying the membership function, is
not correct?

All the three unsolved problems hinder full trans-
formation of expert knowledge about correct control of a
plant. This kind of knowledge can today be transformed in
the controller only roughly and approximately. Of course,
this situation is disadvantageous for the quality of plant
control.

From the above, the following question arises: If
there exist so significant difficulties in the transformation

of plant expert knowledge into a fuzzy controller, why do
the contemporary fuzzy control systems operate satisfac-
torily and prove this in practice?

The answer to this question is as follows:

• Control rules provided by plant experts are usually
correct and do not contain large errors.

• In fuzzy control systems, fuzzy controllers, rules and
membership functions are frequently tuned with spe-
cial self-learning methods (Piegat, 2001), which as-
sure correct system operation and compensate for
various errors and imprecise results of incorrect log-
ical and arithmetic operations.

What should be done to improve the operation and
constructing methods of fuzzy control systems? Sugges-
tions are as follows:

• A new definition of a fuzzy set should be elaborated
which would be better than today’s definitions found,
e.g., in (Dubois and Prade, 1986) and (Zimmermann,
1991) in the context of describing the substance of a
fuzzy set. A proposal of the new definition is given
in (Piegat, 2005).

• A new, experimentally verifiable fuzzy arithmetic
should be elaborated, which would counteract doubts
connected with today’s existence of many different
fuzzy arithmetic concept resulting in different calcu-
lation results. The same refers to logical operations.

The ultimate conclusion is that fuzzy control is not a
fully developed area now and that much needs to be done
to improve it.
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