
Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 1, 39–51
DOI: 10.2478/v10006-007-0005-4

A NEW FUZZY LYAPUNOV APPROACH TO NON–QUADRATIC
STABILIZATION OF TAKAGI-SUGENO FUZZY MODELS

IBTISSEM ABDELMALEK ∗, NOUREDDINE GOLÉA ∗∗, MOHAMED LAID HADJILI ∗∗∗

∗ Electronics Department, Batna University
05000, Batna, Algeria,

e-mail: abdelmalek_ibtissem@yahoo.fr

∗∗ Electrical Engineering Institute, Oum-El-Bouaghi University
04000, Oum El Bouaghi, Algeria

e-mail: nour_golea@yahoo.fr

∗∗∗ Ecole de Promotion Social, UCCLE
1180, , Brussels, Belgium

e-mail: mhadjili@yahoo.fr

In this paper, new non-quadratic stability conditions are derived based on the parallel distributed compensation scheme to
stabilize Takagi-Sugeno (T-S) fuzzy systems. We use a non-quadratic Lyapunov function as a fuzzy mixture of multiple
quadratic Lyapunov functions. The quadratic Lyapunov functions share the same membership functions with the T-S fuzzy
model. The stability conditions we propose are less conservative and stabilize also fuzzy systems which do not admit a
quadratic stabilization. The proposed approach is based on two assumptions. The first one relates to a proportional relation
between multiple Lyapunov functions and the second one considers an upper bound to the time derivative of the premise
membership functions. To illustrate the advantages of our proposal, four examples are given.
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1. Introduction

Many complex systems are difficult to describe using
linearization or identification techniques. Takagi and
Sugeno (1985) proposed a multimodel approach to over-
come the difficulties of the conventional modeling tech-
niques. The proposed multimodel is called the Takagi-
Sugeno fuzzy model, whose construction is based on the
identification (fuzzy modeling) using input-output data,
or derivation from given non-linear system equations,
i.e., the physical properties of the system (Takagi and
Sugeno, 1985; Tanaka and Wang, 2001). The proce-
dure of fuzzy modeling consists mainly of two parts,
which are structure identification and parameter identifi-
cation. We mention that many real systems, e.g., me-
chanical, can be represented and have been represented
by T-S fuzzy models. A T-S fuzzy model approximates
the system using simple models in each subspace obtained

from the decomposition of the input space. During the
last decade, several researchers in the control community
have come up with different techniques for designing con-
trol systems. Researchers did not stop here; they have
been looking for new and revolutionary ideas to solve
problems that are not accessible by classical controllers.
Among these revolutionary ideas, “fuzzy control” is prob-
ably one of the most popular ones (Feng, 2002; Takagi
and Sugeno, 1985; Tanaka and Sugeno, 1992; Wang et
al., 1996), since it can provide an effective solution to
the control of plants that are complex, uncertain or ill-
defined. For this purpose, the non-linear plant is repre-
sented by a T-S fuzzy model, where local dynamics in dif-
ferent state regions are represented by linear models. The
overall model of the system is obtained by fuzzy mixing
of these local models. The fuzzy control design is carried
out using the Parallel Distributed Compensation (PDC)
scheme (Tanaka and Sugeno, 1992; Wang et al., 1996).
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The main idea of the PDC controller design is to derive
each control rule from the corresponding rule of the T-
S fuzzy model so as to compensate for it. The resulting
overall fuzzy controller, which is non-linear in general, is
a fuzzy mixture of individual linear controllers, knowing
that the fuzzy controller shares the same fuzzy sets with
the fuzzy system. Wang et al. (1996) utilized this concept
to design fuzzy controllers to stabilize fuzzy systems.

The advantage of the T-S fuzzy model lies in the
fact that the stability and performance characteristics of
the system represented by a T-S fuzzy model can be ana-
lyzed using the Lyapunov function approach (Tanaka and
Sugeno, 1992; Zhao, 1995). Tanaka and Sugeno (1992)
proved that the stability of a T-S fuzzy model could be
shown by finding a common positive definite symmetric
matrix P for N subsystems. Generally, most of stabil-
ity criteria for this fuzzy system derived by the Lyapunov
approach need common P to satisfy a set of Lyapunov
inequalities (Tanaka et al., 1996; Wang et al., 1996). Var-
ious works have been published based on this approach,
such as the one by Cao and Lin (2003), who applied the
Lyapunov function based approach to the stability analy-
sis of non-linear systems with actuator saturation, and the
one by Lee et al. (2001), who proposed a robust fuzzy
control scheme for non-linear systems in the presence of
parametric uncertainties, where sufficient conditions were
derived for robust stabilization in the sense of Lyapunov
stability. On the other hand, Tsen et al. (2001) proposed
a fuzzy H∞ model reference tracking control scheme and
discussed the stability of the closed loop non-linear sys-
tem by the Lyapunov approach. Korba et al. (2003) pre-
sented a constructive and automated method for the design
of a gain-scheduling controller, based on a given T-S fuzzy
model and a controller that guarantees the closed loop sta-
bility using Lyapunov quadratic functions. However, a
possible limitation of their approach is the use of the Lya-
punov method, which is conservative. Hence, the stabil-
ity analysis of fuzzy control systems was discussed in the
bulk of literature, e.g., (Bernal and Hušek, 2005; Blanco et
al., 2001; Chadli et al., 2000; Chadli et al., 2001; Chadli et
al., 2005; Jadbabaie, 1999; Johansson et al., 1999; Ohtake
et al., 2003; Tanaka and Sugeno, 1992; Tanaka et al.,
2003; Wang et al., 1995; Wang et al., 1996; Wong et
al., 1998). Especially, piecewise Lyapunov functions and
multiple Lyapunov functions have attracted a lot of atten-
tion due to avoiding the conservatism of stability and sta-
bilization problems. However, three cases were defined
(Johansson, 1999; Morère, 2001) where the analysis of
quadratic stability is conservative, which are, respectively,
saturated systems, piecewise linear systems and certain
systems that do not accept Lyapunov functions for stabil-
ity analysis.

In this context, new stability conditions for Takagi-
Sugeno fuzzy models are derived in this paper, based on
the use of multiple Lyapunov functions that have been

discussed (Cao et al., 1997; Chadli et al., 2000; Had-
jili, 2002; Jadbabaie, 1999; Tanaka et al., 2001a) due to
their properties of conservatism reduction. It is demon-
strated that sufficient conditions for the stability and per-
formance of a system are stated in terms of the feasibil-
ity of a set of Linear Matrix Inequalities (LMIs) (Boyd et
al., 1994; Tanaka and Sugeno, 1992; Tanaka et al., 2001c),
where the problem can be numerically solved by convex
optimization techniques. On the other hand, piecewise
fuzzy Lyapunov functions were employed to avoid the
conservatism of stability conditions derived by the com-
mon Lyapunov function approach (Jadbabaie, 1999; Jo-
hansson et al., 1999; Ohtake et al., 2003). This approach
is a result of the extension of the fuzzy Lyapunov function
into a piecewise fuzzy Lyapunov function by mirroring
the structure of a piecewise T-S fuzzy model. Johansson
et al. (1999) proposed a novel stability condition for fuzzy
systems, which are less conservative, based on Lyapunov
functions that are piecewise quadratic. This approach uses
the structural information in the rule base to decrease the
conservatism of the analysis, and several alternatives were
presented that improve the computational efficiency of the
approach.

In this paper, new non-quadratic stability conditions
are derived based on Parallel Distributed Compensation
(PDC) to stabilize T-S fuzzy models. We use a fuzzy Lya-
punov function since it is smooth contrary to a piecewise
Lyapunov function, thus avoiding the boundary condition
problem. Hence we obtain new conditions, shown to be
less conservative, that stabilize all fuzzy systems includ-
ing those that do not admit a quadratic stabilization. Our
approach is based on two assumptions. The first one re-
lies on the existence of a proportionality relation between
multiple quadratic Lyapunov functions, and the second
one considers an upper bound to the time derivative of
the premise membership function as assumed by Tanaka
et al. (2001a; 2001b; 2001c; 2003). Simulation exam-
ples demonstrate the effectiveness of our approach even
for systems that do not admit a quadratic stabilization.

The reminder of the paper is organized as follows:
Section 2 gives an outline of the fuzzy controller based on
the PDC concept, and recalls the quadratic stability con-
ditions of Takagi-Sugeno fuzzy models and the basic con-
cept of the non-quadratic stability conditions. Section 3
presents the proposed stabilization approach and derives
fuzzy controller design for stabilizing the closed loop sys-
tem. Section 4 concerns the design examples. In Sec-
tion 5, concluding remarks are given.

2. T-S Fuzzy Control and Stability
Conditions

2.1. T-S Fuzzy Model and Controller. A T-S fuzzy
system is described by fuzzy IF-THEN rules that represent
locally linear input-output relations of a system. The i-th
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rule of this fuzzy system is of the following form:

Model Rule i : IF z1(t) is Mi1 and . . . zp(t) is Mip

THEN ẋ(t) = Aix(t) + Biu(t),
y(t) = Cix(t), i = 1, 2, . . . , r,

(1)

where z(t) = [z1(t), . . . , zp(t)] is the premise variable
vector whose elements may be states, measurable external
variables and/or time, x(t) = [x1(t), . . . , xn(t)], u(t) =
[u1(t), . . . , um(t)], r is the number of IF-THEN rules, and
Mij is a fuzzy set.

The final output of the fuzzy system is inferred as
follows:

ẋ(t) =
r∑

i=1

hi (z(t)) (Aix(t) + Biu(t)) , (2)

where hi (z(t)) is the normalized weight for each rule,
i.e.,

hi (z(t)) ≥ 0,

r∑

i=1

hi (z(t)) = 1,

and is given by

hi (z(t)) =
wi(t)

r∑
i=1

wi(t)

and

wi(t) =
p∏

j=1

Mij (zj (t)) ,

Mij (zj(t)) being the grade of membership of zj(t) in
Mij .

The PDC scheme that stabilizes the Takagi-Sugeno
fuzzy system was proposed by Hua et al. (1995; 1996)
as a design framework comprising a control algorithm
and a stability test using optimization involving LMI con-
straints.

The PDC controller is given by

u(t) = −
r∑

i=1

hi (z(t))Fix(t). (3)

The goal is to find appropriated Fi gains that ensure
the closed loop stability.

2.2. Quadratic Stability Conditions. There exist
some definitions of Lyapunov stability, among them the
following definition:

Definition 1. The system ẋ(t) = f (x (t) , u(t)) is said
to be quadratically stable if there exists a quadratic func-
tion V (x(t)) = xT (t)Px(t), V (0) = 0, satisfying the
following conditions:

V (x(t)) > 0, ∀x(t) �= 0 ⇐⇒ P > 0, (4)

V̇ (x(t)) < 0, ∀x(t) �= 0. (5)

If V exists, it is called a Lyapunov function.

Thus, to find a Lyapunov function amounts to finding
the appropriate positive definite matrix P .

In this sense and by substituting (3) in (2), we obtain
the Takagi-Sugeno closed loop fuzzy system as follows:

ẋ(t) =
r∑

i=1

r∑

j=1

hi (z(t))hj (z(t)) [Ai − BiFj ] x(t), (6)

which can be rewritten as

ẋ(t)

=
r∑

i=1

r∑

i=1

hi (z(t))hi (z(t))Giix(t)

+2
r∑

i=1

∑

i<j

hi (z(t))hj (z(t))
{

Gij +Gji

2

}
x(t), (7)

where Gij = Ai − BiFj and Gii = Ai − BiFi.
The stabilization of a feedback system containing a

state feedback fuzzy controller has been extensively con-
sidered. The objective is to select Fi to stabilize the
closed-loop system. The stability conditions correspond-
ing to a quadratic Lyapunov function were derived by
Tanaka and Sugeno in (1992). They gave sufficient condi-
tions for stable fuzzy models based on the Lyapunov ap-
proach.

Theorem 1. (Tanaka and Sugeno, 1992) The fuzzy sys-
tem (5) can be stabilized via the PDC controller (3) if
there exists a common positive definite matrix X and Mi,
i = 1, . . . , r, such that

−XAT
i − AiX + MT

i BT
i + BiMi > 0,

−XAT
i − AiX − XAT

j − AjX

+MT
j BT

i + BiMj + MT
i BT

j + BjMi ≥ 0,

for all i < j such that hi ∩ hj �= ∅, where

X = P−1, Mi = FiX. (8)

The feedback gains Fi and common P are given by

P = X−1, Fi = MiX
−1, (9)

whereas the single quadratic Lyapunov function is given
by

V (x(t)) = x(t)X−1x (t) . (10)

However, the larger the number of rules, the weaker
the possibility to find a common positive definite matrix
solution, even if LMI techniques are applied. This ap-
proach requires to find a common positive definite ma-
trix for r subsystems, which makes it very conserva-
tive and hence forces us, in the next section, to define
non-quadratic stability conditions using a fuzzy Lyapunov
function.
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2.3. Non-Quadratic Stability Conditions. Due to
their property of conservatism reduction, in this section
we define a fuzzy Lyapunov function and then consider
stability conditions. The candidate Lyapunov function sat-
isfies the following conditions:

V is C1,

V (0) �= 0 and V (x(t)) > 0 for x(t) �= 0,

‖x(t)‖ −→ ∞ ⇒ V (x(t)) −→ ∞.

This fuzzy Lyapunov function is defined (Khalil,
1996; Tanaka et al., 2003) for studying the stability and
stabilization of the Takagi-Sugeno fuzzy system (2).

Definition 2. (Tanaka and Sugeno, 1992) Equation

V (x(t)) =
r∑

i=1

hi (z (t)) xT (t)Pix(t), (11)

where Pi is a positive definite matrix, is said to define a
fuzzy Lyapunov function for the Takagi-Sugeno fuzzy sys-
tem if the time derivative of V (x(t)) is always negative at
x (t) �= 0.

3. New Stabilization Approach

In this section, and based on the fuzzy Lyapunov func-
tion, we propose an approach that gives less conservative
stability conditions.

The key assumptions are as follows:

Assumption 1. The time derivative of the premise mem-
bership function is upper bounded such that |ḣi (z(t)) | ≤
φi for i = 1, . . . , r, where φi, i = 1, . . . , r, are given
positive constants.

Assumption 2. The local quadratic Lyapunov functions
xT (t)Pix(t), i = 1, . . . , r are proportionally related such
that Pj = αijPi for i, j = 1, . . . , r, where αij �= 1 and
αij > 0 for i �= j, and αij = 1 for i = j.

Theorem 2. Under Assumptions 1 and 2, the fuzzy sys-
tem (6) can be stabilized via the PDC fuzzy controller (3)
if there exist φρ, αij for i, j, ρ = 1, . . . , r, positive definite
matrices P1 , P2 , . . . ,Pr and matrices F1 , F2 , . . . ,Fr such
that

Pi > 0, i = 1, 2, . . . , r, (12)r∑

ρ=1

φρPρ +
(
GT

jjPi + PiGjj

)
< 0, i, j = 1, 2, . . . , r,

(13){
Gjk + Gkj

2

}T

Pi + Pi

{
Gjk + Gkj

2

}
< 0,

∀ i, j, k ∈ {1, 2, . . . , r} such that j < k, (14)

where Gjk = Aj − BjFk and Gjj = Aj − BjFj .

Proof. The candidate Lyapunov function is defined by

V (x(t)) =
r∑

i=1

hi (z (t))xT (t)Pix(t). (15)

The time derivative of V (x(t)) is calculated as

V̇ (x(t)) = ẋT (t)

(
r∑

i=1

hi (z(t))Pi

)
x(t)

+ xT (t)

(
r∑

ρ=1

ḣρ (z(t))Pρ

)
x(t)

+ xT (t)

(
r∑

i=1

hi (z (t)) Pi

)
ẋ(t). (16)

By substituting (7) into V̇ (x(t)), we obtain

V̇ (x(t))

=xT (t)

⎡

⎣
r∑

j=1

r∑

j=1

r∑

i=1

hj (z (t))hj (z(t))hi (z(t))GT
jjPi

+
r∑

j=1

∑

j<k

r∑

i=1

hj (z(t))hk (z(t))hi (z (t))

×
(

Gjk + Gkj

2

)T

Pi

+
r∑

ρ=1

ḣρ (z(t))Pρ

+
r∑

i=1

r∑

j=1

r∑

j=1

hi (z (t))hj (z(t))hj (z(t))PiGjj

+
r∑

i=1

r∑

j=1

∑

j<k

hi (z (t))hj (z(t))hk (z(t))Pi

×
(

Gjk + Gkj

2

)]
x(t), (17)

and, finally, one can write

V̇ (x(t))

=xT (t)

⎡

⎣
r∑

i=1

r∑

j=1

r∑

j=1

hi (z (t))hj (z(t))hj (z(t))

× (
GT

jjPi + PiGjj

)
+

r∑

ρ=1

ḣρ (z(t))Pρ

+
r∑

i=1

r∑

j=1

∑

j<k

hi (z (t))hj (z(t))hk (z(t))

×
((

Gjk+Gkj

2

)T

Pi+Pi

(
Gjk+Gkj

2

))]
x(t). (18)
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Under the assumption |ḣρ (z (t)) | ≤ φρ, (18) can be
rewritten as follows:

V̇ (x(t))

≤ xT (t)

⎡

⎣
r∑

i=1

r∑

j=1

r∑

j=1

hi (z(t))hj (z(t))hj (z(t))

× (
GT

jjPi + PiGjj

)
+

r∑

ρ=1

φρPρ

+
r∑

i=1

r∑

j=1

∑

j<k

hi (z (t))hj (z(t))hk (z(t))

×
((

Gjk+Gkj

2

)T

Pi+Pi

(
Gjk+Gkj

2

))]
x(t). (19)

If Eqns. (12)–(14) hold, the time derivative of the
fuzzy Lyapunov function is negative. Consequently, we
have

V̇ (x(t))

≤ xT (t)

⎡

⎣
r∑

i=1

r∑

j=1

hi (z(t))h2
j (z(t))

×
(
(
GT

jjPi + PiGjj

)
+

r∑

ρ=1

φρPρ

)

+
r∑

i=1

r∑

j=1

∑

j<k

hi (z(t))hj (z(t))hk (z (t))

×
((

Gjk+Gkj

2

)T

Pi+Pi

(
Gjk+Gkj

2

))]
x(t) < 0,

and the closed loop fuzzy system (6) is stable.

3.1. Constraint on the Time Derivative of the Premise
Membership Function. The conditions of Theorem 2
were derived by including an assumption on the time
derivative of the premise membership function

∣∣ḣρ (z(t))
∣∣ ≤ φρ for ρ = 1, . . . , r, (20)

so we need to select φρ to satisfy the constraint.
In this subsection, the constraint imposed on the time

derivative of the premise membership functions and hence
on the derivative of the state variable i.e., the speed vari-
able, is transformed into LMIs of Theorem 3 solved simul-
taneously with those of Theorem 2 to stabilize the Takagi-
Sugeno fuzzy systems. The new LMIs, which support
Assumption 1, allow us to increase the performance by
limiting the displacement rate in the polytope, implying a
facility to find the Lyapunov functions and thus a faster
stabilization.

Theorem 3. Assume that x (0) and z (0) are known. The
assumption (20) holds if there exist positive definite matri-
ces P1 , P2 , . . . ,Pr and matrices F1 , F2 , . . . ,Fr satisfying

[
1 xT (0)

x (0) P−1
i

]
≥ 0 for i = 1, . . . , r (21)

[
φρPi WT

ijρ�

Wijρ� φρI

]
≥ 0, ∀ i, j, ρ ∈ {1, 2, . . . , r} , ∀ �,

(22)
where Wijρ� = ξρ� (Ai − BiFj). The selection of ξρ�

is performed from ḣi(z(t)) by using a simple procedure
given in (Tanaka et al., 2001b) . However, it is to be noted
that the conditions of this theorem depend on initial states,
so the initial conditions should be known and for different
initial states we need to solve the LMIs again.

Proof. From (20) and for x(t) = z(t) we have

∣∣ḣρ (z(t))
∣∣ =

∣∣∣∣
∂hρ (z(t))

∂x(t)
ẋ(t)

∣∣∣∣ ≤ φρ. (23)

We also assume that

∂hρ (z(t))
∂x (t)

=
s∑

�=1

υρ� (z(t)) ξρ�, (24)

where υρ� (z(t)) ≥ 0 and
∑s

i�=1 υρ� (z(t)) = 1.

Using (24) we obtain LMIs that satisfy the assump-
tion (23).

From (23) we have

(
∂hρ (z(t))

∂x(t)
ẋ(t)

)T (
∂hρ (z(t))

∂x (t)
ẋ(t)

)
≤ φ2

ρ. (25)

Substituting (6) in (25), we obtain

[(
s∑

�=1

υρ� (z (t)) ξρ�

×
⎧
⎨

⎩

r∑

i=1

r∑

j=1

hi

(
z(t)

)
hj

(
z(t)

)
[Ai−BiFj ] x(t)

⎫
⎬

⎭

⎞

⎠
T

×
(

s∑

�=1

υρ� (z (t)) ξρ�

×
⎧
⎨

⎩

r∑

i=1

r∑

j=1

hi (z(t))hj (z(t)) [Ai − BiFj ] x(t)

⎫
⎬

⎭

⎞

⎠

⎤

⎦

≤ φ2
ρ. (26)
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Dividing by φ2
ρ, we obtain

1
φ2

ρ

xT (t)

[(
s∑

�=1

υρ� (z(t)) ξρ�

×
⎧
⎨

⎩

r∑

i=1

r∑

j=1

hi (z (t))hj (z(t)) [Ai − BiFj ]
T

⎫
⎬

⎭

⎞

⎠

×
(

s∑

�=1

υρ� (z (t)) ξρ�

×
⎧
⎨

⎩

r∑

i=1

r∑

j=1

hi (z(t))hj (z(t)) [Ai − BiFj ]

⎫
⎬

⎭

⎞

⎠

⎤

⎦x (t)

≤ 1. (27)

We assume that for the fuzzy Lyapunov function (11)
the inequality (28) holds (Bernal and Hušek, 2005; Tanaka
and Wang, 2001):

V (x(t)) ≤ V (x (0)) ≤ 1, t ≥ 0, (28)

i.e.,
r∑

i=1

hi (z(t))xT (t)Pix(t)

≤
r∑

i=1

hi (z (0))xT (0)Pix (0) ≤ 1. (29)

Then we have

1 −
r∑

i=1

hi (z (0))xT (0)Pix (0) ≥ 0, (30)

and

1 − xT (0)

(
r∑

i=1

hi (z (0))Pi

)
x (0) ≥ 0, (31)

which is expressed via LMIs using the Schur complement
as follows:

⎡

⎢⎢⎣

1 xT (0)

x (0)

(
r∑

i=1

hi (z (0))Pi

)−1

⎤

⎥⎥⎦ ≥ 0. (32)

This is implied by

[
1 xT (0)

x (0) P−1
i

]
≥ 0 for i = 1, . . . , r,

which leads to the LMI condition (21).

On the other hand, by considering (27) and (29), we
deduce that (23) holds if

1
φ2

ρ

[(
s∑

�=1

υρ� (z(t)) ξρ�

×
⎧
⎨

⎩

r∑

i=1

r∑

j=1

hi (z(t))hj (z(t)) [Ai − BiFj ]
T

⎫
⎬

⎭

⎞

⎠

×
(

s∑

�=1

υρ� (z (t)) ξρ�

×
⎧
⎨

⎩

r∑

i=1

r∑

j=1

hi (z(t))hj (z(t)) [Ai − BiFj ]

⎫
⎬

⎭

⎞

⎠

⎤

⎦

−
r∑

i=1

hi (z(t))Pi ≤ 0, (33)

which is equivalent to

⎡

⎢⎢⎢⎢⎣

φρ

r∑

i=1

hi (z(t))Pi

( s∑

�=1

υρ� (z(t)) ξρ�Q
T
)

( s∑

�=1

υρ� (z(t)) ξρ�Q
)

φρI

⎤

⎥⎥⎥⎥⎦
≥ 0,

(34)
where

Q =
r∑

i=1

r∑

j=1

hi (z (t)) hj (z(t)) [Ai − BiFj ] .

This leads to the LMI condition (22):
[

φρPi Wijρ�

Wijρ� φρI

]
≥ 0, ∀ i, j, ρ ∈ {1, 2, . . . , r} ∀ �,

where Wijρ� = ξρ� (Ai − BiFj).

3.2. Stable Fuzzy Controller Design. In this part we
are interested in non-quadratic stabilization of T-S fuzzy
models by using PDC laws. The fuzzy controller de-
sign is supposed to determine the local feedback gains
Fi for the closed-loop Takagi-Sugeno fuzzy system (6).
We define Xi = P−1

i , Fi = MiX
−1
i , X

i
= αijXj for

i, j = 1, . . . , r, where αij �= 1 and αij > 0 for i �= j,
and αij = 1 for i = j. By giving φρ > 0 and αij for
i, j, ρ = 1, . . . , r, we obtain the following LMIs condi-
tions that constitute a stable fuzzy controller design prob-
lem:

Xi > 0, i = 1, 2, . . . , r, (35)

r∑

ρ=1

φρXρ+XiA
T
j −αijM

T
j BT

j +AjXi−αijBjMj < 0,

i, j = 1, 2, . . . , r, (36)
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XiA
T
j − αikMT

k BT
j + XiA

T
k − αijM

T
j BT

k

+ AjXi − αikBjMk + AkXi − αijBkMj < 0.

for each setting of i, j, k ∈ {1, 2, . . . , r} such that j < k,
[

1 xT (0)
x (0) Xi

]
≥ 0 for i = 1, . . . , r, (37)

[
φρXi WT

ijρ�

Wijρ� φρI

]
≥ 0, ∀ i, j, ρ ∈ {1, 2, . . . , r} ∀ �,

(38)
where Wijρ� = ξρ� (AiXi − αijBiMj).

It is to be noted that from X
i

= αijXj we have
Xj = (1/αij)X

i
= αjiXi

, so that αij = 1/αji

∀, i, j ∈ {1, 2, . . . , r} , and hence, according to our pro-
posal and for given i and j, the relation αijαji = 1 is
used. The coefficients αij and φρ for i, j, ρ = 1, 2, . . . , r
and i �= j, can be chosen heuristically according to the
application considered. In particular, the φρ’s are chosen
in such a way so as to obtain a fast switching among IF–
THEN rules in order to keep the speed of response for a
closed-loop system (Tanaka et al., 2001b).

4. Design Examples

This part presents four different examples that illustrate
the effectiveness of the new non-quadratic stabilization
conditions that we propose in this paper.

Example 1. Consider the following fuzzy system (Tanaka
et al., 2001c) that shows the effectiveness of our approach
knowing that it admits also a quadratic stabilization:

ẋ(t) =
r∑

i=1

hi (z(t)) (Aix(t) + Biu(t)) , (39)

h1 (x1(t)) =
1+sinx1 (t)

2
, h2 (x1(t)) =

1−sinx1(t)
2

,

A1 =

[
−5 −4
−1 −2

]
, A2 =

[
−2 −4
20 −2

]
,

B1 =

[
0
10

]
, B2 =

[
0
3

]
.

For this fuzzy system, which admits a quadratic sta-
bilization and where it is assumed that |x1(t)| ≤ π/2
and |x2(t)| ≤ π/2. For α12 = 0.2, α21 = 1/α12,
φ1 = φ2 = 0.5 and ξ11 = 0, ξ12 = 0.5, ξ21 = −0.5,
ξ22 = 0, we obtain

F1 =
[
0.0262 0.1232

]
, P1 =

[
8.2039 1.0367
1.0367 3.0338

]
> 0,

F2 =
[
−3.4925 1.9967

]
, P2 =

[
30.5563 −6.3970
−6.3970 4.7558

]
>0.

which depend on the initial conditions and satisfy the
LMIs given in Theorems 2 and 3 simultaneously.

The new PDC fuzzy controller design condition has
feasible solutions for different initial conditions and hence
stabilizes the system. Figure 1 shows the evolution of
the states and the control input for the initial condition
x (0) = [ 1 1 ]T . As can be seen, the conservatism re-
duction leads to very interesting results regarding fast con-
vergence in the stabilization of this Takagi Sugeno fuzzy
system. �
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Fig. 1. Simulation results for Example 1.

Example 2. This is another example which does admit a
single Lyapunov function (Morère, 2001). The utility of
the proposed conditions is shown by the obtained results.
We have

h1 (x1(t)) =
1
π

[π

2
− tan−1

(
x1(t)

)]
,

h2 (x1 (t)) =
1
π

[π

2
+ tan−1

(
x1 (t)

)]
,

A1 =

[
0.1000 −1.0000
−0.2500 1.0000

]
, A2 =

[
1.0000 0.5000
0.7500 2.0000

]
,

B1 =

[
−0.6500
−0.2000

]
, B2 =

[
−1.0000
−0.0500

]
.

The design of a state-feedback controller using a global
Lyapunov function is not possible since the LMI prob-
lem (8) is infeasible. However, if we consider local Lya-
punov functions, the LMI problem (35)–(39) is feasible.
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Our approach gives feasible solutions for different initial
conditions, and hence stabilizes the system.

For α12 = 1.5, α21 = 1/α12, φ1 = φ2 = 5, and
ξ11 = 0.25, ξ12 = 0.75, ξ21 = 0.25, ξ22 = 0.75, we
obtain

P1 =

[
12.1789 −104.4753

−104.4753 997.4141

]
> 0,

P2 =

[
12.3823 −103.6178

−103.6178 989.7426

]
> 0,

F1 =
[

14.1362 −211.3544
]
,

F2 =
[
−0.3676 −72.8607

]
.

Figure 2 shows the evolution of the system states and
control for the initial values x (0) = [ 0.1 0.1 ]T .

�
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Fig. 2. Simulation results for Example 2.

Example 3. (An inverted pendulum on a cart) Consider
now the problem of balancing and swinging-up an in-
verted pendulum on a cart using the proposed approach.
The equations of motion are (Tanaka and Wang, 2001):

x1(t) = x2(t),

ẋ2(t) =
1

4/3l − aml cos2 (x1(t))

×
[
g sin (x1(t)) − (1/2)amlx2

2(t) sin (2x1(t))

− a cos (x1(t)) u(t)
]
, (40)

where x1(t) denotes the angle (in radians) of the pendu-
lum from the vertical axis and x2(t) is the angular veloc-
ity, g = 9.8 m/s2 is the gravity constant, m is the mass of
the pendulum, M is the mass of the car, 2l is the length
of the pendulum, u [N] is the force applied to the cart and
a = 1/ (m + M). For the simulations, the values of the
parameters are m = 2.0 kg, M = 8.0 kg, 2l = 1.0 m.

The control objective for this example is to bal-
ance the inverted pendulum for the approximate range
x1 ∈ (−π/2, π/2) by using our fuzzy controller. The
system (41) is modelled by the following two fuzzy rules:

Rule 1: IF x1(t) is about 0

THEN ẋ(t) = A1x(t) + B1u (t) ,

Rule 2: IF x1(t) is about ± π/2 (|x1| < π/2)
THEN ẋ(t) = A2x(t) + B2u (t) ,

where

A1 =

⎡

⎣
0 1
2g

4l/3−aml
0

⎤

⎦, A2 =

⎡

⎣
0 1
2g

π (4l/3−amlβ2)
0

⎤

⎦,

B1 =

⎡

⎣
0

− a

4l/3−aml

⎤

⎦, B2 =

⎡

⎢⎣
0

− aβ

4l/3−amlβ2

⎤

⎥⎦

and β = cos (88◦).

The PDC control laws are as follows:

Rule 1 : IF x1(t) is about 0 THEN u(t) = −F1x(t),

Rule 2 : IF x1(t) is about ± π/2 (|x1| < π/2)
THEN u (t) = −F2x(t).

Hence the control law that grantees the stability of the
fuzzy control system is given by

u(t) = −h1 (x1(t)) F1x(t) − h2 (x1(t))F2x(t), (41)

where h1 and h2 are the membership values of Rules 1
and 2, respectively.

Applying our approach, the objective of balancing
and stabilizing the pendulum is reached with success for
different initial conditions of x1 ∈ (−π/2, π/2) and
x2 = 0. For α12 = 1.3, α21 = 1/α12, φ1 = φ2 = π/1.5
and ξ11 = −2/π, ξ12 = 2/π, ξ21 = −2/π, ξ22 = 2/π,
we obtain the following P1, P2, F1 and F2 for each initial
condition:
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For x (0) = [ π/6 0 ]T we have

P1 =

[
57.7603 23.2068
23.2068 10.3697

]
> 0,

P2 =

[
58.1998 17.5082
17.5082 6.1428

]
> 0,

F1 =
[
−630.7446 −164.6591

]
,

F2 = 10−3
[
−1.2396 −0.2958

]
.

For x (0) = [ π/4 0 ]T we have

P1 =

[
32.0668 13.1229
13.1229 6.4541

]
> 0,

P2 =

[
39.1987 11.4436
11.4436 4.1936

]
> 0,

F1 =
[
−530.6214 −127.4777

]
,

F2 = 103
[
−1.0859 −0.2427

]
.

For x (0) = [ π/3 0 ]T , we get

P1 =

[
27.3149 10.8202
10.8202 5.6005

]
> 0,

P2 =

[
51.3551 14.8473
14.8473 5.3225

]
> 0,

F1 =
[
−502.4650 −115.6213

]
,

F2 = 103
[
−1.3235 −0.3102

]
.

Figure 3 shows the evolution of the inverted pendu-
lum position, velocity and control force for different initial
conditions. �

Example 4. (A two-link robot) To show the effective-
ness of our approach, we apply it to a more complicated
system, i.e., a two-link robot manipulator. The dynamic
equation of the two-link robot system is as follows:

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ, (42)

where

M (q)=

[
(m1 + m2) l21 m2l1l2 (s1s2 + c1c2)

m2l1l2 (s1s2 + c1c2) m2l
2
2

]
,

C (q, q̇) = m2l1l2 (c1s2 + s1c2)

[
0 −q̇2

−q̇1 0

]
,

G (q) =

[
− (m1 + m2) l1gs1

−m2l2gs2

]
,
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Fig. 3. Simulation results for Example 3.

and q = [q1, q2]
T , q1 and q2 being generalized coordi-

nates, M(q) is the inertia matrix, C(q, q̇) includes Corio-
lis, centripetal forces, and G(q) is the gravitational force.
The different parameters are: link mass m1, m2 [kg], link
length l1, l2 [m], angular position q1, q2 [rad], applied
torques τ = [ τ1 τ2 ]T (N − m), and acceleration due
to gravity g = 9.8 (m/s2). We also introduce the com-
pact notation s1 = sin(q1), s2 = sin(q2), c1 = cos(q1),
and c2 = cos(q2). Let x1 = q1, x2 = q̇1, x3 = q2 and
x4 = q̇2. The state space representation is given by

ẋ1 = x2,

ẋ2 = f1 (x) + g11 (x) τ1 + g12τ2,

ẋ3 = x4,

ẋ4 = f2 (x) + g21 (x) τ1 + g22τ2,

y1 = x1,

y2 = x3. (43)

See (Tsen et al., 2001) for more details concerning f1 (x) ,
f2 (x), g11 (x), g12, g21 (x) and g22.

The objective is fuzzy stabilization of the two-link
robot using our approach. The link masses are m1 =
1 [kg], m2 = 1 [kg], the link lengths are l1 = 1 [m],
l2 = 1 [m] and angular positions q1, q2 are constrained
within [− (π/2) , (π/2)]. The T-S fuzzy model is given
by the following nine rules whose membership functions
are of triangular forms (Tsen et al., 2001):

Rule 1: IF x1(t) is about − π/2 and x3(t) is about π/2
THEN ẋ(t) = A1x(t) + B1u (t) , y = C1x(t),
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Rule 2: IF x1(t) is about − π/2 and x3(t) is about 0
THEN ẋ(t) = A2x(t) + B2u (t) , y = C2x(t),

Rule 3: IF x1(t) is about −π/2 and x3(t) is about −π/2
THEN ẋ(t) = A3x(t) + B3u (t) , y = C3x(t),

Rule 4: IF x1(t) is about 0 and x3(t) is about − π/2
THEN ẋ(t) = A4x(t) + B4u(t), y = C4x(t),

Rule 5: IF x1(t) is about 0 and x3(t) is about 0
THEN ẋ(t) = A5x(t) + B5u(t), y = C5x(t),

Rule 6: IF x1(t) is about 0 and x3(t) is about π/2
THEN ẋ(t) = A6x(t) + B6u(t), y = C6x(t),

Rule 7: IF x1(t) is about π/2 and x3(t) is about − π/2
THEN ẋ(t) = A7x(t) + B7u (t) , y = C7x(t),

Rule 8: IF x1(t) is about π/2 and x3(t) is about 0
THEN ẋ(t) = A8x(t) + B8u (t) , y = C8x(t),

Rule 9: IF x1(t) is about π/2 and x3(t) is about π/2
THEN ẋ(t) = A9x(t) + B9u (t) , y = C9x(t),

where x = [x1, x2, x3, x4]
T , u = [τ1, τ2]

T , and the local
models matrices given by

A1 =

⎡

⎢⎢⎢⎣

0 1 0 0
5.927 −0.001 −0.315 −8.4 × 10−6

0 0 0 1
−6.859 0.002 3.155 6.2 × 10−6

⎤

⎥⎥⎥⎦ ,

A2 =

⎡

⎢⎢⎢⎣

0 1 0 0
3.0428 −0.0011 0.1791 −0.0002

0 0 0 1
3.5436 0.0313 2.5611 1.14 × 10−5

⎤

⎥⎥⎥⎦ ,

A3 =

⎡

⎢⎢⎢⎣

0 1 0 0
6.2728 0.0030 0.4339 −0.0001

0 0 0 1
9.1041 0.0158 −1.0574 −3.2 × 10−5

⎤

⎥⎥⎥⎦ ,

A4 =

⎡

⎢⎢⎢⎣

0 1 0 0
6.4535 0.0017 1.2427 0.0002

0 0 0 1
−3.1873 −0.0306 5.1911 −1.8 × 10−6

⎤

⎥⎥⎥⎦,

A5 =

⎡

⎢⎢⎢⎣

0 1 0 0
11.1336 0.0 −1.8145 0.0

0 0 0 1
−9.0918 0.0 9.1638 0.0

⎤

⎥⎥⎥⎦ ,

A6 =

⎡

⎢⎢⎢⎣

0 1 0 0
6.1702 −0.0010 1.6870 −0.0002

0 0 0 1
−2.3559 0.0314 4.5298 1.1 × 10−5

⎤

⎥⎥⎥⎦ ,

A7 =

⎡

⎢⎢⎢⎣

0 1 0 0
6.1206 −0.0041 0.6205 0.0001

0 0 0 1
8.8794 −0.0193 −1.0119 4.4 × 10−5

⎤

⎥⎥⎥⎦ ,

A8 =

⎡

⎢⎢⎢⎣

0 1 0 0
3.6421 0.0018 0.0721 0.0002

0 0 0 1
2.4290 −0.0305 2.9832 1.9 × 10−5

⎤

⎥⎥⎥⎦ ,

A9 =

⎡

⎢⎢⎢⎣

0 1 0 0
6.2933 −0.0009 −0.2188 −1.2 × 10−5

0 0 0 1
−7.4649 0.0024 3.2693 9.2 × 10−6

⎤

⎥⎥⎥⎦,

B1 =

⎡

⎢⎢⎢⎣

0 0
1 −1
0 0
−1 2

⎤

⎥⎥⎥⎦ , B2 =

⎡

⎢⎢⎢⎣

0 0
0.5 0
0 0
0 1

⎤

⎥⎥⎥⎦ ,

B3 =

⎡

⎢⎢⎢⎣

0 0
1 1
0 0
1 2

⎤

⎥⎥⎥⎦ , B4 =

⎡

⎢⎢⎢⎣

0 0
0.5 0
0 0
0 1

⎤

⎥⎥⎥⎦ ,

B5 =

⎡

⎢⎢⎢⎣

0 0
1 −1
0 0
−1 2

⎤

⎥⎥⎥⎦ , B6 =

⎡

⎢⎢⎢⎣

0 0
0.5 0
0 0
0 1

⎤

⎥⎥⎥⎦ ,

B7 =

⎡

⎢⎢⎢⎣

0 0
1 1
0 0
1 2

⎤

⎥⎥⎥⎦ , B8 =

⎡

⎢⎢⎢⎣

0 0
0.5 0
0 0
0 1

⎤

⎥⎥⎥⎦ ,

B9 =

⎡

⎢⎢⎢⎣

0 0
1 −1
0 0
−1 2

⎤

⎥⎥⎥⎦ , Ci =

[
1 0 0 0
0 0 1 0

]
.

For α12 = 1.2, α13 = 0.66, α14 = 0.9, α15 = 0.8,
α16 = 0.7, α17 = 1.5, α19 = 1.1, α23 = 1.6, α24 =
1.18, α25 = 1.05, α26 = 1.9, α27 = 1.99, α28 = 0.99,
α29 = 0.77, α34 = 0.88, α35 = 1.33, α36 = 1.4, α37 =
1.7, α38 = 1.66, α39 = 1.56, α45 = 1.48, α46 = 1.39,
α47 = 1.69, α48 = 1.11, α49 = 1.88, α56 = 2.1, α57 =
2.2, α58 = 1.61, α37 = 1.7, α38 = 1.66, α39 = 1.56,
α45 = 1.48, α46 = 1.39, α47 = 1.69, α48 = 1.11, α49 =
1.88, α56 = 2.1, α57 = 2.2, α58 = 1.61, α59 = 1.23,
α67 = 2.11, α68 = 2.2, α69 = 1.52, α78 = 0.78, α78 =
0.98, α79 = 0.82 ,φ1 = 1, φ2 = 1.5, φ3 = 1.2, φ4 = 2,
φ5 = 1.6, φ6 = 1.8, φ7 = 2.5, φ8 = 2.2, φ9 = 2.4,
ξ11 = 0, ξ12 = 2/π, ξ21 = 0, ξ22 = 2/π, ξ31 = −4/π,
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ξ32 = 0, ξ41 = −2/π, ξ42 = 0, ξ51 = 0, ξ52 = 4/π,
ξ61 = 2/π, ξ62 = 4/π, ξ71 = −2/π, ξ72 = 0, ξ81 = 2/π,
ξ82 = 4/π, ξ91 = 0, ξ92 = 4/π, we obtain the following
Pi and Fi for i = 1, . . . , 9:

P1 =

⎡

⎢⎢⎢⎣

0.0044 0.0005 −0.0002 −0.0000
0.0005 0.0001 0.0000 0.0000
−0.0002 0.0000 0.0180 0.0011
−0.0000 0.0000 0.0011 0.0001

⎤

⎥⎥⎥⎦> 0,

P2 =

⎡

⎢⎢⎢⎣

0.0063 0.0007 −0.0003 −0.0000
0.0007 0.0001 0.0000 0.0000
−0.0003 0.0000 0.0238 0.0014
−0.0000 0.0000 0.0014 0.0001

⎤

⎥⎥⎥⎦> 0,

P3 =

⎡

⎢⎢⎢⎣

0.0052 0.0006 −0.0003 −0.0000
0.0006 0.0001 0.0000 0.0000
−0.0003 0.0000 0.0206 0.0012
−0.0000 0.0000 0.0012 0.0001

⎤

⎥⎥⎥⎦> 0,

P4 =

⎡

⎢⎢⎢⎣

0.0081 0.0008 −0.0004 −0.0001
0.0008 0.0001 0.0000 −0.0000
−0.0004 0.0000 0.0286 0.0014
−0.0001 −0.0000 0.0014 0.0001

⎤

⎥⎥⎥⎦> 0,

P5 =

⎡

⎢⎢⎢⎣

0.0066 0.0007 −0.0004 −0.0000
0.0007 0.0001 0.0001 0.0000
−0.0004 0.0001 0.0249 0.0014
−0.0000 0.0000 0.0014 0.0001

⎤

⎥⎥⎥⎦> 0,

P6 =

⎡

⎢⎢⎢⎣

0.0073 0.0007 −0.0004 −0.0001
0.0007 0.0001 0.0001 −0.0000
−0.0004 0.0001 0.0268 0.0015
−0.0001 −0.0000 0.0015 0.0001

⎤

⎥⎥⎥⎦> 0,

P7 =

⎡

⎢⎢⎢⎣

0.0098 0.0008 −0.0005 −0.0002
0.0008 0.0001 −0.0001 −0.0000
−0.0005 −0.0001 0.0321 0.0018
−0.0002 −0.0000 0.0018 0.0001

⎤

⎥⎥⎥⎦> 0,

P8 =

⎡

⎢⎢⎢⎣

0.0089 0.0007 −0.0003 −0.0001
0.0007 0.0001 −0.0001 −0.0000
−0.0003 −0.0001 0.0303 0.0016
−0.0001 −0.0000 0.0016 0.0001

⎤

⎥⎥⎥⎦> 0,

P9 =

⎡

⎢⎢⎢⎣

0.0095 0.0006 −0.0004 0.0001
−0.0006 0.0001 0.0001 0.0000
−0.0004 0.0001 0.0316 0.0002
0.0001 0.0000 0.0002 0.0001

⎤

⎥⎥⎥⎦> 0,

F1 = 104

[
0.1972 0.0304 1.5274 0.0935
−0.1281 −0.0118 1.0172 0.0685

]
,

F2 = 103

[
7.1742 0.7969 −0.8884 −0.0548
0.9590 0.1227 7.8326 0.5126

]
,

F3 = 103

[
6.0170 0.6897 −3.3359 −0.2237
−2.7700 −0.3101 3.3993 0.2093

]
,

F4 = 103

[
8.4037 0.8734 0.3998 −0.0322
0.2103 0.0442 7.2717 0.3699

]
,

F5 = 103

[
9.4557 1.0430 1.7476 0.0815
5.8559 0.6682 5.5596 0.3062

]
,

F6 = 103

[
6.9498 0.7022 1.4199 0.0196
0.8046 0.1075 6.1771 0.3639

]
,

F7 = 103

[
5.1527 0.4600 1.4825 −0.0170
−3.5642 −0.3247 2.7930 0.2575

]
,

F8 = 103

[
−3.5642 −0.3247 2.7930 0.2575
−0.0917 −0.0166 4.9180 0.2621

]
,

F9 = 103

[
4.7285 −0.1862 1.7978 0.2830
0.4183 0.2383 −5.1097 0.5124

]
.

The control objective for this example is to stabilize
the two-link robot using the proposed approach. Satis-
factory and less conservative results are obtained, show-
ing the effectiveness of our approach. Figure 4 shows the
evolution of the states and control torques for the initial
values x (0) = [ π/3 0 π/6 0 ]T . �

5. Conclusion

This paper presents a new fuzzy Lyapunov approach to the
stabilization of Takagi-Sugeno fuzzy models, based on a
fuzzy Lyapunov function, which is defined by fuzzily mix-
ing quadratic Lyapunov functions. Conditions are derived
in a logical way while taking full advantage of the fuzzy
Lyapunov function and making two assumptions that con-
cern a proportional relation between multiple quadratic
Lyapunov functions and an upper bound to the time deriv-
ative of the premise membership function for which the
respective LMIs that support it in Theorem 3 are solved
with those of Theorem 2 to stabilize the system. Hence,
the PDC procedure of constructing local feedback gains
is simple and can be solved effectively by optimization
solvers. Our approach leads to less conservative results
and very good effects are obtained for various examples,
even for those that do not admit a single Lyapunov func-
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Fig. 4. Simulation results for Example 4.

tion, thus illustrating the effeciency of the proposed stabi-
lization approach.
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