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A new kind of linear model with partially variant coefficients is proposed and a series of iterative algorithms are introduced
and verified. The new generalized linear model includes the ordinary linear regression model as a special case. The iterative
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parameters. An important application is described at the end of this article, which shows that this new model is reasonable
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1. Introduction

In the last centuries, many statisticians and mathemati-
cians have considered the following kind of linear regres-
sion model:

Yi = Biβ + εi, (1)

where Yi ∈ R
p, Bi ∈ R

p×r (i = 1, 2, . . . , n) and the
vector β ∈ R

r is a constant parameter vector to be es-
timated while εi ∈ R

p are errors from measurements or
stochastic noise from disturbances.

Some excellent theories and practical results were
published for statistical inference and stochastic decisions
under this model. This model was also successfully used
in many different kinds of practical fields (see Draper and
Smith, 1981; Frank and Harrell, 2002; Graybill and Iyer,
1994; Hu and Sun, 2001).

Further research into this model shows that the lim-
itation of constant coefficients in (1) is very rigorous and
critical. In other words, there are some practical situa-
tions in which this linear model cannot be applied (see
Brown, 1964; Hu and Sun, 2001). Although statisticians

and researchers (see Fahrmeier and Tutz, 2001; Dodge
and Kova, 2000) have done a lot to generalize and/or to
adapt the linear model (2), the limitation on constant co-
efficients has not been essentially untied.

In order to overcome this limitation on the model
structure, we set up a new linear model with partially vari-
ant coefficients as follows:

Yi = AiXi + Bifβ + εi, (2)

where Yi ∈ R
p, Ai ∈ R

p×q, Bi ∈ R
p×r, and a variant

vector series {Xi ∈ R
q}. Generally, the dimension p of

the measurement output must be greater than the dimen-
sion q of the variant coefficient, i.e., p > q, so as to assure
that the structure of the time-variant multidimensional lin-
ear system is identifiable.

Obviously, the ordinary linear regression model (1) is
just a special case of the generalized model (2). If there are
not any time-variant parts, namely, q = 0, the model (2)
degenerates to the ordinary linear model (1).

In Section 2, much attention is paid to estimate all
the model coefficients in (2) under the Gauss-Markov as-
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sumptions (in Kala R. and Kłaczyński K., 1988). A series
of iterative algorithms are built to estimate the coefficients
which include the constant parameters β ∈ R

r and the
variant vector series {Xi ∈ R

q}. In Section 3, a practical
application is described and computation results show that
this new model is valuable.

2. Iterative Estimators of Variant
Coefficients

In order to make the results of this section universal,
we assume first that the coefficient series {Xi ∈ R

q}
are not related at different sampling points. For sim-
plicity, we adapt the notation of stacked vectors Φn =
(βτ , Xτ

1 , . . . , Xτ
n)τ ∈ R

r+nq, where the superscript τ
denotes the matrix transpose. Moreover,

Hn =

⎛
⎜⎜⎝

B1 A1 . . . 0
...

...
. . .

...

Bn 0 · · · An

⎞
⎟⎟⎠ ∈ R

np×(r+nq). (3)

Under the following famous Gauss-Markov assump-
tions (Kala R. and Kłaczyński K., 1988; Rencher, 2000)
on random errors { εi ∈ R

p}:

(i) the error εi has expected value 0;

(ii) the errors series { εi, i = 1, 2, . . . } are uncorrelated,
and

(iii) the error series { εi, i = 1, 2, . . .} are homoscedas-
tic, i.e.,

they all have the same variance, the least-squares (LS) es-
timators of coefficients in the model (2) can be expressed
as follows:

Φ̂LS(n)
n

= arg min
{β∈Rp,Xi∈Rq}

n∑
i=1

‖Yi − (AiXi+Biβ)‖2. (4)

We can directly deduce a compact formula, which is very
similar to the LS estimators of the model (1). The com-
pact formula of the LS estimator of the coefficients in the
model (2) is as follows:

Φ̂LS(n)
n = (Hτ

nHn)−1Hτ
nȲn, (5)

where Ȳn = (Y τ
1 , . . . , Y τ

n )τ ∈ R
np.

In order to guarantee that the matrix Hτ
nHn is in-

vertible, the dimensions of the model (2) must satisfy the
requirement p > q and the sample cardinality must sat-
isfy n > r/(p − q). Otherwise, the matrix inversion in
(5) must be replaced by the pseudo-inverse operator “+”,
namely, (Hτ

nHn)+.

Theorem 1. Assume that the number of sampling points is
n > r/(p− q), where the LS estimators of the coefficients
in the model (2) can be iteratively expressed by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂LS(n+1) = β̂LS(n) + (Ln + Bτ
n+1Bn+1)−1

× Bτ
n+1(R

−1
n+1 − Ξn+1)

× Rn+1(Yn+1 − Bn+1β̂
LS(n)),

X̂
LS(n+1)
i = X̂

LS(n)
i + (Aτ

i Ai)−1Aτ
i Bi

× (β̂LS(n) − β̂LS(n+1)),
X̂

LS(n+1)
n+1 = (Aτ

n+1Rn+1An+1)−1Aτ
n+1Rn+1

× (Yn+1 − Bn+1β̂
LS(n)),

(6)

where

Ln =
n∑

i=1

Bτ
i [I − Ai(Aτ

i Ai)−1Aτ
i ]Bi ∈ R

r×r,

Ξn+1 = An+1(Aτ
n+1Rn+1An+1)−1Aτ

n+1∈R
p×p,

Rn+1 = I−Bn+1(Ln+Bτ
n+1Bn+1)−1Bτ

n+1∈R
p×p

.

Here the superscript in X̂
LS(n)
i denotes the LS estimators

of Xi, i = 1, 2, . . . , n.
The proof of Theorem 1 is given in Appendix.
Obviously, the algorithm (6) is iterative and very

common in practical engineering fields. Some obvious
advantages are the following:

• β̂LS(n+1) is a linear combination of the estimator
β̂LS(n) with innovation Yn+1 − Bn+1β̂

LS(n) from
new sampling data.

• β̂LS(n+1)can be computed from the estimator
β̂LS(n) without directly involving old sampling
data {Yi, i = 1, . . . , n} as well as the estimates

{X̂LS(n)
i }.

• It is reasonable that the estimators X̂
LS(n+1)
n+1 are de-

termined with innovation {Yn+1 − Bn+1β̂
LS(n)}.

• The estimate X̂
LS(n+1)
i of Xi (i ≤ n) can be ad-

justed accurately in succession with the estimator er-
ror of the constant parameter vector β.

In order to use these iterative algorithms to effec-
tively solve practical problems, the initial estimates of the
iterative algorithms (6) must be carefully selected. Gener-
ally, the initial estimators can be selected as the LS esti-
mators processed in batch as follows:

Φ̂LS(n0)
n0

= (Hτ
n0

Hn0)
−1Hτ

n0
Ȳn0 , (7)

where n0 ∈ N must satisfy the constraint

n0 >
r

(p − q)
.
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If the disturbance {εn ∈ R
p, n ≤ n0} is a stationary

Gaussian white noise process with zero mean, then it can
be easily shown that the ordinary LS estimators given by
(4) are unbiased.

Theorem 2. Given the LS estimators (7) as an initial es-
timate of the coefficients of (2), if the disturbance {εn ∈
R

p, n ∈ N} is a stationary Gaussian white noise process
with zero mean, then the iterative estimators (6) are unbi-
ased.

Proof. We just have to show that Eβ̂LS(n) = β. We get

E{β̂LS(n)} = E{β̂LS(n−1)} + L̃−1
n Bτ

n[R−1
n −Ξn]Rn

×
(
AnXn + Bn(β − E{β̂LS(n−1)})

)

= β + L̃−1
n Bτ

n

[
I − An(Aτ

nRnAn)−1

×Aτ
nRn

]
AnXn = β, (8)

where

L̃n =
n−1∑
i=1

Bτ
i

[
I − Ai(Aτ

i A+
i )Aτ

i

]
Bi + Bτ

nBn.

Using (6), we get

E{X̂LS(n)
i } = E{X̂LS(n−1)

i } + (Aτ
i Ai)−1Aτ

i Bi

×
(
E{β̂LS(n−1)} − E{β̂LS(n)}

)

= Xi + (Aτ
i Ai)−1Aτ

i Bi(β − β) = Xi,

i = 1, 2, . . . , n − 1, (9)

E{X̂LS(n)
n } = (Aτ

nRnAn)−1
Aτ

nRn

×
(
E{Yn} − BnE{β̂LS(n−1)}

)

= (Aτ
nRnAn)−1

Aτ
nRnAnXn = Xn.

(10)

Mathematical induction is implicitly used in the
above proof, which justifies its correctness.

3. Applications

The new linear model (2) can be widely used in many dif-
ferent fields, e.g., in data fusion, in modeling and identi-
fying a computer controlled system, in signal processing,
in spacecraft control engineering, etc. In this section, we
present an application of the model (2) to the trajectory of
a rocket.

Suppose that there are m transducers which are suit-
ably located at different sites. These m devices are simul-
taneously used to track a carrying rocket M in space. Us-
ing these transducers, we get a series of measurement data
{(Aj(ti), Ej(ti)) | i = 1, 2, . . . , n; j = 1, 2, . . . , m},
where Aj(ti) denotes the azimuth and Ej(ti) denotes the
elevation of the rocket M at time ti with respect to a ref-
erence frame fixed at the center of Transducer j.

In order to simplify the expressions below, we use
a simplified notation such as Aij = Aj(ti) and Eij =
Ej(ti), etc. Accordingly, the error decomposition models
used in determining the location of the spacecraft M can
be set up as follows (Brown, 1964; Hu and Sun, 2001):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aij = tan−1

(
x−x0j

y−y0j

)
+αj1+αj3tan(Eij)sin(Aij)

+αj4tan(Eij) cos(Aij) + αj5tan(Eij)
+αj6sec(Eij)+εAij ,

Eij = tan−1

(
z − z0j

[(x − x0j)2+(y − y0j)2]1/2

)
+αj2

+αj3cos(Aij)−αj4sin(Aij) + εEij ,

(11)

where the coefficients (αj1, αj2) are non-zero errors of
Transducer j used to measure the azimuth and eleva-
tion of the spacecraft, the vectors (αj3, . . . , αj6) are non-
orthogonal coefficients representing measurement errors
arising from departures from right angles between each
pair of axes in measurement equipment (the mechani-
cal axis, the laser axis and the electrical axis) separately,
(εA, εE) are stochastic errors included in the measure-
ment data.

Assuming that we get a series of imprecise location
data

�p ∗
i = (x∗

i , y
∗
i , z∗i )

for the spacecraft M at different sampling times ti (i =
1, 2, . . . ), what we want to do is to estimate all of the in-
strument error coefficients as well as the precise location
of the spacecraft M .

According to the geometrical relationship between
the ordinates and measurement data from radars, two
functions are defined as follows:

fj(x, y, z) = tan−1

(
x − x0j

y − y0j

)
,

gj(x, y, z) = tan−1

(
z − z0j

[(x − x0j)2 + (y − y0j)2]1/2

)
,

and the design matrix is

Θij

=

[
1 0 tan (Eij) sin(Aij) tan (Eij) cos(Aij)

0 1 cos(Aij) − sin(Aij)

tan (Eij) sec(Eij)

0 0

]
.
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Then we get the following linear model:

[
ΔÃij

ΔẼij

]
= Jj(�Pi)

∣∣∣
�P=�P∗

i

⎛
⎜⎝

Δxi

Δyi

Δzi

⎞
⎟⎠

+ Θij

⎛
⎜⎜⎝

aj1

...

aj6

⎞
⎟⎟⎠+

[
εAij

εEij

]
, (12)

for j = 1, . . . and i = 1, 2, . . . , where ΔÃij = Aij −
fj(�P ∗

i )ΔẼij = Eij − gj(�P ∗
i ),

J1(�P ) =
∂(fj, gj)
∂(x, y, z)

,

Integrating all m instruments, we get the following inte-
grated error decomposition model:

⎡
⎢⎢⎢⎢⎢⎢⎣

ΔÃi1

ΔẼi1

...

ΔÃim

ΔẼim

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎝

J1(�P )
...

Jm(�P )

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
�P=�P∗

i

⎛
⎜⎝

Δxi

Δyi

Δzi

⎞
⎟⎠

+ B̄i

⎛
⎜⎜⎝

α11

...

αm6

⎞
⎟⎟⎠+

⎡
⎢⎢⎢⎢⎢⎢⎣

εAi1

εEi1

...

εAim

εEim

⎤
⎥⎥⎥⎥⎥⎥⎦

,

i = 1, 2, . . . (13)

where B̄i = diag{Θi1, . . . , Θim}.
Obviously, the model (13) is very similar to the lin-

ear model (2) with partially variant parameters. Conse-
quently, we can use the iterative algorithm (6) to calibrate
the error coefficients in the transducers and, at the same
time, to accurately determine the rocket trajectory.

In our simulations, there are four transducers track-
ing a rocket in space. Selecting the computation parameter
n0 = 100[s], we use (6) to get the modification values.

Table 1 contains the estimated values of the error
coefficients estimated at 110 seconds. Table 2 includes
inerements in the rocket trajectories after n0 = 100[s].

The computation results given in Tables 1 and 2 show
that the iterative algorithms given in Section 2 not only
decrease the computation time, but also efficiently mod-
ify the precision of the rocket trajectory. What is more,
this practical application shows that this new kind of linear
model with variant coefficients is reasonable and valuable
not only in theory, but also in various engineering fields.

Table 1. Estimation of error coefficients.
[mrad]

Transducer αj1 αj2 αj3 αj4 αj5 αj6

i = 1 1.203 0.686 0.018 −0.006 0.006 0.003

i = 2 −0.058 −0.070 −0.000 0.000 −0.000 0.001

i = 3 1.087 −1.837 0.041 −0.016 −0.019 −0.004

i = 4 −0.514 1.449 −0.024 0.009 0.015 0.001

Table 2. Increments in values of trajectories.
[m]

i = 100+ Δxi Δyi Δzi

1 −0.662445 0.631514 0.001622

2 −0.763551 0.687524 −0.006546

3 −0.760541 0.677017 −0.012729

4 −0.752472 0.673932 −0.017189

5 −0.793005 0.699980 −0.023827

6 0.835997 0.730210 −0.029760

7 −0.832480 0.731190 −0.036693

8 −0.802443 0.710644 −0.037840

9 −0.739471 0.661947 −0.036633

10 −0.739483 0.660732 −0.038780

4. Discussion

The paper not only presents a new kind of linear model,
but also builds a series of convenient algorithms. This
new model usefully generalized the widely used ordinary
linear regression model. The new model can be used in
many different kinds of fields, e.g., in data fusion, process
monitoring, control engineering, etc.

As for the new algorithms, their advantages are evi-
dent. Obviously, if we use the old LS algorithm (5), we
must compute the inverse of a large matrix (Hτ

nHn)−1 ∈
R

(r+nq)×(r+nq). What is more, its dimension is contin-
ually increased as long as the number n of samples in-
creases or the process moves on. On the other hand, if
we use the new iterative algorithm (6), we just need to
deal with a series of lower-dimensional inverse matrices,
the highest dimension of which is equal to max{p, q, r}.
In fact, the iterative algorithm (6) involves three inverse
matrices (Aτ

i Ai)−1 ∈ R
q×q , R−1

n+1 ∈ R
p×p and (Ln +

Bτ
n+1Bn+1)−1 ∈ R

r×r.
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Appendix

In order to prove Theorem 1, recall two lemmas without
proofs. They are fundamental in linear algebra.

Lemma 1. If a block matrix A and its submatrix A11 in
A are invertible, then we have

(
A11 A12

A21 A22

)−1

=

(
A−1

11 0
0 0

)

+

(
A−1

11 A12

−I

)
(A22−A21A

−1
11 A12)−1(A21A

−1
11

... − I).

(A1)

Similarly, if a matrix A and its submatrix A22 are invert-
ible, then we have

(
A11 A12

A21 A22

)−1

=

(
0 0
0 A−1

22

)

+

(
−I

A−1
22 A21

)
(A11−A12A

−1
22 A21)−1(−I

...A12A
−1
22 )

(A2)

Lemma 2. If matrices F and G are invertible and an
inverse matrix (F − HG−1K)−1 exists, then

(F−HG−1K)−1

= F−1 + F−1H(G−KF−1H)−1KF−1. (A3)

The proofs of these two lemmas can be found in the
references (Draper and Smith, 1981).

Proof of Theorem 1. With the model (2) and n samples,
Eqn. (5) shows that the LS estimator is

Φ̂LS(n)
n = (Hτ

nHn)−1Hτ
nȲn.

If there is another sampling datum

Yn+1 = An+1Xn+1 + Bn+1β + εn+1

which has been added into the sampling set, the LS es-
timators of all the coefficients in the model (2) must be
changed in accordance with the following expressions:

Φ̂LS(n+1)
n+1 = (Ψτ

nΨn)−1Ψτ
n

[
Ȳn

Yn+1

]

=

[
D11 Cτ

n+1An+1

Aτ
n+1Cn+1 Aτ

n+1An+1

]−1

Ψτ
n

×
[

Ȳn

Yn+1

]
, (A4)

where

Φ̂LS(n+1)
n+1 =

[
Φ̂LS(n+1)

n

X̂
LS(n+1)
n+1

]
, Ψn =

[
Hn 0

Cn+1 An+1

]
,

Cn+1 = (Bn+1, 0) ∈ R
p×(q+nq)

D11 = Hτ
nHn + Cτ

n+1Cn+1.
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Now, using the notation

D22 = Aτ
n+1An+1, D12 = Cτ

n+1An+1,

Ω = D22 − D21D
−1
11 D12,

the following formula can be directly derived from
Lemma 1:
(

Φ̂LS(n+1)
n

X̂
LS(n+1)
n+1

)

=

{(
D−1

11 0
0 0

)
+

(
D−1

11 D12

−I

)
Ω−1

(
D21D

−1
11

... − I

)}(
Hτ

nȲn + Cτ
n+1Yn+1

Aτ
n+1Yn+1

)

= EnHτ
nȲn + FnYn+1, (A5)

where

Fn =

⎛
⎜⎜⎝

D−1
11 [Cτ

n+1 + D12Ω−1D21D
−1
11 Cτ

n+1

−D12Ω−1Aτ
n+1]

−Ω−1[D21D
−1
11 Cτ

n+1 − Aτ
n+1]

⎞
⎟⎟⎠

and

En =

(
D−1

11 + D−1
11 D12Ω−1D21D

−1
11

−Ω−1D21D
−1
11

)
.

Step 1. We analyze the expression En. From the expres-
sion for the block matrix D11 and Lemma 1 we have

D−1
11

=

⎡
⎢⎢⎢⎢⎢⎢⎣

n+1∑
i=1

Bτ
l Bi Bτ

1 A1 · · · Bτ
nAn

Aτ
1B1 Aτ

1A1 · · · 0
...

...
. . .

...

Aτ
nBn 0 · · · Aτ

nAn

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

.

It can be shown that the first r rows of the matrix
D−1

11
can be expressed as follows:

D−1
11

=

⎡
⎢⎢⎢⎣

(
n+1∑
i=1

Bτ
i Bi−

n+1∑
i=1

Bτ
i UiA

τ
i Bi

)−1

∗

−Tn

(
n+1∑
i=1

Bτ
i Bi−

n+1∑
i=1

Bτ
i UiA

τ
i Bi

)−1

∗

⎤
⎥⎥⎥⎦,

(A6)

where

Ui = Ai(Aτ
i Ai)−1, Tn =

[
Bτ

1U1, . . . , B
τ
nUn

]τ

,

and the asterisk ‘*’ denotes an omitted matrix block which
is rather complicated and does not have any effect on the
following deduction process.

Analyzing the formulas for the matrix blocks D22

and D12 = D21, we get
D−1

11 + D−1
11 D12Ω−1D21D

−1
11

=
{
I + D−1

11 Cτ
nVn+1Cn+1

}
D−1

11 , (A7)

where
Vn+1 = An+1(Aτ

n+1An+1

− Aτ
n+1Cn+1D

−1
11 Cτ

n+1An+1)−1Aτ
n+1,

and

D−1
11 Cτ

nVn+1Cn+1

= D−1
11

(
Bτ

n+1An+1W
−1
k+1A

τ
n+1Bn+1 0

0 0

)

=

(
L̃−1

n+1B
τ
n+1An+1W

−1
k+1A

τ
n+1Bn+1 0

−TnL̃−1
n+1B

τ
n+1An+1W

−1
k+1A

τ
n+1Bn+1 0

)
,

(A8)

where

Wk+1 = Aτ
n+1(I − Bn+1L̃

−1
n+1B

τ
n+1)An+1,

L̃n+1 =
n∑

i=1

Bτ
i [I − UiA

τ
i ]Bi + Bτ

n+1Bn+1.

The matrix D−1
11 can be expressed as follows:

D−1
11 = (Hτ

nHn)−1 − (Hτ
nHn)−1

Cτ
n+1

×
[
I + Cτ

n+1(H
τ
nHn)−1

Cτ
n+1

]−1

× Cn+1(H
τ
nHn)−1

. (A9)

On second thoughts, using the notation

Ln =
n∑

i=1

Bτ
i

[
I − Ai(Aτ

i Ai)
−1Aτ

i

]
Bi,

we have

(Hτ
nHn)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

Bτ
1Bi Bτ

1 A1 . . . Bτ
nAn

Aτ
1B1 Aτ

1A1 . . . 0
...

...
. . .

...

Aτ
nBn 0 · · · Aτ

nAn

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

=

(
L−1

n −L−1
n T τ

n

−TnL−1
n ∗

)
, (A10)

so we get

D−1
11 =

{
I −

(
L−1

n Z̃n+1 0

−TnL−1
n Z̃n+1 0

)}
(Hτ

nHn)−1
,

(A11)

where Z̃n+1 = Bτ
n+1(I + Bn+1L

−1
n Bτ

n+1)
−1

Bn+1.
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On the other hand, the matrix Ω−1D21 =(D22 −
D21D

−1
11 D12)

−1
D21can be simplified as follows:

Ω−1D21 =
{

Aτ
n+1(I − Cn+1D

−1
11 Cτ

n+1)An+1

}−1

×Aτ
n+1Cn+1

=
{

Aτ
n+1(I − Bn+1L̃

−1
n+1B

τ
n+1)An+1)

−1
}

×Aτ
n+1(Bn+1,0 · · ·0). (A12)

Write

Qn+1 = {Aτ
n+1(I − Bn+1L̃

−1
n+1B

τ
n+1)An+1}−1,

× Aτ
n+1Bn+1

Pn+1 = Bτ
n+1An+1Qn+1.

Then

Ω−1D21D
−1
11

= (Qn+1,0p×nq)

{
I −

(
L−1

n Z̃n+1 0

−TnL−1
n Z̃n+1 0

)}

×(Hτ
nHn)−1

= (Qn+1[I − L−1
n Z̃n+1]

... 0)(Hτ
nHn)−1 (A13)

and

D−1
11 + D−1

11 D12Ω−1D21D
−1
11

=

{
I +

(
L−1

n+1Pn+1 0

TnL̃−1
n+1Pn+1 0

)}

×
{

I−
(

L−1
n Z̃n+1 0

−TnL−1
n Z̃n+1 0

)}
(Hτ

nHn)−1

=

⎛
⎝I+L̃−1

n+1Pn+1−(I+L̃n+1Pn+1)L−1
n Z̃n+1 0

−TnL̃−1
n+1Pn+1+Tn(L̃−1

n+1Pn+1+I)L−1
n Z̃n+1 I

⎞
⎠

×(Hτ
nHn)−1

. (A14)

Combining (A5), (A13) and (A14), we get

En =

⎛
⎜⎜⎝

I + L̃−1
n+1Pn+1(I − Ẽn) − Ẽn 0

−Tn[L̃−1
n+1Pn+1(I − Ẽn) − Ẽn] I

−Qn+1(I − Ẽ(n)) 0

⎞
⎟⎟⎠

×(Hτ
nHn)−1, (A15)

where Ẽn = L−1
n Z̃n+1. Using

L̃−1
n+1 = (Ln + Bτ

n+1Bn+1)
−1

= L−1
n − L−1

n Z̃n+1L
−1
n ,

we get

I − Ẽn = L−1
n+1Ln. (A16)

Consequently, Eqn. (25) can be expressed as

En =

⎛
⎜⎜⎝

I + Lp
n+1 + L̃−1

n+1[Ln − L̃−1
n+1] 0

−Tn[Lp
n+1 + L̃−1

n+1(Ln − L̃−1
n+1)] I

−Qn+1L̃
−1
n+1Ln 0

⎞
⎟⎟⎠

×(Hτ
nHn)−1

, (A17)

where Lp
n+1 = L̃−1

n+1Pn+1L̃
−1
n+1Ln.

Step 2. Let us analyze the expression for Fn. From (A 6),
we have

D12Ω−1D21D
−1
11 Cτ

n+1

= Cτ
n+1An+1Ω

−1Aτ
n+1Cn+1D

−1
11 Cτ

n+1.

Thus,

D12Ω−1D21D
−1
11 Cτ

n+1

=

⎛
⎜⎜⎜⎜⎝

Bτ
n+1An+1Ω

−1Aτ
n+1Bn+1 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠

×
(

L̃−1
n+1 −L̃−1

n+1T
τ
n

−TnL̃−1
n+1 ∗

)(
Bτ

n+1

0

)

=

(
Bτ

n+1An+1Ω
−1Aτ

n+1Bn+1L̃
−1
n+1Bn+1

0

)
(A18)

and we have the following four equations:

D−1
11

[
D12Ω−1D21D

−1
11 Cτ

n+1

]

=

(
L̃−1

n+1 −L̃−1
n+1T

τ
n

−TnL̃−1
n+1 ∗

)(
Mn+1

0

)

=

(
L̃−1

n+1Mn+1

−TnL̃−1
n+1Mn+1

)
, (A19)

D−1
11 Cτ

n+1 =

(
L̃−1

n+1 −L̃−1
n+1T

τ
n

−TnL̃−1
n+1 ∗

)(
Bτ

n+1

0

)

=

(
L̃−1

n+1B
τ
n+1

−TnL̃−1
n+1B

τ
n+1

)
, (A20)

D−1
11 D12Ω−1Aτ

n+1 = D−1
11 Cτ

n+1An+1Ω
−1Aτ

n+1

=

(
L̃−1

n+1B
τ
n+1An+1Ω

−1Aτ
n+1

−TnL̃−1
n+1B

τ
n+1An+1Ω

−1Aτ
n+1

)
, (A21)

Ω−1D21D
−1
11 Cτ

n+1 = Ω−1Aτ
n+1Bn+1L̃

−1
n+1B

τ
n+1,
(A22)
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where

Mn+1 = Bτ
n+1An+1Ω

−1Aτ
n+1Bn+1L̃

−1
n+1Bn+1.

Inserting (A19)–(A22) into the expression for Fn

which was defined in (A 5), we immediately have
Fn

=

⎛
⎜⎜⎝
L̃−1

n+1(B
τ
n+1+Mn+1−Bτ

n+1An+1Ω−1Aτ
n+1)

−TnL̃−1
n+1(B

τ
n+1+Mn+1−Bτ

n+1An+1Ω−1Aτ
n+1)

−Q−1(Aτ
n+1Bn+1L̃

−1
n+1B

τ
n+1−Aτ

n+1)

⎞
⎟⎟⎠

(A23)

From the definition of Ω and Eqn. (A16), we have

Ω = Aτ
n+1An+1 − Aτ

n+1Cn+1D
−1
11 Cτ

n+1An+1

= Aτ
n+1An+1 − Aτ

n+1Bn+1L̃
−1
n+1B

τ
n+1An+1

= Aτ
n+1(I−Bn+1L̃

−1
n+1B

τ
n+1)An+1.

Hence

Ω−1 = [Aτ
n+1Rn+1An+1]

−1
, (A24)

where Rn+1 = I − Bn+1L̃
−1
n+1B

τ
n+1. Inserting (A18)

and (A24) into (A23), we have
Fn

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L̃−1
n+1B

τ
n+1[I − An+1(Aτ

n+1Rn+1An+1)
−1

Aτ
n+1Rn+1]

−TnL̃−1
n+1B

τ
n+1[I − An+1(Aτ

n+1Rn+1An+1)
−1

Aτ
n+1Rn+1]

(Aτ
n+1Rn+1An+1)

−1
Aτ

n+1Rn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A25)

Step 3. From Steps 1 and 2, integrating (A18) and (A26)
into (A6), we immediately get the following expression:
(

Φ̂LS(n+1)
n

X̂
LS(n+1)
n+1

)
= Ma

n+1Φ̂
LS(n)
n + M b

n+1Yn+1, (A26)

where

Ma
n+1

=

⎛
⎜⎜⎜⎝

I + L̃−1
n+1Pn+1L̃

−1
n+1Ln − L̃−1

n+1B
τ
n+1Bn+1 0

−Tn(L̃−1
n+1Pn+1L̃

−1
n+1Ln − L̃−1

n+1B
τ
n+1Bn+1) I

−Qn+1L̃
−1
n+1Ln 0

⎞
⎟⎟⎟⎠,

M b
n+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

L̃−1
n+1B

τ
n+1

[
I − An+1

(
Aτ

n+1Rn+1An+1

)−1

Aτ
n+1Rn+1

]

−TnL̃−1
n+1B

τ
n+1

[
I−An+1

(
Aτ

n+1Rn+1An+1

)−1

Aτ
n+1Rn+1]
(
Aτ

n+1Rn+1An+1

)−1
Aτ

n+1Rn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Setting

Ξn+1 = An+1(Aτ
n+1Rn+1An+1)

−1
Aτ

n+1,

we have

Pn+1L̃
−1
n+1Lnβ̂LS(n)

−Bτ
n+1An+1(Aτ

n+1Rn+1An+1)−1Aτ
n+1Rn+1Yn+1

= Bτ
n+1Ξn+1Bn+1L̃

−1
n+1Lnβ̂LS(n)

− Bτ
n+1Ξn+1Rn+1Yn+1

= Bτ
n+1Ξn+1

[
Bn+1L̃

−1
n+1Lnβ̂LS(n) − Rn+1Yn+1

]

and

Bn+1L̃
−1
n+1Lnβ̂LS(n) − Rn+1Yn+1

= Bn+1(I − L̃−1
n+1B

τ
n+1Bn+1)β̂LS(n)

− (I − Bτ
n+1L̃

−1
n+1Bn+1)Yn+1

= (Bn+1L̃
−1
n+1B

τ
n+1 − I)(Yn+1 − Bn+1β̂

LS(n))

= −Rn+1(Yn+1 − Bn+1β̂
LS(n)).

Consequently, decomposing the matrix equation
(A26) into appropriate blocks, we get

β̂LS(n+1)

= β̂LS(n) + L̃−1
n+1

[
Pn+1L̃

−1
n+1Lnβ̂LS(n)

− Bτ
n+1Ξn+1Rn+1Yn+1

]

+ L̃−1
n+1Bn+1(Yn+1 − Bn+1β̂

LS(n))

= β̂LS(n) + [L̃−1
n+1B

τ
n+1 − L̃−1

n+1B
τ
n+1Ξn+1Rn+1]

× (Yn+1 − Bn+1β̂
LS(n))

= β̂LS(n) + L̃−1
n+1B

τ
n+1[R

−1
n+1 − Ξn+1]

× Rn+1(Yn+1 − Bn+1β̂
LS(n)) (A27)

and⎛
⎜⎜⎝

X̂
LS(n+1)
1

...

X̂
LS(n+1)
n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

X̂
LS(n)
1

...

X̂
LS(n)
n

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝

(Aτ
1A1)−1Aτ

1B1

...

(Aτ
nAn)−1Aτ

nBn

⎞
⎟⎟⎠ L̃−1

n+1B
τ
n+1

× (R−1
n+1 − Ξn+1

)
Rn+1

(
Yn − Bn+1β̂

LS(n)
)
.

(A28)

From (A28), for i = 1, 2, . . . , n, we have

X̂
LS(n+1)
i = X̂

LS(n)
i

+ (Aτ
i Ai)

−1
Aτ

i Bi(β̂LS(n) − β̂LS(n+1)) (A29)
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and

X̂
LS(n+1)
n+1 = −Qn+1L̃

−1
n+1Lnβ̂LS(n)

+ (Aτ
n+1Rn+1An+1)

−1
Aτ

n+1Rn+1An+1

=
(
Aτ

n+1Rn+1An+1

)−1
Aτ

n+1

× (Rn+1Yn+1 − Bn+1L̃
−1
n+1Lnβ̂LS(n))

=
(
Aτ

n+1Rn+1An+1

)−1
Aτ

n+1

× (Rn+1Yn+1 − Rn+1Bn+1β̂
LS(n)

)

=
(
Aτ

n+1Rn+1An+1

)−1
Aτ

n+1Rn+1

× (Yn+1 − Bn+1β̂
LS(n)

)
. (A30)

Integrating (A27)–(A30), the results of Theorem 1
are obtained.
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