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The paper presents a new Artificial Neural Network (ANN) encoding method called Assembler Encoding (AE). It assumes
that the ANN is encoded in the form of a program (Assembler Encoding Program, AEP) of a linear organization and of a
structure similar to the structure of a simple assembler program. The task of the AEP is to create a Connectivity Matrix
(CM) which can be transformed into the ANN of any architecture. To create AEPs, and in consequence ANNs, genetic
algorithms (GAs) are used. In addition to the outline of AE, the paper also presents a new AEP encoding method, i.e., the
method used to represent the AEP in the form of a chromosome or a set of chromosomes. The proposed method assumes
the evolution of individual components of AEPs, i.e., operations and data, in separate populations. To test the method,
experiments in two areas were carried out, i.e., in optimization and in a predator-prey problem. In the first case, the task of
AE was to create matrices which constituted a solution to the optimization problem. In the second case, AE was responsible
for constructing neural controllers used to control artificial predators whose task was to capture a fast-moving prey.
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1. Introduction

ANNs constitute a sub-domain of artificial intelligence
that is broadly used to solve various problems in diffe-
rent fields (e.g., pattern classification, function approxi-
mation, optimization, image compression, associative me-
mories, robot control problems, etc.). The performance of
ANNs highly depends on two factors, i.e., the network
topology and the set of network parameters (typically we-
ights). Therefore, to develop an appropriate network, it
is necessary to determine the architecture and parameters.
There are many different ANN learning algorithms that
change values of parameters leaving the structure comple-
tely intact. In such a case, the process of searching for
a proper network topology is the task of a network desi-
gner who arbitrarily chooses the network structure, starts
network learning and finally puts the network to a test. If
the result of the test is satisfactory, the learning process
is stopped. If not, it is continued. The designer manu-
ally determines the next potential network topology and
runs the learning algorithm again. Such a loop-topology
determination and learning procedure is repeated until the
network, which is able to carry out a dedicated task at an
appropriate level, is found. At a first glance, it is apparent
that such a procedure could be very time-consuming and,

what is worse, in the case of more complex problems it
can lead to a situation when all chosen and trained net-
works would be incapable of solving the task.

In addition to the learning concept presented above,
there exist other approaches that can be called constructive
and destructive. The former use the learning philosophy
that consists in an incremental development of the ANN
starting from a small architecture. Initially, the ANN has
a small number of components to which next components
are gradually added until a resultant network fully meets
the requirements imposed. In turn, the latter prepare a
large fully connected ANN and then try to remove indi-
vidual elements of the network, such as synaptic connec-
tions and neurons.

Genetic Algorithms (GAs) are the next technique that
has been successfully applied in recent years to search for
effective ANNs (Curran and O’Riordan, 2002; Floreano
and Urzelai, 2000; Mandischer, 1993). A GA processes a
population of genotypes that typically encode one pheno-
type, although encoding several phenotypes is also possi-
ble. In an ANN evolution, genotypes are encodings of the
corresponding ANNs (phenotypes). The evolutionary pro-
cedure works by selecting genotypes (encoded networks)
for reproduction based on their fitness, and then by intro-
ducing genetically changed offspring (mutation, crossover
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and other genetic operators) into a newly created popula-
tion. Repeating the whole procedure over many genera-
tions causes the population of encoded networks to gradu-
ally evolve into individuals that correspond to high fitness
phenotypes (ANNs).

The paper presents a new ANN encoding method cal-
led Assembler Encoding (AE). AE originates from the cel-
lular (Gruau, 1994) and edge encoding (Luke and Spector,
1996), although it also has features common with Linear
Genetic Programming presented, among other things, in
(Krawiec and Bhanu, 2005; Nordin et al., 1999). In AE
the network is represented as a structure similar to a sim-
ple assembler program. The Assembler Encoding Pro-
gram (AEP) contains an executive part with operations,
a part with data, and it operates on a Connectivity Ma-
trix (CM) that indicates the strength of every interneuron
connection. AE has many variants (Praczyk, 2007). Each
variant uses a different AEP encoding method, i.e., the
method used to represent the AEP in the form of a chro-
mosome or a set of chromosomes, and a different method
used to construct a modular ANN. The paper proposes a
new AEP encoding scheme. It is an adaptation of the idea
of evolving co-adapted subcomponents proposed by Pot-
ter and De Jong (Potter and De Jong, 1994; Potter and De
Jong, 1995; Potter 1997; Potter and De Jong, 2000). The
scheme proposed assumes a separate evolution of indivi-
dual elements of AEPs, i.e., operations and data. Each
AEP is composed of operations and data from various po-
pulations. The procedure of adding and replacing popu-
lations with operations and data is applied to regulate the
length of AEPs.

The scheme proposed was tested on optimization and
predator-prey problems. In the first case, the task of AEPs
was not to construct ANNs but to build solutions to several
optimization problems. In the second case, AEPs perfor-
med a task consistent with the main area of application
of AE, i.e., they were used to create ANNs. ANNs were
in turn responsible for the control of artificial predators
whose task was to capture a fast moving prey.

The article is organized as follows: Related research
is reviewed in the next section. Section 3 is a short intro-
duction to AE. A detailed presentation of proposed con-
cept is included in Sections 4–6. The results of the experi-
ments for the optimization problem are presented in Sec-
tion 7. Section 8 illustrates the results of experiments con-
ducted for the predator-prey problem, and a summary is
drawn in Section 9.

2. Related Work
In recent years, many attempts have been made to de-
fine genotypes for neural networks and to describe the
genotype-into-phenotype mapping process. One of the
earliest concepts was proposed by Miller et al. (1989).
Their approach consists in the application of a Connec-

tivity Matrix (CM). Each element of the matrix informs
about the existence of a connection between two neurons
or about the lack of such a connection.

Moriarty and Miikkulainen (1998) proposed a Sym-
biotic Adaptive NeuroEvolution (SANE). Their concept
assumes that information necessary to create a network
is included in two types of individuals, i.e., in blueprints
and in neurons encoded. Both types of individuals evo-
lve in separate populations. The task of blueprints is to
record the most effective combinations of neurons. Each
blueprint specifies a set of neurons that cooperate well to-
gether. The population of neurons includes individuals
encoding hidden neurons of a two-layered feed-forward
ANN. Each individual from the population of neurons de-
fines connections of the neuron with input and output neu-
rons and the strength of every connection.

Kitano (1990) defined the matrix rewriting encoding
scheme. Initially, the method assumes 2 × 2 matrix that
contains nonterminal elements. These elements are sub-
sequently substituted for matrices including other nonter-
minal or terminal elements. This process is repeated until
the resultant enlarged matrix contains only terminals that
indicate the existence of a connection between neurons or
the lack of such a connection.

In the Nolfi and Parisi model (Nolfi and Parisi, 1992),
the genotype defines the location of each neuron in a
two-dimensional space and growth parameters of neuron
axons. The neurons that are in the left part of the space
are considered to be input neurons and the ones placed
in the right are considered to be output neurons. The re-
maining neurons are hidden neurons. After the location
phase, axons of neurons start to grow further according to
an assumed procedure. The connection between neurons
is established if the branching axon of a source neuron re-
aches another neuron.

A natural continuation of Nolfi and Parisi’s work is
the concept proposed by Cangelosi et al. (1994). They
decided to substitute the direct encoding of the location
of neurons (in the chromosome) for the procedure of cell
division and cell migration. One mother cell splits into
“daughter" cells which, in turn, split into next cells. The
division process is repeated for a number of generations
after which all created cells become mature (become neu-
rons). Apart from the division, the cells can be subjected
to migration that consists in locating each cell near the
mother cell. Once the division and migration procedure is
completed, the axon growth phase occurs which runs in a
similar way as in the scheme proposed by Nolfi and Parisi
(1992).

The chromosome in Gruau’s cellular encoding
(Gruau, 1994; Gruau, 1995; Gruau et al., 1996; Whitley
et al., 1995) contains a set of instructions that are applied
to a network consisting initially of one hidden node. The
network evolves towards larger structures during succes-
sive executions of individual instructions. The instruc-
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tions are organized into a tree and include operations such
as node duplication, node division, the removal of con-
nectivity and many others. A very important feature of
cellular encoding is its potential to build modular ANNs
consisting of similar elements located in various places of
a network. This potential is a result of applying a set of
trees (with instructions) instead of applying a single tree,
and repeated execution of instructions grouped in each of
them. The result of such a procedure is analogous to mul-
tiple procedure execution in the main body of the struc-
tural program. Another crucial characteristic of cellular
encoding is the form of the chromosome—a tree. Due to
this feature the only evolutionary technique which is ap-
plicable to process individuals constructed in this way is
genetic programming.

The related encoding method is edge encoding pro-
posed by Luke and Spector (1996). Their scheme uses
edge operators instead of node instructions. A network
grows through adding, removing, and executing opera-
tions on edges, and not on nodes as was the case in cel-
lular encoding. The remaining aspects of both encoding
methods are conceptually very similar.

3. Fundamentals of Assembler Encoding
AE, like cellular and edge encodings, creates an ANN by
means of a program. However, there are two significant
differences between the above-mentioned schemes. Fir-
stly, the chromosomes in AE are programs, procedures,
operations or data encoded in the form of linearly ordered
sequences of genes, while in the cellular and edge enco-
ding chromosomes take the form of trees. Secondly, the
execution of individual instructions in AE does not cre-
ate a network directly, as in cellular and edge encodings.
AEPs operate on the data structure which is Miller, Todd
and Hedge’s CM (Miller et al., 1989). Initially, the CM is
designed and once the AEP stops an appropriate network
is constructed.

There are three key elements of AE: the AEP, the CM
and two auxiliary registers. The AEP is an ordered set of
procedures, which in turn are composed of a sequence of
operations (code part of the procedure) and data (memory
part of the procedure). The parameters of the procedures
determine which part of the CM is altered by the proce-
dure. Operations included in the procedures also possess
parameters. The performance of the AEP consists in run-
ning all procedures in turn. Operations included in every
procedure are executed one after another, changing ele-
ments of the CM (initially all elements in the matrix are
set to 0, as there are not any connections between neu-
rons). They alter one or more elements of the CM. The
kind of change depends on the type of operation while the
address of the change is located in the registers and para-
meters of the operation. A detailed analysis of the role of
registers is presented in the section where the construction

of modular ANNs is described. Once the execution of the
AEP is finished, the ANN is created based on the CM ge-
nerated by the program. Figure 2 depicts a diagram of AE.

 

Fig. 1. Connectivity matrix.

The CM determines the ANN architecture. Each ele-
ment of the matrix determines a synaptic weight between
the corresponding neurons. For example, componenti,j
defines the link from neuron i to neuron j. Elements of
the CM that are unimportant from the point of view of
the process of ANN construction, e.g., because of the as-
sumed feed-forward topology of the network, are neglec-
ted during ANN building. Apart from the basic part, the
CM also possesses additional columns that describe neu-
ron parameters, e.g., neuron type (sigmoidal, radial), bias,
etc.

 

Fig. 2. Diagram of AE with a single procedure.

4. Operations
The basic task of operations is to change CM elements.
The change can involve a single component or a larger set
of matrix components. The simplest operation changes
a single element in the matrix. The change location is
determined in one of the parameters of the operation and
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in registers while the change value is located in another
parameter of the operation.

The exact implementation of the operation changing
a single element of the CM is presented in Fig. 3. In the
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Fig. 3. CHG operation changing a single CM element.

example, we assume that every operation can have maxi-
mally four parameters. Parameters that are unimportant
for the implementation of the operation can be omitted
and are marked with the don’t care symbol “#”. The fol-
lowing notation is used: C[i, j] is an element of the CM,
i = 1, . . . , N , j = 1, . . . , M, where N and M denote the
size of the CM, Ri determine the value of the i-th register,
i = 1, 2, Max_value is a scaling value, which scales all
elements of the CM to the range [−1, 1]. Additionally, the
following symbols will also be used: D[i] – i-th datum in
the memory part of the AEP, DLength – number of memory
cells.

As regards the operations that alter a larger group
of CM elements, the following operations can be imagi-
ned: the change of the whole row or column, the change
of a group of elements indicated by memory cells (and
registers), the determination of elements of a given row
(column) as the sum (difference) of other two rows (co-
lumns), the addition (subtraction) of some constant value
to all elements of a row (column), etc. In the case of ope-
rations used to change a group of elements, information
involving both the address of the change and the value of
the change is usually placed in the memory. Each ope-
ration determines only a pointer indicating an address in
the memory where this information is accessible. In order
to illustrate the way the operations are constructed, two
examples are presented.

Both examples present a column of the CM change
operation. CHGC6 fills the whole column indicated by
p0 and R2 with a value from another column (pointed by
p1), whereas CHGC0 uses data from memory. Here p1

indicates the place in the memory part of the AEP where
new values for the column elements are located.

To create an effective AEP consisting of operations
presented above, it is necessary not only to find appro-
priate operations and data, but also to put them in a right
sequence. Another approach is to exclusively use opera-
tions whose working effect does not depend on their se-
quence, e.g., operations whose outcome is a sum of the
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Fig. 4. CHGC0 operation changing a part of the CM column.
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Fig. 5. CHGC6 operation changing the whole column of
the CM.

value that constitutes a parameter of the operation and the
value from the CM. (In this case the values of the CM are
not scaled to an acceptable range until the whole program
stops working). In this solution any sequence of opera-
tions in the AEP yields the same result (in fact, some addi-
tional assumptions have to be fulfilled to obtain such a re-
sult, see further). Examples of modifications of sequence-
dependent operations are shown below.
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Fig. 6. Modification of the CHG operation.
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Fig. 7. Modification of the CHGC6 operation.

5. Modular Networks
We propose two methods that make it possible to create
modular networks. Both methods execute the same piece
of code many times but in different places of the CM.
The first method is a simple jump operation. It deter-
mines the place in the code part of the procedure where
processing should continue (the jump operation is restric-
ted to the part of the procedure that precedes the jump;
only backward jumps are acceptable). It also determines
the number of jumps and the place in the memory where
new values of registers are placed. The construction of
jump causes the same part of the code to be run in diffe-
rent locations of the CM, i.e., locations indicated by values
of registers that are changed at the very start of the jump
operation.

 

Fig. 8. Illustration of the jump operation.

Figure 8 shows the situation in which the jump ope-
ration denoted by JMP is run twice. The sequence of two
operations (Operation 0 and Operation1) is executed three
times, but each time in a different place of the CM. The
first time, operations are executed for initial values of re-
gisters. The second time, after the first activation of the

jump, registers are changed to R1 = 0 and R2 = 2. The
last execution of the two operations is connected with the
following values of registers: R1 = 2, R2 = 2.

The second method that makes it possible to create
modular networks is the application of procedures. Each
procedure can be run many times, each time in a different
place of the CM. Repeated execution of the same proce-
dure makes the effect of its work visible in many areas of
the CM. Owing to the application of registers, the proce-
dure can be executed in different regions of the CM. Every
change in the CM is made with respect to them. In order
to execute the procedure in different places of the CM, it
suffices to change the values of registers beforehand. New
values for registers are stored in the main program (AEP).
The program executes procedures in sequence, changing
the values of registers before invoking each of them.

 

Fig. 9. Illustration of the procedure.

6. Encoding the AEP into the Chromo-
some(s)

In order to use evolutionary techniques to search for ef-
fective AEPs, it is required to present the whole informa-
tion necessary to construct the program in the form of a
chromosome or a set of chromosomes. The simplest AEP
encoding scheme consists in placing the whole AEP in
one chromosome (Fig. 10). Let us call this scheme as
Scheme 1. In this solution, a single chromosome conta-
ins the whole information necessary to create the AEP,
i.e., the initial size of the CM, the sequence of operations
(a single-procedure AEP is assumed) and data. In order to
know where the borderline between operations and data is,
the chromosome includes an additional field storing this
kind of information.

The next possibility of encoding the AEP is to locate
its components in different chromosomes. For example,
one population can store chromosome operations, the next
one chromosome data and the last population can contain
chromosome programs with pointers to individuals from
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the remaining two populations (Fig. 11). Let us call the
scheme described above Scheme 2.

This solution is similar to Moriarty and Miikku-
lainen’s SANE approach (Moriarty and Miikkulainen,
1998), in which we have a population of blueprints and
a population of neurons. Chromosome programs are equ-
ivalents of blueprints in the solution being considered that
determine which operations and data cooperate well to-
gether, whereas chromosome operations and chromosome
data are counterparts of neurons from the SANE which
determine the partial architecture of the ANN.

 

Fig. 10. AEP encoded into a single chromosome.

 

Fig. 11. AEP portioned into individuals from three different po-
pulations (programs, operations and data).

The next AEP encoding scheme, called Scheme 3, is
a slight modification of Scheme 2. Whereas Scheme 2
uses sequence dependent operations, Scheme 3 is the
only scheme presented in the paper which uses operations
whose sequence does not affect the working effect of the
AEP. To make AEPs completely independent of the sequ-
ence of operations, no change in the values of registers
can take place in the middle of the run of the AEP. If such
a change happened, different CMs could be produced by
means of different sequences of operations. To prevent it,
one copy of a jump is always located at the end of each
AEP generated. Additionally, the jump mentioned always
indicates the first operation in the AEP. This way, a single
execution of the whole sequence of operations preceding
the jump is always performed in the same area of the CM.

The AEP whose structure is depicted in Fig. 12
can be encoded in the way similar to that AEPs are

produced with Scheme 2. In this case, to gene-
rate the AEP, the following set of chromosomes is re-
quired: chromosome-program, chromosome-operations,
chromosome-jump-operation and chromosome-data. All
chromosomes mentioned come from separate populations.

In this paper, we want to suggest another AEP enco-
ding method whose main idea was borrowed from (Pot-
ter and De Jong, 1994; Potter and De Jong, 1995; Potter
1997; Potter and De Jong, 2000). To create the AEP the
proposed scheme, called Scheme 4 (Fig. 13), combines
operations and data from various populations. Each po-
pulation of chromosome-operations has an assigned num-
ber determining the position of the operation from the
population in the AEP. In this approach, the number of
operations corresponds to the number of populations of
chromosome-operations. Each population delegates exac-
tly one representative to each AEP created. At the be-
ginning, AEPs have only one operation and a sequence of
data. Both the operation and data come from two different
populations. Further populations of operations are suc-
cessively added if the generated AEPs cannot accomplish
an improvement in the performance over some assumed
number of co-evolutionary cycles (we used the term “co-
evolutionary cycle” to distinguish it from evolutionary ge-
neration that takes place inside a single population of ope-
rations and data).

Populations of operations and data can also be re-
placed by newly created populations. This may happen
if the contribution of a population (contribution of opera-
tions from a population) to the creation of AEPs is con-
siderably less than the contribution of the remaining po-
pulations. In our experiments, the contribution of a given
population was measured as an average fitness of opera-
tions contained in that population.

The proposed approach makes it possible to gene-
rate many different AEPs as there are many combinations
of operations from different populations. In order to re-
strict the number of possible AEPs generated in each co-
evolutionary cycle, we used the solution proposed in (Pot-
ter, 1997). In each cycle, the best five individuals from
each population are selected. These individuals are used
in the next cycle to create AEPs. Each AEP is created
based on the individual being currently evaluated and ba-
sed on individuals belonging to a selected set of the best
individuals from the previous cycle.

Five AEPs are generated for each individual evalu-
ated. One program is produced based on the best individu-
als from the previous cycle. The remaining four programs
are constructed based on random individuals from the set
of the best individuals from the previous cycle. Because
each individual participates in five different AEPs, each of
them receives either the fitness of the best AEP in which
it has taken part, or the average fitness of all of its five
contributions.
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7. Experiments on an Optimization Problem

AE is an ANN encoding scheme. It represents the ANN
in the form of a linearly organized structure similar to an
assembler program. Such a representation allows the ap-
plication of GAs to search for better and better ANNs. In
order to build an ANN, the AEP first creates a CM that
is subsequently transformed into a resultant ANN. Such
an action of AE in the process of the ANN construction
and the application of the intermediate form, i.e., the CM,
in this process makes it also possible to take advantage of
AE in the optimization problem, in which the solution can
be presented in the form of a matrix. Given this feature
of AE, we decided first to test it just in the optimization
problem. In this case, creating an ANN and checking its
performance is not necessary. Therefore, from a techni-
cal point of view, tests are much easier to carry out than
tests with the ANN participation. Even though searching
for optimal matrices is not the target use of AE, experi-
ments in this field can provide useful information about
potentials of the encoding method proposed. Particularly
interesting would be, for instance, knowledge concerning
differences in the performance between various AEP en-
coding schemes. This knowledge can be employed in
further experiments in which ANNs will be used to re-
duce the number of tested variants of AE only to those
which have produced satisfactory results for the optimiza-
tion problem. We can treat the application of AE to the
optimization problem as the first stage and a starting po-
int of further research in which the ability of the encoding
scheme proposed to create effective ANNs will be veri-
fied.

 

Fig. 12. AEP portioned into individuals from four different po-
pulations (population of programs, operations, jump
operations and data).

 

Fig. 13. Proposed concept of the AEP encoding scheme.

7.1. Tested Objective Functions. Five different test
objective functions were used during the experiments:
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fk = −
10∑

i=1

10∑

j=1

|Ak[i, j]|, k = 3, 4, 5,

A3[i, j] =





1− C[i, j], i, j = 1 . . . 5,

1 + C[i, j], i, j = 6 . . . 10,

0.4− C[i, j], i = 1 . . . 5, j = 6 . . . 10,

0.4 + C[i, j], i = 6 . . . 10, j = 1 . . . 5,

A4[i, j] =

{
0.4− C[i, j] if

(
(i + j)mod2

)
= 0,

0.4 + C[i, j] otherwise,

A5[i, j] =





0.2− C[i, j] if i = j,

0.2 + C[i, j] if i = 10− j + 1,

0.4− C[i, j] if i=6, i 6=j

and i 6= 10− j + 1,
0.4 + C[i, j] if i = 6, i 6= j

and i 6= 10− j + 1,

C[i, j] otherwise.
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C3
opt =




1 1 1 1 1 0.4 0.4 0.4 0.4 0.4
1 1 1 1 1 0.4 0.4 0.4 0.4 0.4
1 1 1 1 1 0.4 0.4 0.4 0.4 0.4
1 1 1 1 1 0.4 0.4 0.4 0.4 0.4
1 1 1 1 1 0.4 0.4 0.4 0.4 0.4

0.4 0.4 0.4 0.4 0.4 −1 −1 −1 −1 −1
0.4 0.4 0.4 0.4 0.4 −1 −1 −1 −1 −1
0.4 0.4 0.4 0.4 0.4 −1 −1 −1 −1 −1
0.4 0.4 0.4 0.4 0.4 −1 −1 −1 −1 −1
0.4 0.4 0.4 0.4 0.4 −1 −1 −1 −1 −1




, (1)

C4
opt =




0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4
−0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4
0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4
−0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4
0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4
−0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4
0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4
−0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4
0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4
−0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4 −0.4 0.4




. (2)

A 10×10 matrix constitutes the solution to these test
functions. In all the cases presented above, the task of
AEPs was to find a matrix that would maximize the func-
tion being currently optimized. The global maximum for
all test functions is zero. The functions f1 and f2 are mo-
difications of common test functions appearing in the lite-
rature dedicated to genetic algorithms. Original versions
of these functions have maximum at x = (0, 0, . . . , 0).
In the case of AE, the matrix consisting only of zeros is
very simple to generate. Such a matrix may, e.g., result
from an AEP which does nothing. Therefore, the original
functions were altered so that the matrix including all the
elements equal to 0.2 could constitute an optimal solution.
The remaining functions, i.e., f3, f4 and f5, were con-
structed so as to test how different variants of AE are able
to make use of their potential to create modular ANNs. To
create optimal matrices for these functions, AEPs can use
two methods. The first method uses the so-called “brute
force”, i.e., it creates matrices by means of a large number
of operations. Another method intelligently uses procedu-
res or jumps. Optimal matrices for the functions f3,f4 and
f5 are given by (1)–(3).

7.2. Experimental Setup. During research, a canoni-
cal genetic algorithm was used to process populations of
operations and data. In the experiments, we assumed a
constant length of chromosome operations. Each chro-

mosome operation included five blocks of genes. The
first block determined a code of the operation (e.g., bi-
nary 00000 indicated that we deal with the CHG opera-
tion) while the remaining blocks contained a binary re-
presentation of four parameters of the operation. The list
of operations applied is presented at the end of the pa-
per. Chromosome data could change their length during
consecutive co-evolutionary cycles. In order to make such
a change possible, in addition to crossover and mutation,
the genetic algorithm that processed the population of data
used a cut-splice operator. The implementation of crosso-
ver applied in the experiments always produced offspring
of the same length as parents. The cut-splice operator al-
ways activated after crossover and mutation modified the
size of the chromosome through the addition or removal
of a single block of genes (single data) from the same end
of the chromosome.

In the experiments we used chromosome operations
and chromosome data that consisted of 5-bit blocks of ge-
nes. Therefore, every chromosome operation used in the
experiments included a total of 25 genes (5 blocks× 5 bits
per block). In turn, chromosome data consisted of at least
five genes (a single datum) and of at most 50 genes (10
data). Each use of an excessive number of data caused a
drastic decrease in the AEP fitness. In the experiments, we
assumed the maximal number of operations which could
be included in the AEP, i.e., 12 operations. Initially, each
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C4
opt =




0.2 0 0 0 0 −0.4 0 0 0 −0.2
0 0.2 0 0 0 −0.4 0 0 −0.2 0
0 0 0.2 0 0 −0.4 0 −0.2 0 0
0 0 0 0.2 0 −0.4 −0.2 0 0 0
0 0 0 0 0.2 −0.2 0 0 0 0

0.4 0.4 0.4 0.4 −0.2 0.2 0.4 0.4 0.4 0.4
0 0 0 −0.2 0 −0.4 0.2 0 0 0
0 0 −0.2 0 0 −0.4 0 0.2 0 0
0 −0.2 0 0 0 −0.4 0 0 0.2 0

−0.2 0 0 0 0 −0.4 0 0 0 0.2




. (3)

AEP contained one operation and a set of data from two
different populations. Consecutive populations of opera-
tions were added every 2000 or 5000 of co-evolutionary
cycles if generated programs were not able to make an
improvement in the performance within this period. Po-
pulations of operations and data could also be replaced by
newly created populations when the contribution of sub-
stituted population to created programs was considerably
less than the contribution of the remaining populations. In
our experiments, the contribution of a population was me-
asured as the average fitness of operations belonging to
that population.

The remaining values essential for the conducted
experiments are presented below:

• population size: 20 individuals,

• crossover probability: 0.7,

• mutation probability: 0.1, 0.01,

• cut-splice probability: 0.1 (in the case of chromo-
some data),

• number of co-evolutionary cycles: 50 000,

• number of AEPs generated for each test function: 30.

7.3. Experimental Results. As it turned out, the first
two test problems, i.e., f1 and f2, were very easy to so-
lve. Optimal matrices for these functions were found very
quickly and, what is more, they were generated by means
of very simple AEPs. Even though the functions f1 and
f2 were constructed to have many local optima, this did
not prevent the AEPs from finding optimal solutions. It
seems that the main reason for such a situation is the ho-
mogeneity of the optimal matrices in the problems f1 and
f2. All elements of these matrices equal 0.2. To create
such matrices, only one operation, e.g., CHGM0 (see Ap-
pendix 1), and only one datum containing the value of 0.2
are necessary.

The remaining problems, i.e., f3, f4 and f5, were
considerably more difficult to solve than the problems f1

Table 1. Results of the optimization of all test functions.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

f1 0 0 0 0

0 0 0 0

2 + 2 1 + 2 1 + 2 1 + 2

f2 0 0 0 0

0 0 0 0

1 + 2 3 + 2 3 + 2 1 + 2

f3 −18 −7.9 −4.9 −0.2

−11.1 0 −0.5 0

9 + 5 11 + 5 12 + 10 5 + 8

f4 −14.5 −0.4 −2.3 0

−4.8 0 0 0

9 + 4 5 + 2 12 + 2 7 + 3

f5 −3.6 −2.1 −2.4 −0.66

−3.2 −1.5 −1.8 −0.6

11 + 4 9 + 3 12 + 1 12 + 6

and f2. This time, to find optimal matrices, more complex
AEPs were necessary. What is more, in the case of f5 no
AEP encoding scheme could produce an AEP able to cre-
ate an optimal matrix. Detailed results of the application
of all AEP encoding schemes presented in Section 6 to
optimize all test functions are presented in Table 1. Each
cell in the table includes the following: the average result
obtained for 30 evolutionary runs (top value), the result of
the best program (middle value) and the sum of the num-
ber of operations and data in the best program (number of
operations + number of data; bottom value). For the sake
of comparison, in addition to the outcomes of the AEP
proposed encoding scheme (Scheme 4) Table 1 also inc-
ludes the performance of schemes tested previously (Pra-
czyk, 2007) and presented in Section 6.

The experiments showed that Scheme 4 is undoub-
tedly the best AEP encoding scheme out of all the sche-
mes tested so far. In all test problems, AEPs generated
based on Scheme 4 outperformed programs generated by
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Fig. 14. (a) best AEP for f3, (b) best AEP for f4, (c) best AEP for f5, (d) matrix generated by the AEP of (c).

means of the remaining schemes. The only problem in
which AEPs encountered problems in generating the opti-
mal matrix was the problem f5. In the remaining cases,
Scheme 4 was able to create a number of programs produ-
cing optimal matrices. The superiority of Scheme 4 over
the remaining schemes is particularly apparent in the pro-
blem f5 which, as it turned out, was the most difficult pro-
blem out of all the problems tested. The matrices created
by AEPs were in this case considerably closer to the opti-
mal matrix than the matrices generated by the remaining
programs. Examples of AEPs generated during the expe-
riments by Scheme 4 are presented in Fig. 14.

8. Experiments with ANNs

The next problem in which the proposed AEP encoding
scheme was tested is a simple version of the predator-
prey problem. This time, the task of AEPs was to ge-
nerate ANNs controlling a set of cooperating predators
whose common goal was to capture a fast moving prey.
The main goal of the research reported in this section was
only to check whether AE with the application of Scheme
4 is able to create simple ANNs. To find out true capabi-
lities of AE and Scheme 4 with respect to creating ANNs,
further experiments are required.

8.1. Environment. The predators and the prey used in
the experiments lived in a common environment. We used
a 20 × 20 square without obstacles but with two barriers
located on the left and right sides of the square to represent
the environment. Both of the barriers caused the predators
as well as the prey to move right or left only to the point
at which they reached one of the barriers. Moving further
in the barrier direction did not cause any effect. In order
to ensure an infinite space for the predators and the prey
and for their struggles, we made the environment open at
the bottom and at the top. This means that every attempt
of a movement beyond the upper or lower borders of the
square caused the object making such an attempt to move
to the opposite side of the environment. As a result, the
simple strategy of predators consisting in chasing the prey
did not work. In such a situation, in order to evade the
predators the prey could simply escape up or down.

8.2. Residents of the Artificial World. In our expe-
riments, two predators and one prey coexisted in the arti-
ficial environment. The predators were controlled by the
ANN produced by the AEP. They could select five actions:
to move in the North, South, West, East directions or to
stand still. The length of the step of every predator was 1
unlike the step of the prey, which was 2. In order to cap-
ture the prey, the predators had to cooperate. Their speed
was half the speed of the escaping prey so they could not
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Fig. 15. (a) AEP, (b) its encoded form, (c) CM generated by the AEP of (a) and (b).

simply chase the prey to grasp it. We assumed that the
prey was captured if the distance between it and the ne-
arest predator was lower than 2.

In the experiments, we assumed that the predators
could see the whole environment. The predators based
the decision which actions to select in the prey’s relative
location with reference to each of them. In order to per-
form the task, the ANN controlling the predators had to
possess four inputs and two outputs. Network outputs pro-
vided decisions to the predators whereas the inputs infor-
med them about the prey’s location with respect to each of
them.

The simple prey was controlled by a simple algori-
thm which forced it to move directly away from the ne-
arest predator but solely in the situation when the distance
between it and the nearest predator was less than or equal
to 5. In the remaining cases, i.e., when neither predator
was closer to the prey than the assumed distance, the prey
did not move. In the situation when the prey’s action wo-
uld cause hitting the barrier, another move was chosen. An
alternative move prevented the prey from hitting the wall,
and at the same time it maximally increased the distance
between the prey and the nearest predator. When the prey-
was running away, it could select four actions: move in the
North, South, West or East directions.

8.3. Neural Controllers. Connection matrices genera-
ted during the experiments by AEPs usually represented
recurrent neural networks. However, we decided that the
controllers used during the experiments have feed-forward
architectures. In order to obtain such networks, we used
only elements of CMs localized in their upper parts. The
remaining elements were neglected during the process of
neural network construction.

The ANNs used in the experiments could contain
three types of neurons: radial, sigmoid or linear. Informa-
tion about the type of neuron was located in an additional
column of the CM. Each matrix included a total of three
additional columns. The remaining two columns conta-
ined information about the bias and the value of one para-
meter of each neuron.

8.4. Experimental Setup. The experiments with
ANNs took place in almost identical conditions as the
experiments in the optimization problem (see Section 9.2).
The only differences involved the construction of AEPs.
In order to adjust AEPs to a new, more challenging task,
two modifications were introduced to their construction.
First, all of them were encoded in the form of chromoso-
mes built of 7-bit blocks of genes. Previously, 5-bit blocks
were in use. Second, all programs obtained a permission
to have 20 data instead of 10 data as was the case previo-
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usly. As regards the remaining parameters of the experi-
ment, they remained the same as in the experiments for
the optimization problem.

8.5. Evaluation Process. To evaluate generated net-
works, eight different scenarios were built. They differed
in the initial location of the predators and the prey in the
environment:

• Scenario 1: prey(10,10), predator1(0,0), preda-
tor2(20,20),

• Scenario 2: prey(10,10), predator1(20,20), preda-
tor2(0,0),

• Scenario 3: prey(10,10), predator1(0,10), preda-
tor2(20,10),

• Scenario 4: prey(10,10), predator1(10,0), preda-
tor2(10,20),

• Scenario 5: prey(10,10), predator1(0,0), preda-
tor2(20,0),

• Scenario 6: prey(0,20), predator1(10,0), preda-
tor2(20,10),

• Scenario 7: prey(0,10), predator1(10,1), preda-
tor2(10,19),

• Scenario 8: prey(0,20), predator1(0,10), preda-
tor2(10,20).

The tests proceeded in the following way: At first,
each network was tested using Scenario 1. If the predators
controlled by a network could not capture the prey during
some assumed period, the test was stopped and the net-
work received appropriate evaluation that depended on the
distance between the prey and the nearest predator. Howe-
ver, if the predators grasped the prey, they were put to test
in accordance with the next scenario. During the experi-
ments, we assumed that the predators could perform 100
steps before the scenario was interrupted. To evaluate the
networks, we used the following fitness function:

f(Network) =
n∑

i=1

fi,

fi =





dmax −min(d1, d2) if the prey not
captured in Scenario i,

fcaptured + 1
a (100− si) if the prey

captured in Scenario i,

0 if the prey not captured
in the previous scenario,

where the following notation is used:
fi – reward received in Scenario i,

dmax – maximal distance between two points in the envi-
ronment applied,

d1, d2 – distance between the prey and the first and se-
cond predators,

fcaptured – reward for grasping the prey in a single scena-
rio (in our experiments fcaptured amounted to 100),

si – number of steps which the predators needed to cap-
ture the prey (si < 100),

a – this value prevents the situation in which a partial suc-
cess would be better than a success in all scenarios,

n – number of scenarios (in our case n = 8).

8.6. Experimental Results. In order to test the AEP
encoding scheme proposed in the predator-prey domain,
20 runs of the evolutionary process were performed. As a
result of the conducted experiments, it turned out that all
runs were successful, i.e., they produced AEPs that gene-
rated ANNs which, in turn, resulted in capturing the prey.
Detailed results of the experiments conducted are presen-
ted in Table 2.

An exemplary program produced in this phase of
experiments, its encoded form, the CM representing the
network and the behavior of the predators controlled by
the network are shown in Fig. 15.

The matrix depicted in Fig. 15 corresponds to the net-
work consisting of six neurons (four input neurons and
two output neurons). Three extra columns determine the
types of individual neurons, their bias and values of the
parameters of the neurons, e.g., the shape of the radial
transfer function.

9. Summary
The article presents a new ANN encoding scheme called
Assembler Encoding. The proposed encoding scheme re-
presents the ANN in a very compact form, which allows
applying genetic algorithms to create effective ANNs.
Like cellular encoding and edge encoding, AE encodes an
ANN in the form of a program. This permits building very
complex and large neural architectures by means of relati-
vely small chromosomes. Unlike cellular and edge enco-
ding programs, which are represented as a tree, the AEP is
a linearly ordered set of operations and data. Another dif-
ference between cellular, edge and assembler encodings
is the object which is altered by the program. Cellular
and edge encodings operate directly on a prototype of the
ANN. AE creates a network indirectly, changing the CM
that represents the ANN.

In addition to the short presentation of AE, the pa-
per also suggests a new AEP encoding method which is
an adaptation of the idea of evolving co-adapted subcom-
ponents proposed by Potter and De Jong (Potter and De
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Table 2. Results of application of Scheme 4 to the predator-prey problem.

average fitness average number average length of average number of co-
(best fitness) of neurons in the successful AEP, evolutionary cycles necessary

the successful ANN number of orders + number to generate a successful AEP
(minimal number of of data (minimal number of co-

neurons) (shortest AEP) evolutionary cycles)

831.09 6 4.6+15.1 25670.3
(865.34) (6) (4+5) (17277)

 

Fig. 16. Examplary behavior of the predators and the prey in
Scenario 1. Circles determine initial positions of the
predators and the prey (a black circle – the prey, a circle
with vertical stripes – Predator 1, a circle with horizon-
tal stripes – Predator 2) while arrows indicate directions
of their movements (solid line – the prey, dashed line –
Predator 1, dotted line – Predator 2).

Jong, 1994; Potter and De Jong, 1995; Potter, 1997; Pot-
ter and De Jong, 2000). The proposed method assumes
that each element of the AEP, i.e., each operation and a
sequence of data, evolves in a separate population. To
create the AEP, representatives of each population are se-
lected and combined together. Each population delegates
exactly one representative. Operations in the AEP are or-
dered according to numbers assigned to their populations.
Sequences of data formed as a result of the evolution are
always located at the end of the AEP.

The AEP encoding method proposed in the paper
was tested on an optimization problem and a simple ver-
sion of the predator-prey problem. In the case of the opti-
mization problem, the proposed scheme turned out to be
more effective than the remaining schemes described in
the paper and tested within the framework of prior investi-
gations (Praczyk, 2007). In the experiments with ANNs,

 

Fig. 17. Exemplary behavior of the predators and the prey in
Scenario 2.

 

Fig. 18. Exemplary behavior of the predators and the prey in
Scenario 6.

the proposed method showed that it is able to produce ef-
fective ANNs. All ANNs generated during the tests were
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successful. In all the tested cases, the predators control-
led by ANNs captured the prey. What is more, all ANNs
were created by relatively short AEPs. To represent an
ANN consisting of six neurons, the shortest AEP required
half of the genes required by the CM for the same purpose.

Generally, it is necessary to state that the results of
the experiments presented in the paper are very encoura-
ging. The tests showed that AE is able to solve simple
optimization problems and, what is even more important,
it is also able to construct simple and efficient ANNs. To
find out true capabilities of AE in solving more complex
problems, further experiments are required. In addition to
the use of AE for more challenging tasks, future research
will also include issues such as the search for new types
of operations for AEPs, testing multi-procedure AEPs, the
application of AE to construct ANNs with the Hebb self-
organization, etc.
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Appendix. List of operations used in experiments

CHG: Update of an element. Both the new value and
the element address are located in the parameters of the
operation.

CHGC0: Update of some elements in a column. The
index of the column, the index of the first element in
the column that will be changed, the number of changed
elements and a pointer to data, where new values of
elements are memorized, are located in the parameters of
the operation.

CHGC1: Update of some elements in a column. The
index of the column, the index of the first element in
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the column that will be changed, the number of changed
elements and the new value for the column elements, the
same for all elements, are located in the parameters of the
operation.

CHGC2: Update of some elements in a column. The new
value of every element is the sum of the operation para-
meter and the current value of this element. The second
parameter of the operation is the index of the column. The
third and fourth parameters of the operation determine
respectively the number of changed elements and the in-
dex of the first element in the column that will be changed.

CHGC3: Part of elements from one column are trans-
formed to another column. Both columns are indicated
by the parameters of the operation. The number of
transferred elements and the index of the first element in
the column that will be transferred are also included in
the parameters of the operation.

CHGC4: Update of some elements in a column. The
new value of every element is the sum of the actual value
of this element and the respective value from program
memory. The column index, the index of the first element
in the column that will be changed, the number of
changed elements and a pointer to data, where ingredients
of individual sums are memorized, are located in the
parameters of the operation.

CHGR0: like CHGC0, but the corresponding update
refers to a row of a matrix.

CHGR1: like CHGC1.

CHGR2: like CHGC2.

CHGR3: like CHGC3.

CHGR4: like CHGC4.

CHGM0: Change of a block of elements. The elements
are updated in columns, in turn, one after another,
starting from the element pointed by the parameters of
the operation. The number of changed elements and the
place in the memory where new values for elements are
located are determined by the parameters of the operation.

CHGM1: Like CHGM0, but a new value of every
element is the sum of its current value and the parameter
of operation.

CHGM2: Like CHGM0, but the new value of each
element is the sum of its current value and the value
from the memory part of the program. The number of
changed elements and the place in the memory where the
arguments of individual sums are located are determined
by the parameters of the operation.

JMP: Jump operation. The number of jumps, a pointer to
the next operation and new values of registers are located
in the parameters of the jump operation.
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