
Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 4, 515–537
DOI: 10.2478/v10006-007-0043-y

OBJECT LIBRARY OF ALGORITHMS FOR DYNAMIC OPTIMIZATION
PROBLEMS: BENCHMARKING SQP AND NONLINEAR

INTERIOR POINT METHODS

JACEK BŁASZCZYK ∗ , ANDRZEJ KARBOWSKI ∗,∗∗ , KRZYSZTOF MALINOWSKI ∗,∗∗

∗ Institute of Control and Computation Engineering
Faculty of Electronics and Information Technology

Warsaw University of Technology
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

e-mail: J.Blaszczyk,A.Karbowski,K.Malinowsk@ia.pw.edu.pl

∗∗ Research and Academic Computer Network (NASK)
ul. Wąwozowa 18, 02-796 Warsaw, Poland

The main purpose of this paper is to describe the design, implementation and possibilities of our object-oriented library of
algorithms for dynamic optimization problems. We briefly present library classes for the formulation and manipulation of
dynamic optimization problems, and give a general survey of solver classes for unconstrained and constrained optimiza-
tion. We also demonstrate methods of derivative evaluation that we used, in particular automatic differentiation. Further,
we briefly formulate and characterize the class of problems solved by our optimization classes. The solution of dynamic
optimization problems with general constraints is performed by transformation into structured large-scale nonlinear pro-
gramming problems and applying methods for nonlinear optimization. Two main algorithms of solvers for constrained
dynamic optimization are presented in detail: the sequential quadratic programming (SQP) exploring the multistage struc-
ture of the dynamic optimization problem during the solution of a sequence of quadratic subproblems, and the nonlinear
interior-point method implemented in a general-purpose large-scale optimizer IPOPT. At the end, we include a typical nu-
merical example of the application of the constrained solvers to a large-scale discrete-time optimal control problem and we
use the performance profiles methodology to compare the efficiency and robustness of different solvers or different options
of the same solver. In conclusions, we summarize our experience gathered during the library development.

Keywords: dynamic optimization, large-scale optimization, sequential quadratic programming, nonlinear interior-point
methods, object-oriented numerical computations, automatic differentiation, performance data analysis.

1. Introduction

The goal of dynamic optimization is to determine opti-
mal control and state trajectories for a dynamic system
over a finite horizon such that a certain performance cri-
terion is minimized. In generally available literature we
can find several, more or less complicated, algorithms of
dynamic optimization, but many of them have not been
implemented in optimization packages yet, and are avail-
able only for a narrow group of optimal control experts.
One of the main objectives of developing our dynamic op-
timization library was the wish to popularize both older,
already verified algorithms, and recent, modern methods
for the computation of optimal control. We also hope that

our library will establish reusable and extendible environ-
ment for easy implementation and the testing of new opti-
mal control algorithms. Another purpose of our work was
practical verification of the object methodology in the de-
sign and implementation of large and complex numerical
libraries, and also the application of automatic differenti-
ation to compute derivative values in optimization prob-
lems.

A detailed description of unconstrained and con-
strained parts of our library was given in the confer-
ence presentations (Błaszczyk et al., 2002a; Błaszczyk
et al., 2002b; Błaszczyk et al., 2003). Here we briefly
present the possibilities of the library, two main optimiza-
tion solvers for constrained problems, their application

J.Blaszczyk,A.Karbowski,K.Malinowsk@ia.pw.edu.pl

516 J. Błaszczyk et al.

to a typical example of large-scale discrete-time optimal
control problem and, finally, a benchmark of solvers by
the application of performance profile methodology.

2. Description of the Dynamic Optimization
Library

Our object-oriented numerical library was designed for
the solution of discrete-time optimal control problems.
Dynamic optimization problems are specified in the pro-
gramming language C++ with the use of the appropriate
classes for their formulation, and automatic differentia-
tion (provided by the ADOL-C library) is used for the au-
tomatic calculation of exact first and second derivatives.
Special emphasis is put on the treatment of dynamic op-
timization problems with large-scale nonlinear program-
ming algorithms, such as sequential quadratic program-
ming and a nonlinear interior-point method. The imple-
mentation of all classes for problem formulation and solv-
ing is based upon dense matrix codes of the NEWMAT
and UBLAS libraries for matrix computations in C++,
which were extended for additional factorization proce-
dures, classes for the management of sparse-block ma-
trices, and converter functions for different sparse matrix
formats needed by sparse matrix solvers. The possibility
of replaceable usage of two matrix libraries is provided by
the template mechanism of the C++ language. The con-
figuration of parameters of optimization solvers and con-
trolling their execution are possible with the configuration
files (in the ini-file format) and set/get methods of compu-
tational classes.

As the implementation language for our library we
chose the C++ programming language. From a numerical
programmer’s point of view, C++ offers a wide set of fa-
cilities, e.g., the possibility to put numerical formulas in
a program in natural syntax using objects from the math-
ematical world. The C++ language has also features that
are ideal to design and implement large software libraries.
An important criterion for the choice of the C++ language
was the availability of a large set of numerical libraries,
often under a public domain status or free for educational
purposes. Among other things, the implementation of our
library has been based on the following C++ libraries:

GNU libstdc++ standard C++ library, available at
http://www.gcc.gnu.org/libstdc++/

ADOL-C automatic differentiation library by
A. Griewank from the Technical University of
Dresden, available at http://www.math.
tu-dresden.de/~adol-c/

NEWMAT matrix library by R. Davies from New
Zealand, available at http://www.robertnz.
net/

UBLAS matrix library from the BOOST project, avail-
able at http://www.boost.org/

The exception mechanism of the C++ language that
was used in the library implementation allows the user to
localize typical errors in the programs quickly and effec-
tively (e.g., disallowed data conversion, a wrong value of
a method parameter, exceeding the index range for a ta-
ble, vector or matrix type), and also to handle errors in the
optimization routines (e.g., an iteration limit, the lack of
algorithm convergence). Then, the application of the C++
namespace mechanism excluded potential clashes of vari-
able, function, class and object names, used in our library,
with other libraries.

With the library, several computational examples of
dynamic optimization problems are provided that allow
a potential user to quickly become familiar with methods
of new problem definition and with calling for optimiza-
tion routines.

Besides the possibility of effective and exact solving
of dynamic optimization problems, we wanted to achieve
a modular construction of the library. Such a structure,
supported by the class mechanism of the C++ language,
allows the library user to experiment with different algo-
rithms and to construct new algorithms as well. It is pos-
sible to distinguish three categories of classes/functions in
such a designed library:

1. Classes for the formulation of dynamic optimization
problems, the manipulation of their parameters and
for simulation,

2. Computational classes, including primarily opti-
mization routines,

3. Auxiliary classes and functions, for example, extend-
ing the capabilities of the NEWMAT and UBLAS
matrix libraries, introducing new “base” data types,
different converting functions.

2.1. Classes for Problem Formulation. For han-
dling dynamic optimization problems formulated by li-
brary users we designed a special object interface. It al-
lows the user to input all required data to formulate the
problem: the dimensions of state and control vectors, the
number of stages in the control horizon, the state equa-
tion function, the cost function per stage and the final
cut function. For constrained problems we have special
classes for handling stationary or nonstationary simple
bounds on control values. An object of the class repre-
senting dynamic optimization problems may be manipu-
lated in many ways, e.g., there is a possibility to change
the initial values of problem parameters, to get their val-
ues and, finally, to carry out a simulation. In our library
we anticipated the possibility to change the values of the
parameters of optimization methods without the recom-
pilation of programs – by acquiring the parameters from
adequate configuration files. The library also provides the
procedures to compare the values of functions and their

http://www.gcc.gnu.org/libstdc++/
http://www.math.tu-dresden.de/~adol-c/
http://www.math.tu-dresden.de/~adol-c/
http://www.robertnz.net/
http://www.robertnz.net/
http://www.boost.org/

Object library of algorithms for dynamic optimization problems. . . 517

derivatives for two dynamic optimization problems, on the
whole control horizon.

The library of classes for the formulation of dynamic
optimization problems includes: (1) classes for uncon-
strained problems with derivatives computed by finite dif-
ferences and with automatic differentiation, (2) classes for
simple bounds constraints for stationary and nonstation-
ary problems, (3) classes responsible for general inequal-
ity and equality constraints in dynamic optimization prob-
lems, with derivatives obtained from finite-difference ap-
proximations and with automatic differentiation, and, fi-
nally, (4) classes for constrained nonlinear problems in-
herited from the previous classes.

2.2. Solver Classes. One of fundamental design objec-
tives was to provide the library with consistent and logical
interface for optimization methods. The root of all com-
putational classes is the abstract base class that defines
the common subset of operations for optimization classes
such as the management of the iteration process (the pa-
rameters of stopping criteria, the verbosity of the solver),
the initialization of default parameters for solvers, saving
intermediate and final results of optimization. From that
class we inherited specific computational classes or indi-
rect auxiliary classes. Some optimization methods, i.e.,
solvers based on the SQP algorithm, form a subhierarchy
of classes.

From among a wide variety of numerical methods
for dynamic optimization described in the literature, we
chose those that fulfil the criteria of usefulness, robust-
ness and good documentation of an algorithm. For the
solution of unconstrained problems, we implemented di-
rect methods for optimal control – the group of optimiza-
tion algorithms classes based on the computation of the
reduced gradient of a functional with respect to the con-
trol according to their description in (Findeisen et al.,
1980; Wierzbicki, 1984), including the simple gradient
method in the control space (with Fortuna’s modification),
the conjugate directions method in the control space (with
Fortuna’s modification), with three types of conjugate
direction computations (Fletcher-Reeves, Polak-Ribière,
Sinnot-Luenberger), the variable metric method in the
control space (with Fortuna’s modification), and the New-
ton method in the control space (with Picard’s modifica-
tion). The second group of unconstrained method classes
provided by our library is based on algorithms using
a dynamic programming technique: the differential dy-
namic programming (DDP) method (with the shifting of
the Hessian eigenvalues to promote global convergence),
and a stagewise Newton method (also with shifting),
both described in (Yakowitz and Rutherford, 1984; Pan-
toja, 1988).

On the other hand, for problems with simple con-
straints on control we implemented a class for projected
descent minimization (PDMIN)—a robust and highly ef-

fective (especially for large-scale problems) version of the
projection algorithm from (Schwartz and Polak, 1997),
which extends the Bertsekas projection method described
in (Bertsekas, 1982). The PDMIN class contains three
versions of the descent direction method: steepest de-
scent, Polak–Ribière conjugate gradient and limited mem-
ory BFGS.

The constrained part of the our library contains
a wide range of optimization classes for the end user
(mostly based on some version of the SQP algorithm).
Firstly, we implemented the traditional penalty function
algorithm for constrained dynamic optimization problems
(Findeisen et al., 1980; Wierzbicki, 1984). This algorithm
solves the resulting auxiliary unconstrained dynamic opti-
mization problems with the use of methods implemented
in the unconstrained part of our library (simple or conju-
gate gradient methods with Fortuna’s modification, vari-
able metric, second variation, DDP, the stagewise New-
ton method). Further, there is a solver for problems with
general constraints based on the SQP algorithm of the
Powell type (Powell, 1978) and with the treatment of the
resulting convex quadratic subproblems with an interior-
point method. The main part of the SQP algorithm is the
QP solver whose efficient implementation should explore
the dynamic optimization problem structure and sparsity.
Currently, three different QP classes are available with
our library: (1) Mehrotra, which implements Mehro-
tra’s primal-dual predictor-corrector method well-known
in the literature for linear programming (Mehrotra, 1992),
(2) Franke, Mehrotra’s algorithm modified by R. Franke
from the Technical University of Ilmenau (Franke, 1994)
with the aim to improve its performance and robustness,
and (3) Gondzio, the multiple centrality corrector vari-
ant of the primal-dual interior-point method for convex
QP (Gondzio, 1994). The main computational effort of
the interior-point method is the solution of sparse, sym-
metric and indefinite large systems of linear equations
generating the Newton steps. Here the sparsity structure
of the dynamic optimization problem is exploited. For
that purpose we implemented a matrix solver developed
by E. Arnold from the Technical University of Ilmenau,
which performs a block-wise elimination. The algorithm
is an extension of the Ricatti recursion for unconstrained
linear-quadratic optimal control problems (Arnold and
Puta, 1994; Arnold et al., 1994). We based the implemen-
tation of our LQ-DOCP class on C++ codes from the HQP
solver (Franke, 1998) and freely available from http:
//hqp.sourceforge.net. To compare the perfor-
mance of the LQ-DOCP matrix solver with other general-
purpose sparse direct solvers, we implemented interface
classes to the sparse direct solvers MA27, MA47, WSMP,
MUMPS, PARDISO, BLKFCLT, UMFPACK, and the it-
erative solvers GMRES, SYMMLQ, MINRES, SQMR.
They are used to solve sparse symmetric indefinite sys-
tems of equations during iterations of the specialized QP

http://hqp.sourceforge.net
http://hqp.sourceforge.net

518 J. Błaszczyk et al.

solvers. The specialized LQ-DOCP method outperforms
clearly the other matrix solvers with respect to compu-
tational time. In our library we have a special version of
Powell’s SQP method optimized for constrained problems
with only simple bounds on state and control. Apart from
Powell’s SQP method there is a solver for problems with
general constrains based on the SQP algorithm of Schit-
tkowski’s type (Schittkowski, 1983) and with an interior-
point QP solver. Like for Powell’s SQP method there is
a version of Schittkowski’s SQP method tailored for prob-
lems with only simple bounds constraints. On the other
hand, we also implemented Powell’s SQP method for con-
strained problems with an active-set strategy for the solu-
tion of QP problems. The main step of this method is the
solution of a linear-quadratic dynamic optimization prob-
lem with linear inequality constraints using the active-
set strategy of Gill-Murray and Bertsekas, or Goldfarb-
Idnani, and a Riccati-type solution algorithm for equal-
ity constrained QP subproblems. Finally, in our library
we provide solvers which transform dynamic optimiza-
tion problems into structured large-scale nonlinear pro-
gramming problems and apply to their solution general
NLP solvers. We implemented interfaces to NLP solvers
based on various versions of the SQP algorithm (CFSQP,
DONLP2, HQP, LOQO, KNITRO) or a nonlinear interior-
point algorithm (IPOPT, KNITRO). The efficiency of such
general-purpose NLP solvers used for the solution of dy-
namic optimization problems may be comparable (but not
better) to specialized SQP solvers.

All computational codes may use automatic differen-
tiation for the automatic calculation of exact first and sec-
ond order derivatives or approximate derivatives needed
by finite differences. The implementation of our compu-
tational classes allows the flexible exchange of a single
algorithm’s modules and their configuration.

2.3. Computation of Derivative Values. The require-
ment of derivative calculations in computational algo-
rithms for dynamic optimization necessitates the applica-
tion of numerical differentiation methods. For our library,
in the first attempt, we implemented the computation of
gradients, Jacobians and Hessians for dynamic optimiza-
tion problem with the use of finite differences. The user of
the library has an ability to choose between three versions
of numerical differentiation:

• forward finite differences,

• backward finite differences,

• central finite differences.

The above methods of numerical differentiation have one
big disadvantage—they provide only approximate deriva-
tives. Fortunately, there is a method of automatic differ-
entiation, which allows us to determine the derivatives of

arbitrary order exactly and effectively. In the implemen-
tation of our library, we use for this purpose the well-
known ADOL-C library of automatic differentiation of
C/C++ programs (Griewank et al., 1999). In the classes
for problem formulation with the calculation of deriva-
tives by automatic differentiation we use latest capabili-
ties of the ADOL-C library, such as the computation of
sparsity patterns and availability to compute the Jacobians
and Hessians as sparse matrices. In order to calculate the
derivatives by automatic differentiation in a dynamic op-
timization problem, the users of our library have to make
only small changes in the definition of the problem func-
tions and to use the proper classes for their problem for-
mulation.

3. Discrete–Time Optimal Control Problem
The library was designed to solve the nonlinear (con-
strained or unconstrained) discrete-time optimal control
problem which is stated as follows:

(DOCP) min
u
J =

N−1∑
k=0

fk0 (xk, uk) + FN (xN), (1)

fk0 : Rn × Rm 7→ R, FN : Rn 7→ R,

with the state equation

xk+1 = fk(xk, uk), k = 0, . . . , N − 1, x0 = x̄0,
(2)

fk : Rn × Rm 7→ Rn,

and with trajectory constraints:

gk(xk, uk) ≥ 0, k = 0, . . . , N − 1, (3)

gN (xN) ≥ 0,

gk : Rn × Rm 7→ Rr
k

, gN : Rn 7→ Rr
N

,

where uk and xk are vectors of control and state variables,
respectively, k is the stage number and N is the length of
the control horizon. We assume that the functions FN , fk0 ,
fk, gk and gN have continuous second derivatives. Also
it is assumed that constraints may contain fixed initial or
final states, as well as simple bounds for state and control
variables and, in general, linear and nonlinear constraints
of a mixed or a homogeneous type. The solution to the
DOCP is the optimal control trajectory:

u[0,N−1] = {u0, u1, . . . , uN−1}

and the optimal state trajectory, which results from the so-
lution of the state equations.

For such a problem of dynamic optimization, we as-
sume the following design specifications:

1. Problems with a finite control horizon are consid-
ered.

Object library of algorithms for dynamic optimization problems. . . 519

2. The constraints gk(·, ·), gN (·) may be inequalities or
equalities, and only on state variables or mixed.

3. The objective function may have general Bolza form
as given in Eqn. (1), and its two special cases are also
considered:

• without the final state function (the Lagrange
form):

FN (·) ≡ 0,

• without the state cost function (the Mayer
form):

fk0 (·, ·) ≡ 0, k = 0, . . . , N − 1.

4. The problem may be stationary or nonstationary.

5. Minimal-time problems are supported by their trans-
formation to finite horizon problems.

6. The initial state x0 is fixed (for some methods we will
have a possibility to solve problems with free initial
state).

7. The problem may contain a fixed final state.

8. The constrained problems with only simple, box
bounds on state and control:

xkL ≤ xk ≤ xkU , k = 0, . . . , N, (4)

ukL ≤ uk ≤ ukU , k = 0, . . . , N − 1 (5)

should be supported by specialized solvers.

9. Optimization problems may be large (especially for
discretized continuous-time problems), in particular
withN = 1000,N = 10000, and evenN = 100000.

The characteristic features of the DOCP from the
point of view of optimization methods are as follows:

• A large number of variables and constraints.

• Sparse and structurized derivative matrices for the
objective function and constraints.

• A large computational cost of the objective function
and constraints, and their derivatives.

• At the solution many constraints are active.

4. Main Algorithm for Constrained
Problems

The solution of dynamic optimization problems with
general constraints is performed by transformation into
a structured large-scale nonlinear programming problem
and applying efficient numerical optimization methods
such as various versions of sequential quadratic program-
ming or the nonlinear interior-point method.

4.1. Large-Scale Nonlinear Problem. We can con-
sider the DOCP as a structured, large-scale nonlinear pro-
gramming problem in decision variables (xk, uk). The
state equations are transformed into equality constraints,
and the trajectory constraints into inequality restrictions.
Such transformations allow the application of general-
purpose, efficient and robust NLP algorithms to the so-
lution of the DOCP.

Let us define

y =

x0

u0

...
xN

 , g(y) =

g0(x0, u0)
g1(x1, u1)

...
gN (xN)

 ,

h(y) =

h0(y)
h1(y)

...
hN−1(y)

 =

f0(x0, u0)− x1

f1(x1, u1)− x2

...
fN−1(xN−1, uN−1)− xN

 ,
where y ∈ Rmy , h ∈ Rmh , g ∈ Rmg , my = N(m+n) +
n, mh = Nn, mg =

∑N
k=0 r

k.
As can be seen, the discrete-time state and control

variables for all stages are assembled in one large vector y
of decision variables. We can rewrite the DOCP as the
following large-scale nonlinear programming problem:

(NLP) min
y
{J(y) | h(y) = 0, g(y) ≥ 0} . (6)

We assume J(y), h(y) and g(y) to be twice continuously
differentiable.

4.2. SQP Method. For the numerical solution of the
DOCP transformed to the NLP problem (6), we use first of
all sequential quadratic programming (SQP) algorithms.
SQP methods are now standard in constrained nonlin-
ear programming (Powell, 1978; Fletcher, 1987; Schit-
tkowski, 1980), often for large-scale problems, due to
their efficiency (a small number of the required objective
function and gradient evaluations) and robustness.

In the SQP method we reduce the optimization of
NLP problems to the solution of a sequence of local linear-
quadratic programming (QP) problems. Such a substi-
tution of a difficult problem for a sequence of simpler
QP problems, resulting from local approximation of the
objective function and constraints, is characteristic for
constrained NLP methods. In the basic formulation, the
SQP algorithm solves the NLP problem by a sequence of
linear-quadratic approximations (QP problems) obtained
by substituting linear approximations for nonlinear con-
straints (by expansion in a first-order Taylor series) and
by substituting of the nonlinear objective function for its
expansion in a second-order Taylor series, extended with

520 J. Błaszczyk et al.

second-order information about constraints. The SQP al-
gorithm has a superlinear rate of convergence, and the
SQP version with exact calculation of the Lagrangian Hes-
sian (with the use of second derivatives) is locally quadrat-
ically convergent. The convergence of the SQP algorithm
from any starting point is obtained due to the application
of a merit function during the calculation of a new approx-
imation of the NLP solution. Typically, the merit function
is a penalty function of a linear combination of the objec-
tive function and a constraint violation. The approxima-
tion of Lagrange multipliers of the NLP problem resulting
from solution of the QP subproblem in the current itera-
tion is used for the calculation of the update of the second-
order part of the QP problem in the next iteration—it may
be an analytical Hessian of the Lagrange function or its
approximation determined by the modified BFGS or SR1
methods. The SQP methods has a two-level structure of it-
erations. During the major iteration we determine the next
approximation of the NLP solution (with approximations
of Lagrange multipliers for constraints) resulting from the
solution of the QP subproblem. In minor iterations we
simply iterate the solution of the QP problem.

The SQP algorithm in the basic form given by Pow-
ell in (Powell, 1978) is relatively simple to implement.
"It (the SQP solver) can be programmed in an afternoon
if one has a quadratic programming subroutine available
. . . ", writes Powell. A classical SQP algorithm is usu-
ally quite effective for small problems and for problems
in which most of computational time is occupied by the
calculation of functions and gradient values. However, for
larger problems computational time may be dominated by
matrix calculations. To solve effectively large problems
the part of SQP algorithm responsible for the solution of
QP subproblems should take into consideration the struc-
ture of the DOCP. Also, the update procedure of the Hes-
sian, present during every SQP iteration, should explore
its block-diagonal sparsity structure. For large-scale prob-
lems, QP subproblems are solved by means of sparse ma-
trix algebra techniques.

The key issue in the SQP algorithm is effective so-
lution of the QP subproblem. Generally, there are two
groups of QP methods: classical active-set (AS) strate-
gies and modern interior-point (IP) methods. AS meth-
ods are quite good for small and medium problems, be-
cause of their non-polynomial computational complexity.
The most popular active-set strategy is the simplex algo-
rithm for linear programming. On the other hand, we
have IP methods with a polynomial bound of computa-
tional complexity. IP algorithms are based on the idea
of identifying active inequality constraints numerically,
with the help of a nonlinear barrier function, and solving
the resulting large-scale nonlinear equation system with
a Newton method (the solution of a sequence of large-
scale sparse symmetric indefinite systems of linear equa-
tions). IP methods show excellent numerical properties

for large-scale QP problems. Typically, implementations
of AS methods are based on dense matrix algebra, and IP
methods require sparse matrix computations.

The special structure of the DOCP can be used dur-
ing the solution of the QP subproblem with linear equality
constraints based on an extension of the well-known Ric-
cati solution procedure for unconstrained linear-quadratic
control problems to the equality constrained case. Hence
we obtain an effective and robust algorithm for this special
optimal control problem.

4.2.1. SQP Solver. The implementation of the SQP
solver with an interior-point algorithm for the solu-
tion of QP subproblems, for our dynamic optimiza-
tion library, is based on the code of the HQP1 solver
implemented by R. Franke, E. Arnold and H. Linke,
see (Franke and Arnold, 1999). The original contri-
butions of this article’s authors are: a new design of
the SQP solver class hierarchy and the implementa-
tion of additional configurable modules for the SQP
solver (different QP solvers, matrix solvers and La-
grangian Hessian approximations). Also, we changed
the implementation of matrix algebra operations using
the NEWMAT and UBLAS dense matrix libraries, and
also the native matrix classes SparseBlockMatrix
(for the management of QP problem matrices) and
SymmetricBlockDiagonalMatrix (for the man-
agement of Lagrangian Hessian approximation). By those
modifications, we obtained noticeable performance and
accuracy improvements for large-scale problems in rela-
tion to the HQP solver code.

The solution of the NLP problem (6) is approached
through the Lagrange function

L(y, p, λ) = J(y)− pTh(y)− λT g(y), (7)

where p ∈ Rmh and λ ∈ Rmg are the Lagrange mul-
tiplier vectors for the equality and inequality constraints,
respectively. The Lagrange-Newton-type SQP algorithm
attempts to find a stationary point (y?, p?, λ?) of the La-
grange function, with the help of solutions of local, linear-
quadratic, approximations to the NLP problem (6).

In each SQP iteration i the search direction si for the
improving in the given iterate yi of y is obtained by solv-
ing the following local linear-quadratic approximation to
the NLP problem:

min
s

1
2
sTHis+∇yJ(yi)T s (8)

subject to

∇yh(yi)s+ h(yi) = 0, (9)

∇yg(yi)s+ g(yi) ≥ 0. (10)

1An open source C++ implementation of HQP is available at http:
//hqp.sourceforge.net/

http://hqp.sourceforge.net/
http://hqp.sourceforge.net/

Object library of algorithms for dynamic optimization problems. . . 521

The above convex QP problem is obtained by quadratic
approximation of the Lagrange function (7) and local lin-
earization of (6) at a given iterate yi. The solution si of
(8)–(10) is used to obtain an improved iterate yi+1:

yi+1 := yi + αsi, (11)

where the step length α is obtained by minimizing an ex-
act penalty function with the Armijo-type line-search. The
required derivatives (the gradient ∇J , the Jacobians ∇h
and ∇g) are obtained by automatic differentiation proce-
dures available in the ADOL-C library.

For our dynamic optimization library three SQP
solver classes were implemented based on Powell al-
gorithms (Powell, 1978), with the solution of QP sub-
problems by an active-set strategy or an interior-point
method, and that of Schittkowski (Schittkowski, 1983),
with an interior-point method. In general, we would
recommend Powell’s algorithm, which in our applica-
tions appeared very robust when solving large-scale prob-
lems. The implementation of Powell’s SQP algorithm
has been extended with a watchdog strategy (Chamberlain
et al., 1982) to improve further the robustness. Schit-
tkowski’s algorithm sometimes provides advantages for
highly nonlinear problems.

Because of possibly high dimensions of the optimiza-
tion problems, it is essential to take into account the spar-
sity structure of the problem in the solution procedure:

• the gradient ∇J and the Jacobians ∇h and ∇g are
calculated taking into account the stage-wise DOCP
problem formulation in (2) and (3),

• the block-diagonal structure of the Hessian ∇2
yyL is

preserved during the update procedure of its approx-
imation, and

• because of its advantageous numerical behavior, es-
pecially for large-scale problems, an interior-point
method is preferred to be used for the solution of the
quadratic programming problem (8)–(10).

The quadratic approximation of the Lagrangian (7) is
probably most for crucial to advantageous application of
SQP solvers to large-scale problems. First of all, the ma-
trixHi must be positive definite, to get a convex quadratic
subproblem, which can be treated efficiently by the QP
solver. Secondly, Hi should be sufficiently sparse in or-
der to allow efficient application of sparse matrix solvers.
Sparsity requirement in the case of (DOCPs) is fulfilled
by the analytical Lagrangian Hessian, which exhibits the

following block-diagonal structure:

Hi+1 = ∇2
yyL(yi+1, pi, λi)

=

� �

� �
. . .

� �

� �

�

. (12)

This structure should be preserved during the Hessian up-
date procedure. Positive definiteness of the above matrix
may be guaranteed by the Gerschgorin modification:

hi,i := max

ε+
∑
j 6=i

|hi,j |, hi,i

 ,

i, j = 1, . . . ,my, (13)

but this often results in rather poor convergence.
In general, numerical Hessian updates are preferred

in nonlinear programming. In the current version of our
dynamic optimization library we implemented for SQP
solvers dense BFGS (Fletcher, 1995) and SR1 (Nocedal
and Wright, 1999; Tenny et al., 2002) updates (both in
modified versions for positive definiteness) for separate
diagonal blocks of the Lagrangian Hessian. Those par-
titioned variable metric updates have proven to be very
useful for solving DOCPs.

Finally, there is Powell’s modified BFGS update op-
erating on the whole matrix with the Gangster operator to
avoid fill-in, but its application may lead to poor conver-
gence of the SQP algorithm.

4.2.2. QP Solver. The computational complexity of al-
gorithms for solving linear-quadratic optimization prob-
lems is mainly determined by the number of inequality
constraints, besides the number of variables and of equal-
ity constraints.

Classical active-set algorithms identify the set of
binding (active) inequality constraints at the solution point
by step-wise index exchange operations. Unfortunately,
they are non-polynomial, i.e., the worst-case number of
performed steps increases faster than any polynomial with
the number of inequality constraints. The most popular
active-set strategy is the simplex algorithm for linear pro-
gramming. Even though active-set strategies often per-
form well for many high-dimensional practical examples,
there are other examples where their application is very
inefficient.

Powell’s algorithm implemented in our library uses
the active-set strategy of Goldfarb and Idnani (Goldfarb
and Idnani, 1983; Powell, 1985) with Fletcher’s or Bert-
sekas’s methods of active set initialization (Fletcher, 1987;

522 J. Błaszczyk et al.

Bertsekas, 1982), but its effective application is limited to
small-scale problems due to the number of active set steps
necessary to find out the correct set of active inequality
constraints.

The idea behind interior-point methods is to identify
active inequality constraints numerically with the help of
a barrier function. Their computational complexity has
a polynomial bound (Karmarkar, 1984). In recent years,
algorithms have been developed that show the excellent
theoretical properties, confirmed also in practical applica-
tions.

Three different implementations of the interior-point
algorithm are currently available for the SQP solver:
Mehrotra, Gondzio and Franke. Mehrotra’s primal-
dual predictor-corrector method (Mehrotra, 1992) was im-
plemented because of its good reputation in the literature
for linear programming, e.g., (Wright, 1997). Recently
we have added to Mehrotra’s algorithm Terlaky’s modi-
fication proposed in (Salahi et al., 2005), which reason-
ably reduces the iteration complexity of the original al-
gorithm. Gondzio’s multiple centrality correctors solver
(Gondzio, 1994) is a variant of Mehrotra’s primal-dual
interior-point method for convex QP, whose application
for some problems may lead to a significant decrease in
the total number of QP iterations and, as a consequence,
to the reduction of the SQP solver runtime. Franke’s QP
solver is derived from several interior-point algorithms
known from the literature, with most impact from Wright
(Wright, 1993). Some modifications to this QP algorithm
were introduced by R. Franke with the aim to improve its
performance and robustness (Franke, 1994). According
to our experience, the overall performance of Mehrotra’s
and Franke’s QP solvers is about the same. However, for
a specific problem one of them may perform significantly
better than the other. To compare the performance of
our specialized QP solvers with external, general-purpose
quadratic programing solvers, we implemented interfaces
to the solvers OOQP, BPMPD, MOSEK and LOQO. The
most promising one is the OOQP solver, which for some
problems was competitive with specialized QP solvers.

To explain the principal procedure, the optimization
problem (8)–(10) is rewritten as

min
s

{
1
2
sTHs+ cT s | As+ b = 0, Cs+ d ≥ 0

}
.

(14)
H is supposed to be symmetric positive semidefinite and
A must be of a full rank.

A barrier parameter µ > 0 and a slack vector w =
Cs + d are introduced for the treatment of the inequality
constraints. The objective function of (14) is augmented
with a nonlinear barrier to

min
s

1
2
sTHs+ cT s− µ

mg∑
i=1

lnwi. (15)

The solution of the quadratic subproblem is character-
ized by extended KKT conditions (Λ = diag(λ), W =
diag(w), e = (1 . . . 1)T):

Hs+ c−AT p− CTλ = 0, (16)
As+ b = 0, (17)

w = Cs+ d > 0, (18)
λ > 0, (19)

ΛWe− µe = 0, (20)
µ→ 0. (21)

For each µ > 0, Eqns. (16)–(20) have a unique solution
(s, p, λ, w). For µ → 0, (20) reduces to the complemen-
tary condition λTw = 0; (16)–(20) then describe the KKT
conditions of the original quadratic subproblem (14). The
resulting vectors p and λ are used by the SQP solver as
approximations of the Lagrangian multipliers.

Numerical solution of the nonlinear system (16)–(21)
is obtained with an iterative Newton procedure. The ini-
tialization of a feasible starting point (s0, p0, λ0, w0) and
the control of the barrier parameter µ during the solution
process are discussed in (Franke, 1994). The following
linear equation system is passed to the matrix solver dur-
ing each QP iteration j:
−H AT CT 0
A 0 0 0
C 0 0 −I
0 0 Wj Λj

δsj

δpj

δλj

δwj

 =

0
0
0

ΛjWje− µje

 .
(22)

The solution of this linear system is used to update the
variable vectors:

(sj+1, pj+1, λj+1, wj+1)

:= (sj , pj , λj , wj)− αj(δsj , δpj , δλj , δwj). (23)

The step length αj ∈ [0, 1] is chosen maximal, provided
that the new iterate j + 1 remains feasible.

A very interesting property of interior-point algo-
rithms is that the failure of the complementary condition,
i.e., λw = 0 is continuously decreased over the iterations.
In this way, one has a kind of measure for the distance of
the current iterate from the optimum. This property may
be exploited for the treatment of infeasible subproblem
approximations.

4.2.3. Matrix Solver. Whereas the nonlinearities and
the inequalities are treated by the SQP and the QP solver,
respectively, the remaining computational complexity of
the problem is passed to the matrix solver in the form of
high-dimensional systems of linear equations.

The system (22) has to be solved once in each QP
iteration. The coefficient matrix of (22) can be made sym-
metric by eliminating δwj = Cδsj . This results in the

Object library of algorithms for dynamic optimization problems. . . 523

symmetric indefinite system:−H AT CT

A 0 0
C 0 Λ−1

j Wj

δsjδpj

δλj

=

 0
0

Wje− µjΛ−1
j e

 . (24)

We apply a diagonal scaling as proposed in (Wright, 1993)
in order to improve the numerical stability.

In many cases it is advantageous to further reduce the
system of equations prior to its factorization. This can be
done by eliminating the inequality constraints from (24).
This results in the reduced system:[
−H − CTW−1

j ΛjC AT

A 0

][
δsj

δpj

]

=

[
−CTW−1

j Λjr
j
3

0

]
, (25)

δλj = W−1
j Λj(r

j
3 − Cδsj),

rj3 = Wje− µjΛ−1
j e.

The main computational effort of the interior-point
method, as well as of the whole SQP algorithm, is the so-
lution of the systems of linear equations described above.
Here, the sparsity structure of the DOCP should be ex-
ploited. The main matrix solver for the SQP solver is
based on the algorithm developed by E. Arnold and per-
forms a block-wise elimination taking advantage of the
stage-wise formulation of dynamic optimization prob-
lems. The algorithm is an extension of the Ricatti re-
cursion for unconstrained linear-quadratic optimal con-
trol problems, see (Arnold et al., 1994; Arnold and Puta,
1994). This specialized method for DOCPs outperforms
clearly other matrix solvers with respect to computational
time. An additional advantage of the method is that no
dynamic allocation of memory is needed during the itera-
tions if dense submatrices are used. The LQ-DOCP matrix
solver uses dense linear algebra procedures of the NEW-
MAT or UBLAS matrix libraries and allows the calcula-
tion of the Newton step in O(N) operations (instead of
O(N3), as would be expected without taking into account
the special structure of the linear system).

To compare the performance of the LQ-DOCP solver
with external general-purpose sparse matrix solvers, we
implemented the interfaces to direct solvers, MA27,
MA47, WSMP, MUMPS, PARDISO, BLKFCLT, UMF-
PACK, and iterative solvers, GMRES, SYMMLQ, MIN-
RES, SQMR. They are used to solve the sparse symmetric
indefinite equation systems during iterations of the spe-
cialized QP solvers.

4.3. Interior-Point Methods for NLP Problems.

4.3.1. Introduction. Interior-point methods for non-
linear programming, also called barrier methods, rose
from the need for effective solving of large-scale opti-
mization problems. In particular, for NLP problems with
large numbers of inequality constraints, these methods of-
fer a serious alternative to active-set strategies. Within
the last fifteen years researchers has led to a better un-
derstanding of the convergence of interior-point methods
and has also developed effective computational algorithms
with desirable global and local convergence properties.

The term interior-point method was used for the
first time by Fiacco and McCormick in 1968 in the book
(Fiacco and McCormick, 1968), for any algorithm that
was designed for the calculation of a local minimum of
an NLP problem by the solution of a determined sequence
of unconstrained minimization problems. Such a defini-
tion evolved to the form, in which as of the IP method we
think of any algorithm for solving a set of optimization
problems associated with a decreasing value of the µ mul-
tiplier, to find local solutions lying in the interior of the
feasibility set determined by nonlinear constraints of the
NLP problem.

To allow convergence from “bad” starting points
for interior-point methods in both trust region and line-
search versions, researchers developed exact penalty merit
functions that ensure progress toward the solution (Byrd
et al., 2000; Tits et al., 2002). On the other hand,
Fletcher and Leyffer (Fletcher and Leyffer, 2002; Fletcher
et al., 2006) proposed recently filter methods, as an alter-
native to merit functions which guarantee the global con-
vergence for nonlinear programming algorithms. They are
based on the idea of the approval of trial points generated
by the optimization algorithm in the case when they im-
prove the value of the objective function or improve the
value of a constraint violation, instead of a combination
of those two measures defined by a merit function.

More recently, this filter technique has been adapted
to barrier methods. In (Ulbrich et al., 2004), the authors
consider a trust-region filter method, in which the conse-
quent iterations of the solution are accepted on the basis
of the norm of optimality conditions. Also, in (Benson
et al., 2001), the authors proposed several heuristics based
on the concept of filter methods, for which the efficiency
improvement was obtained as compared with their previ-
ous experience with merit functions. Finally, in (Wächter
and Biegler, 2005), global convergence analysis of an
interior-point algorithm with a filter line-search was pro-
vided.

Interior-point methods for NLP problems were im-
plemented within many optimization solvers, such as
LOQO (Vanderbei and Shanno, 1997), KNITRO (Byrd
et al., 1999; Waltz and Plantenga, 2006) or IPOPT
(Wächter, 2002; Wächter and Biegler, 2006). In numerical

524 J. Błaszczyk et al.

tests these solvers proved to be quite effective and robust
for many large-scale NLP problems.

4.3.2. IPOPT Solver. In this section we describe a
primal-dual interior-point algorithm with line-search min-
imization based on the filter method, used in the imple-
mentation of the IPOPT2 solver that has recently been
integrated into our library of dynamic optimization algo-
rithms. The authors of the IPOPT assumed the following
formulation of the original NLP problem:

(P) min
y∈Rmy

{J(y) | h(y) = 0, y ≥ 0} , (26)

where the objective function J : Rmy 7→ R and the equal-
ity constraints h : Rmy 7→ Rmh with mh < my are as-
sumed to be twice continuously differentiable. NLP prob-
lems with general inequality constraints g(y) ≥ 0 can be
reformulated to the above form by introducing slack vari-
ables, i.e., s, where g(y)− s = 0, s ≥ 0.

The barrier algorithm in the IPOPT solver is based on
the replacement of the sign constraints on decision vari-
ables, y ≥ 0, with an additional component in the objec-
tive function—the logarithmic barrier:

(Pµ) min
y∈Rmy

Jµ(y) = J(y)− µ
my∑
j=1

ln(yj) |

h(y) = 0

 , (27)

where µ > 0 is the barrier parameter and yj is the j-th
element of the vector y. Since the objective function for
Problem (Pµ) may attain arbitrarily large values when yj

reaches one of its bounds, the local solution y?(µ) to that
problem is located in the interior of the set determined by
the constraints y?(µ) > 0. The scale of the barrier influ-
ence is determined by the size of the µ parameter and on
certain assumptions, as µ → 0, the solution y?(µ) con-
verges to a local solution y? of the original problem (P).
As a result, the algorithm to determine a solution to the
original problem (P) is based on solving a sequence of
barrier problems (Pµ) with decreasing values of the pa-
rameter µl, {µl} → 0.

The interior-point algorithm of the IPOPT solver
finds a solution for primal-dual stationarity conditions for
the problem (Pµ), formulated as the following nonlinear
system of equations:

∇yJ(y) +∇yh(y)λ− z = 0, (28)
h(y) = 0, (29)

Y Z − µey = 0, (30)

2An open source C++ version of IPOPT is available at http://
projects.coin-or.org/Ipopt

where Y and Z are diagonal matrices with elements y and
z, respectively, ey is the vector of ones of dimension my ,
λ ∈ Rmh is the vector of Lagrange multipliers for equal-
ity constraints of the problem (P), and z ∈ Rmy corre-
sponds to the vector of Lagrange multipliers for the sign
constraints of the problem (P), in the limit, as µ→ 0. Note
that the system of equalities (28)–(30) for µ = 0, together
with the additional condition y, z ≥ 0, is equivalent to
KKT optimality conditions for the original problem (P).

For the solution of the system of equalities (28)–(30),
for a fixed value of the parameter µ, the IPOPT applies
the iterative Newton method, based on the solution of the
following system of linear equations:

 Wk ∇yh(yk) −I
∇yh(yk)T 0 0

Zk 0 Yk

d

y
k

dλk
dzk

= −

∇yJ(yk) +∇yh(yk)λk − zk
h(yk)

YkZk − µey

 , (31)

where Wk denotes the exact Hessian matrix for the La-
grange function of the original problem (P):

Wk = ∇yyJ(yk) +
mh∑
i=1

λik∇yyhi(yk), (32)

or some approximation of it. The Lagrange function has
the form

L(y, λ, z) := J(y) + h(y)Tλ− z. (33)

Here, the index k denotes the counter of inner iterations
of Newton’s method, the vector (yk, λk, zk) is the current
iterate, and (dyk, d

λ
k , d

z
k) is the obtained new search direc-

tion.
Instead of solving the nonsymmetric system of lin-

ear equalities (31) directly, the IPOPT solver obtains the
equivalent solution by first solving the symmetric linear
system of a smaller dimension:[

Wk + Σk ∇yh(yk)
∇yh(yk)T 0

](
dyk
λ+
k

)
= −

(
∇yJµ(yk)
h(yk)

)
,

(34)
where Σk := Y −1

k Zk. The equations for the system (34)
are derived from those of the system (31) by eliminating
the last block row. And then, the direction dλk is computed
from

dλk = λ+
k − λk (35)

and the direction dzk from

dzk = µY −1
k ey − zk − Σkd

y
k. (36)

http://projects.coin-or.org/Ipopt
http://projects.coin-or.org/Ipopt

Object library of algorithms for dynamic optimization problems. . . 525

After computing new search directions from (34)–(36),
we calculate the next iterate as follows:

(yk+1, λk+1, zk+1)

:= (yk, λk, zk) + (αkd
y
k, αkd

λ
k , α

z
kd
z
k), (37)

where α, αzk ∈ (0, 1] are the stepsizes. Note that for z
variables it is allowed to take a different stepsize than for
the other variables.

Since we know that the variables y and z are posi-
tive at an optimal solution of the barrier problem (Pµ), the
IPOPT maintains this property for all iterates. As a result,
the following rule of the step length selection is applied:

ᾱk := max{α ∈ (0, 1] : yk + αdyk ≥ (1− τ)yk}, (38)
ᾱzk := max{α ∈ (0, 1] : zk + αdzk ≥ (1− τ)zk}, (39)

for the parameter τ ∈ (0, 1), usually close to 1 (e.g.,
τ = 0.995). For the z variables the step length is cho-
sen as αzk := ᾱzk, while the step length αk ∈ (0, ᾱk]
for the remaining variables is determined by a backtrack-
ing line-search procedure using a decreasing sequence of
trial stepsizes, αk,l = 2−lᾱk, with l = 0, 1, 2, . . . — here
a variant of Fletcher and Leyffer’s filter method (Fletcher
and Leyffer, 2002) is used, which guarantees global con-
vergence of the interior-point algorithm to the solution of
the problem (Pµ).

Filter minimization methods are based on the idea of
two-criteria optimization in which, apart from minimiz-
ing the barrier objective function Jµ(y), we want to min-
imize the constraint violation θ(y) := ‖h(y)‖ in order
to assure the convergence to a feasible point. In Fig. 1,
a projection of the Rmy space onto the (θ(y), Jµ(y)) half-
plane was depicted. Every point from the original space
of decision variables, such as the optimal solution y? or
the current iterate yk, has its counterpart in this picture,
e.g., (θ(yk), Jµ(yk)). The decision on accepting a trial
point yk + αk,ld

y
k as the next solution iterate yk+1 de-

pends on whether it guarantees a sufficient improvement
of one of the two measures θ or Jµ as compared with their
values at the point yk. In the example of Fig. 1, the trial
point “1” was not accepted because it worsens the values
of both measures. Also the point “2” should be rejected,
since it does not allow a sufficient decrease in the value of
infeasibility (in the graph, sufficient decreases in the two
measures are determined by two dashed lines whose inter-
section is closest to (θ(yk), Jµ(yk))). However, the trial
point “3” should be accepted.

In the IPOPT solver the following safeguards have
been added to this simple procedure of next iterate accep-
tance:

• In the case when the current iterate is (almost) feasi-
ble but not sufficiently optimal, the above condition
of a sufficient decrease in one of two measures for yk
is replaced by the condition of a sufficient decrease
in the barrier function value Jµ.

• In order to prevent cycling, the (θ, Jµ) pairs corre-
sponding to previous iterate that create a certain en-
velope (in our example these are yl1 and yl2 iterates)
are added to a filter; a trial point is only accepted if
it guarantees a sufficient decrease in one of two mea-
sures relative to all those points. In our example, the
trial point “4” should be rejected because it does not
sufficiently improve the values of both measures θ
and Jµ with respect to the yl2 iterate.

• It may happen that there is no trial stepsize αk,l that
generates an acceptable point. After detecting such
a situation, the algorithm switches to a feasibility
restoration phase in which the minimization of in-
feasibility is carried out (ignoring the objective func-
tion) until either a new acceptable iterate is found
or it is no longer possible to reduce the infeasibility,
e.g., if the problem (P) is (locally) infeasible.

A formal description and analysis of the filter line-
search procedure implemented in the IPOPT solver can be
found in (Wächter and Biegler, 2005). In comparison with
traditional line-search algorithms, such as a single merit
function technique, the filter method is usually less con-
servative and makes it posible to take larger stepsizes. (In
Fig. 1 for the method of an exact penalty function accept-
able points will have to lie below a straight dotted line.)
Moreover, the protection in the form of a restoration phase
makes the filter algorithm resistant to unnecessary errors,
such as those presented in (Wächter and Biegler, 2000).

The computationally most expensive part of the opti-
mization algorithm implemented in the IPOPT solver (not
including computations of the objective function, con-
straints and their derivatives) is the solution of the lin-
ear system of equations (34), which is most often of high
order and has a sparse structure, e.g., for dynamic opti-
mization problems it is very sparse. For its factorization
and solution, the IPOPT uses external sparse direct linear
solvers, such as MA27 (default option), MA57, WSMP,
PARDISO and MUMPS.

4.3.3. SQP Methods vs. Nonlinear Interior-Point
Methods. There is still a need for research on behaviour,
effectiveness and robustness of sequential quadratic pro-
gramming and nonlinear interior-point methods, see
(Misc, 2003). At present, it seems that in terms of the ef-
fectiveness and robustness, nonlinear interior-point meth-
ods are better fitted for large-scale nonlinear optimization
than SQP methods. And there is also a continuous devel-
opment and competition between methods of both types—
such a state will probably be lasting for the next few years.

The advantage of SQP methods over interior-point
methods consists in their small number of required con-
trolling parameters and in the possibility of using “good”
starting points. On the other hand, SQP methods for de-
generated problems have difficulties with the identifica-

526 J. Błaszczyk et al.

θ(y) = ‖h(y)‖

Jµ(y)

(θ(yk), Jµ(yk))

(θ
(y
l 1
),
J
µ
(y
l 1
))

(θ(yl2), Jµ(yl2))

}
γ
θ(
y k
)

} γθ(yk)

(0
,J
µ
(y
?
))

1
2

3

4

Fig. 1. Filter line-search method.

tion of the optimal active-set of constraints at the solution
point.

On the other hand, nonlinear interior-point methods
are a very efficient and effective optimization tool and,
which is also important, they are not too sensitive to the
degeneracy of the optimization problem. Their main flaw
is dependency on controlling parameters, such as the bar-
rier parameter, whose update requires complex heuris-
tics. Moreover, their efficiency depends very much on the
choice of the starting point.

In publications from the optimization domain one
may find a lot of papers comparing the numerical effi-
ciency of solvers based on SQP methods and nonlinear
interior-point methods using the methodology of perfor-
mance profiles, see (Dolan and Moré, 2002). It is worth-
while here to mention the articles (Benson et al., 2002;
Morales et al., 2001), comparing the solvers SNOPT, fil-
terSQP, LOQO and KNITRO, and the articles (Wächter,
2002; Wächter and Biegler, 2006), in which the authors
compared the IPOPT solver with the LOQO and KNITRO
solvers.

5. Dynamic Optimization of the Zambezi
Reservoir System

The methods described above were applied to find out op-
timal release strategies for a system of reservoirs with hy-
droelectric power-stations on the Zambezi river in south-
ern Africa (Arnold et al., 1994). The dynamic optimiza-
tion of that problem using the SQP method with the active-
set strategy was done at the Institute of Control and Com-

putation Engineering of the Warsaw University of Tech-
nology by E. Arnold as a part of the IIASA project Water
Resources (Arnold et al., 1994).

The structure of the reservoir system is given in
Fig. 2. Its discrete-time model has a discretization step
of one month and a control horizon ranging from one year
up to 35 years. State equations are derived from volume
balance equations of the reservoirs with the volumes of
stored water as state variables. Control variables are the
productive outflow (outflow through the turbines) and the
spillage.
Balance equation (i = 1, . . . , 4, k = 0, . . . , N − 1):

V k+1
i = V ki + Zki +

∑
j∈Ui

(
Q
k−θj

j + F
k−θj

j

)
−Qki − F ki − eki fa,i(V ki), (40)

where the following notation is used:

V ki – reservoir volume; state variable,
Zki – natural inflow (deterministic),
Qki – productive outflow; control variable,
F ki – spillage; control variable,
Ui – upstream reservoirs,
θj – time delay,
eki fa,i – evaporation.

Since a deterministic control problem is considered,
natural inflows are supposed to be known scenarios from
historical data. Each of the balance equations contains
a nonlinear evaporation term eki fa,i(V

k
i). River dynamics

between the reservoirs (time delay θj) are modelled by

Object library of algorithms for dynamic optimization problems. . . 527

linear difference equations with additional state variables.
Thus, the four reservoir system has six state variables and
seven control variables.

State and control bounds (or box constraints) arise
from physical restrictions and additional demands, e.g.,
flood control and ecological demands, i.e.,

V kmin,i ≤ V ki ≤ V kmax,i (reservoir capacity), (41)

Qkmin,i ≤ Qki ≤ Qkmax,i (turbine flow bounds), (42)

F kmin,i ≤ F ki ≤ F kmax,i (flood control etc.). (43)

The main control goal is the maximization of the total
electrical energy production. Therefore, the cost function
includes a nonlinear mixed state-control term (the out-
flow multiplied by the state dependent water height level).
Other terms of the cost function result from the desired
small deviations in time of the energy production and the
final water storage demands, respectively.

We have

J =
4∑
i=1

{
φ
(
V Ni − V Nref,i

)2 − νEfe,i(V Ni)

+
N−1∑
k=0

{
− αQki

(
fh,i(V ki) + fh,i(V k+1

i)
)

+ ψ
(
Qki −Qkref,i

)2}}
, (44)

where

fh,i – storage-water level relationship,
V Nref,i – final reservoir volume reference

value,
Qkref,i – reference trajectory for productive

outflow,

Kariba,
Res. 1

Zambezi River
Cabora Bassa,
Res. 4

Luangwo River

Kafue Gorge,
Res. 3

Kafue River

Itezhitezhi,
Res. 2

Fig. 2. Structure of the Zambezi river system.

fe,i – storage-potential electrical energy
relationship,

α, φ, νE – weight parameters.

This optimization problem fits into the class of op-
timal control problems defined in Section 3, if only the
volume V k+1

i in the water-level term of the cost function
is replaced by the right-hand side of the balance equation.

In the calculations we used the following initial con-
trol trajectory (i = 1, . . . , 4, k = 0, . . . , N − 1):

Qki = Zki +
∑
j∈Ui

Zkj , F ki = 0, (45)

or a better one, determined from the reservoir balance
equation, which assures faster convergence to the solu-
tion:

Q0
i =

{
Q0

max,i if Z̄i > Q0
max,i,

max(Z̄i, Q0
min,i) otherwise,

F 0
i =

{
Z̄i −Q0

max,i if Z̄i > Q0
max,i,

0 otherwise,

Qki = Q0
i , k = 1, . . . , N − 1, (46)

F ki = F 0
i , k = 1, . . . , N − 1,

where

Z̄i =
1
N

(
N−1∑
k=0

Zki − (V Nref,i − V 0
i)

)
+
∑
j∈Ui

(
Q0
j + F 0

j

)
. (47)

The Zambezi problem was formulated as six dif-
ferent computational examples for which data were taken
from the following sources:

zambezi8, zambezi9, zambezi10, zambezi11, zambezi
come from the CUTEr3 collection of opti-
mization test problems and correspond to the
problems ZAMB2-8.SIF, ZAMB2-9.SIF,
ZAMB2-10.SIF, ZAMB2-11.SIF,
ZAMB2.SIF from the small test problem set
mastsif_small.tar.gz. The zambezi10
example was discussed in (Arnold et al., 1994),
whereas in (Arnold and Puta, 1994) the results for
the zambezi9 example were presented.

zambezi12 is the modification of the zambezi10 exam-
ple described in (Franke and Arnold, 1997). In that
problem the influence of the reference control trajec-
tory Qkref,i, k = 0, . . . , N − 1 on the cost function
was omitted, whereby the bounds on state variables
and controls are of great importance for the problem
solution.

3http://cuter.rl.ac.uk/cuter-www/

ZAMB2-8.SIF
ZAMB2-9.SIF
ZAMB2-10.SIF
ZAMB2-11.SIF
ZAMB2.SIF
mastsif_small.tar.gz
http://cuter.rl.ac.uk/cuter-www/

528 J. Błaszczyk et al.

The historical data about natural inflows to reservoirs and
all values of problem parameters were taken from the ap-
propriate CUTEr test problem files.

The dynamic SQP solver and the IPOPT solver per-
formed satisfactorily with high accuracy for all variations
of the Zambezi problem with varying time horizons, vary-
ing inflow scenarios and cost function parameters. Ex-
amples of optimal trajectories for the zambezi12 example
with N = 24 are shown in Fig. 3. As be can seen, the op-
timal control trajectories for Qi variables are most often
located on bounds.

Examplary calculations reported in this section were
performed on a computer with an AMD Athlon 64 X2
2.2 GHz processor, with 2 GB RAM, running Linux 2.6.
All examples were treated with default settings of solvers
and we used the initial control trajectory given by Eqns.
(46) and (47). We compared the SQP solver using
Franke’s interior-point (SQP-IP) algorithm with two alter-
native solvers: the SQP solver using an active-set strategy
(SQP-AS) and the IPOPT optimizer. We wanted to show
how the discussed algorithms behaved for dynamic opti-
mization problems with increasing dimensions.

The results of optimization for the zambezi12 exam-
ple comparing the three different solvers are summarized
in Table 1. This table shows:

1. the number of stages, variables, equality constraints
(including fixed variables), and inequality constraints
(including bounds), respectively,

2. the number of main iterations,

3. the cumulative number of minor iterations (i.e., QP
iterations for the SQP method),

4. the computational time (in seconds) for two im-
plementations of dense linear algebra operations in
solvers: one using the NEWMAT (N) matrix library
and the other using the UBLAS (U) matrix library.
For the IPOPT solver, only the run time for the
UBLAS implementation was shown because both of
the matrix libraries are used only for problem formu-
lation and the computation of derivatives, while the
computational code of the IPOPT uses native C++
matrix classes.

The conclusions from that comparison of solvers are
as follows:

• Both of the SQP solvers required a similar, rather
small number of main iterations, whereas the number
of iterations of the IPOPT solver is relatively high.

• For small problems (up to about 1000 variables) the
SQP-AS solver was more effective than the SQP-IP
solver.

• For large problems the disadvantage of the SQP-AS
solver is long computational time needed to identify
the set of active inequality constraints.

• The SQP-IP solver shows a very moderate increase in
the computational time. The effort is high for small
problems, due to the interior-point method, but with
an increasing problem dimension (above 1000 vari-
ables) this initial burden is more than compensated
by an better computational complexity of the algo-
rithm.

• By using faster dense linear algebra operation pro-
vided by the UBLAS library (and ATLAS procedures
called by UBLAS), we doubled the speedup for the
SQP-IP solver and tripled it for the SQP-AS solver
compared with less efficient implementation of ma-
trix operations offered by the NEWMAT library.

• For small problems the performance of the general-
purpose NLP solver (IPOPT) is noticeably worse
than that of the SQP solvers specialized for dy-
namic optimization, but while increasing the prob-
lem dimension it becomes comparable with the per-
formance of the SQP-AS solver.

6. Benchmarking SQP and Nonlinear
Interior–Point Methods

In order to compare the performance of different versions
of given solver for dynamic optimization or to compare
a few different solvers running on the same set of test
problems, the methodology of performance profiles pro-
posed in (Dolan and Moré, 2002) was used. This approach
is based on the computation of the probability estimate
that an algorithm performs within a multiple of the run-
time or iteration count (or any other metric) of the best
algorithm.

Assume that we compare the performance of ns
solvers on a testing set consisting of np problems. For
the case of using the run time of the algorithm as the met-
ric in the calculated performance profile, we introduce the
following notation:

tp,s = run time required to solve problem p by solver s.
(48)

Then the performance ratio of the solver s on the problem
p is defined by

rp,s =
tp,s

min{tp,s : 1 ≤ s ≤ ns}
. (49)

Moreover, for test problems for which we cannot find
a solution by a given solver in finite time, we assume
rp,s = rM , where rM is a sufficiently large number. For
successfully solved problems we have rp,s ≤ rM .

Object library of algorithms for dynamic optimization problems. . . 529

Vmax,1

0 4 8 12 16 20 24

40

50

60

70

Time [month]

Reservoir 1

V
1
[1
09
cb
m
]

Qmin,1

Qmax,1

0 4 8 12 16 20 24

0

1

2

3

4

Time [month]

Reservoir 1

Q
1
,F
1
[1
09
cb
m
/m
on
th
]

Vmax,2

0 4 8 12 16 20 24

3
3.5

4
4.5

5
5.5

Time [month]

Reservoir 2

V
2
[1
09
cb
m
]

Fmin,2

0 4 8 12 16 20 24

0.5

1

1.5

2

Time [month]

Reservoir 2

F
2
[1
09
cb
m
/m
on
th
]

Vmin,3

Vmax,3

0 4 8 12 16 20 24

0

1

2

3

Time [month]

Reservoir 3

V
3
[1
09
cb
m
]

Qmin,3

Qmax,3

0 4 8 12 16 20 24

0
0.1
0.2
0.3
0.4
0.5

Time [month]

Reservoir 3

Q
3
,F
3
[1
09
cb
m
/m
on
th
]

Vmax,4

0 4 8 12 16 20 24

40

45

50

55

60

Time [month]

Reservoir 4

V
4
[1
09
cb
m
] Qmin,4

Qmax,4

0 4 8 12 16 20 24

0

1

2

3

4

5

Time [month]

Reservoir 4

Q
4
,F
4
[1
09
cb
m
/m
on
th
]

Fig. 3. Optimal state and control trajectories for the zambezi12 problem with a 24-month control horizon (1945–1946). The state
variables Vi and controls Qi are drawn with the solid line, the controls Fi with dashed line, and bounds with the dotted line.

530 J. Błaszczyk et al.

Table 1. Computational results for the zambezi12 example with the horizon increasing from 12 to 252 months. The
number of main iterations, cumulative numbers of minor iterations, and CPU times (in seconds) are listed for
three different solvers. The times are taken using a PC with an AMD Athlon 64 X2 processor with a 2.2 GHz
clock.

Problem size SQP-IP SQP-AS IPOPT

N n me m Iter QP-Iter Time (N) Time (U) Iter QP-Iter Time (N) Time (U) Iter Time (U)

12 162 78 272 3 65 0.11 0.06 7 87 0.07 0.03 19 0.15

24 318 150 536 4 60 0.21 0.11 3 132 0.17 0.07 23 0.35

36 474 222 800 10 232 1.45 0.58 10 282 0.52 0.22 31 0.71

48 630 294 1064 8 161 1.07 0.52 7 283 0.66 0.27 33 1.00

60 786 366 1328 7 233 1.90 0.92 7 387 1.09 0.43 34 1.30

72 942 438 1592 8 166 1.67 0.83 8 446 1.48 0.58 35 1.61

84 1098 510 1856 9 185 2.19 1.11 10 735 2.84 1.10 36 1.95

96 1254 582 2120 11 207 2.88 1.46 11 795 3.56 1.40 41 2.57

108 1410 654 2384 9 201 3.17 1.61 9 847 4.53 1.73 47 3.38

120 1566 726 2648 10 206 3.69 1.86 9 835 5.22 1.97 43 3.41

132 1722 798 2912 11 360 6.83 3.47 10 1047 7.49 2.83 47 4.26

144 1878 870 3176 11 387 7.74 4.26 9 1131 9.06 3.35 44 4.41

156 2034 942 3440 11 341 7.79 4.02 9 1256 11.19 4.14 45 4.82

168 2190 1014 3704 11 305 7.73 3.99 9 1329 12.65 4.63 51 6.17

180 2346 1086 3968 11 350 9.38 4.88 9 1372 13.94 5.05 50 6.59

192 2502 1158 4232 12 365 10.52 5.48 8 1470 15.97 5.83 48 6.98

204 2658 1230 4496 10 348 12.42 5.74 9 1439 16.59 6.15 48 7.69

216 2814 1302 4760 11 355 12.16 6.24 9 1686 21.71 7.99 47 8.25

228 2970 1374 5024 21 423 15.28 8.12 17 1914 26.39 10.01 51 9.96

240 3126 1446 5288 12 470 17.09 8.91 10 2032 29.69 11.19 50 10.49

252 3282 1518 5552 14 424 16.18 8.61 12 2033 30.49 11.46 50 11.43

In order to evaluate the performance of an algorithm
on the entire set of problems, one can use the quantity

φs(τ) =
1
np

card{p : 1 ≤ p ≤ np, log2(rp,s) ≤ τ}.

(50)
The function φs : R 7→ [0, 1] is called the logarithmic per-
formance profile of the solver s and represents the cumu-
lative distribution function of the performance ratio rp,s.
It is a nondecreasing, piecewise constant function, right-
continuous at each breakpoint. The value of φs(1) is
the probability that the solver wins over the rest of the
solvers. So, if we are interested only in the number of
winnings, we have to compare only the values of φs(1)
for all solvers.

Defining the performance profiles for larger values of
τ , we assume that rp,s ∈ [1, rM] and that rp,s = rM only
when it is not possible to solve the problem p by the solver
s. As a result of this convention, φs(rM) = 1, and we can
define the probability that the solver solves a problem as

follows:
φs(r−M) ≡ lim

τ→r−M
φs(τ). (51)

Thus, if we are interested only in solvers guaranteeing
a high probability of success, we should choose solvers
with the largest value of φs(r−M).

The so-defined performance profiles, apart from the
run time criteria, may be used also for comparing the num-
ber of iterations and the number of objective function eval-
uations by benchmarked solvers.

It turns out that performance profiles eliminate the
influence of a small number of problems on the process of
benchmarking optimization methods and the sensitivity of
results associated with the ranking of solvers. They pro-
vide means of visualizing the expected performance dif-
ference among many solvers. Using them we avoid an
arbitrary choice of parameters used for comparisons and
we must not discard solver failures from the performance
data. If for the comparisons of solvers we use a suitably

Object library of algorithms for dynamic optimization problems. . . 531

large and representative set of test problems, then solvers
with large probability φs(τ) are to be preferred.

The performance profiles were used to compare dif-
ferent options of dynamic optimization solvers based on
the SQP method with an interior-point QP solver. As
the test problems for benchmarking, we use different ver-
sions of the Zambezi problem with the varying number
of stages of the control horizon N : zambezi (N = 12 :
12 : 420), zambezi8 (N = 12 : 12 : 216), zambezi9
(N = 12 : 12 : 72), zambezi10 (N = 12 : 12 : 72),
zambezi11 (N = 12 : 12 : 432) and zambezi12 (N =
12 : 12 : 252). For every dynamic optimization problem
from a total of 122 testing problems, two initial control
trajectories were used (the first described by (45), and the
second given by (46) and (47), for which the SQP algo-
rithm has much better convergence to the solution). Thus,
finally the testing set counted 244 problems. All computa-
tions were carried out in the case of the use of the UBLAS
matrix library. The following options of the dynamic SQP
solver were compared:

• Various matrix solvers in the interior-point QP algo-
rithm used for the solution of the sparse symmet-
ric indefinite system of linear equations (full or re-
duced). They were: the LQ-DOCP method, spe-
cialized for dynamic optimization problems, and ex-
ternal sparse direct matrix solvers: MA27, MA47,
WSMP (in the full and reduced versions), PARDISO,
BLKFCLT, MUMPS and UMFPACK. They were not
compared with external dense direct solvers and iter-
ative solvers (SYMMLQ, MINRES, SQMR) because
of their low numerical efficiency for larger test prob-
lems.

• Various methods of the Lagrangian Hessian update:
the block BFGS method with the Powell modifi-
cation, the block SR1 method, the exact Hessian
computation by automatic differentiation, the Ger-
schgorin method and the Gangster method.

• Methods for quadratic programming: specialized for
dynamic optimization problems interior-points meth-
ods of Franke, Mehrotra and Gondzio and methods
based on the use of external QP solvers: OOQP
(in Mehrotra’s and Gondzio’s versions), MOSEK,
BPMPD and LOQO.

On the basis of the data gathered during the optimiza-
tion by the dynamic SQP solver and by the usage of the
Perl script perf.pl (available from the web pages of the
COPS4 project), the performance profiles were generated
for benchmarked options of the SQP solver. The metrics
used were the computation time, the required number of
major SQP iterations and the total number of QP itera-
tions. The obtained performance profiles are shown in

4http://www-unix.mcs.anl.gov/~more/cops/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – computation time

LQDOCP
MA27
MA47

WSMP
WSMP-F

PARDISO
BLKFCLT

MUMPS
UMFPACK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 . . . rM

P
(l
og
2
(i
t i
,j
/
m
in
{i
t i
,j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of SQP iterations

LQDOCP
MA27
MA47

WSMP
WSMP-F

PARDISO
BLKFCLT

MUMPS
UMFPACK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 . . . rM

P
(l
og
2
(i
t i
,j
/
m
in
{i
t i
,j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of QP iterations

LQDOCP
MA27
MA47

WSMP
WSMP-F

PARDISO
BLKFCLT

MUMPS
UMFPACK

Fig. 4. Performance profiles comparing the computational time,
number of major iterations and total number of QP-
iterations for the SQP solver in the case of using different
matrix solvers; the Zambezi testing set was considered.

Figs. 4–6, respectively. In the case of the lack of con-
vergence of the SQP algorithm, the stopping criterion was
the maximal allowed number of iterations (500).

From Fig. 4 it is clear that among the matrix solvers
the specialized LQ-DOCP solver with the greatest prob-
ability (equal to 0.98) fulfils the criteria to be the best
matrix solver (as regards the computation time) for an
interior-point method of the dynamic SQP solver. The ex-
ternal sparse matrix solvers are far more worse and there
is no need to apply them during the optimization. Among
them, two procedures from the HSL library (MA27 and
MA47) were the best – they had very close shapes of the
performance profiles. Next positions were taken by BLK-
FCLT, WSMP, PARDISO and MUMPS solvers—all de-
signed for symmetric matrices. The slowest matrix solver
was UMFPACK, designed for general matrices, and the

http://www-unix.mcs.anl.gov/~more/cops/

532 J. Błaszczyk et al.

WSMP solver, operating on the full linear system. In the
case of external solvers the time needed to convert matri-
ces of the QP problem (stored in the own format managed
by the class SparseBlockMatrix) into formats used
by the matrix solvers was added to the total computation
time. This conversion is a time consuming operation, but
it is needed at every iteration of the interior-point method.
Almost all matrix solvers were effective in 100%—only
in the case of the PARDISO, BLKFCLT and UMFPACK
solvers, the isolated cases of the lack of the convergence of
the SQP algorithm were observed. The performance pro-
files using the number of QP and SQP iterations as met-
rics for all the matrix solvers are almost identical, which
shows that for the majority of test problems we obtained
very close or simply identical courses of the SQP algo-
rithm iterations and values of the controlling parameters.

From the comparison of update methods of the La-
grangian Hessian for the SQP solver (presented in Fig. 5)
it follows that the most effective method is exact Hessian
computation by automatic differentiation – in all three
metrics (the computation time P = 0.67, the number of
major iterations P = 0.82, the number of QP-iterations
P = 0.82) it was the winner of this performance profile
benchmark. Unfortunately, it was also the least reliable
in our computations (the probability of solving all prob-
lems is equal to P = 0.84), which results from the fact
that the exact Hessian of the Lagrange function may be
not positive definite and the resulting QP problem is non-
convex. From methods of the Hessian update with conver-
gence guarantee equal to 100% the fastest are block meth-
ods of SR1 (P = 0.2) and BFGS (P = 0.11), and, in ad-
dition, the former has by far a better performance profile.
The Gerschgorin and Gangster methods are slower than
the other methods. Moreover, for the latter, solutions for
14% of test problems were not obtained. Therefore, the
the recommended update method of the Lagrangian Hes-
sian for the SQP solver is the block SR1 method, being the
most effective, and, at the same time, robust. Let us no-
tice that the computation of the second derivatives for the
functions of the dynamic optimization problem by auto-
matic differentiation procedures of the effective ADOL-C
library allowed very efficient implementation of the exact
Hessian computation.

The comparison of quadratic programming methods
for the SQP algorithm (see Fig. 6) definitely proved the
advantage of the Mehrotra interior-point method special-
ized for dynamic optimization problems, both in terms
of the computation time (P = 0.85) and the number of
QP-iterations (P = 0.96). The second, in terms of the
computation time (P = 0.09), was the specialized Franke
method, while other methods are definitely slower and
have rather similar performance profiles for the run time
metric. Here, an exception is the BPMPD solver, which
in our tests was least effective, not allowing solving 25%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – computation time

BFGS
SR1

EXACT
GERSCHGORIN

GANGSTER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 . . . rM

P
(l
og
2
(i
t i
,j
/
m
in
{i
t i
,j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of SQP iterations

BFGS
SR1

EXACT
GERSCHGORIN

GANGSTER

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5. . . rM

P
(l
og
2
(i
t i
,j
/
m
in
{i
t i
,j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of QP iterations

BFGS
SR1

EXACT
GERSCHGORIN

GANGSTER

Fig. 5. Performance profiles comparing the computation time,
the number of major iterations and the total number of
QP-iterations for the SQP solver in the case of using dif-
ferent update methods for the Hessian of Lagrange func-
tion; the Zambezi testing set was considered.

of test problems. Moreover, its computation time was ex-
tended by the needed recording of iteration data to exter-
nal files, which certainly was an important share in the
total runtime of the SQP solver for smaller test problems.
In the case of using the OOQP solver, the total number of
QP-iterations inside the SQP algorithm could be lower if
that solver had the possibility of a warm start. Generally
speaking, the interior-point methods of Franke, Mehrotra
and Gondzio, specialized for dynamic optimization prob-
lems, came out much better in terms of both the computa-
tion time and the total number of QP-iterations required
than the methods based on using external QP solvers,
such as OOQP (in the Mehrotra and Gondzio versions),
MOSEK, BPMPD and LOQO. This can be explained by
the fact that the specialized methods use the LQ-DOCP

Object library of algorithms for dynamic optimization problems. . . 533

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – computation time

FRANKE
MEHROTRA

GONDZIO
OOQP-MEHROTRA

OOQP-GONDZIO
MOSEK
BPMPD

LOQO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 . . . rM

P
(l
og
2
(i
t i
,j
/
m
in
{i
t i
,j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of SQP iterations

FRANKE
MEHROTRA

GONDZIO
OOQP-MEHROTRA

OOQP-GONDZIO
MOSEK
BPMPD

LOQO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 . . . rM

P
(l
og
2
(i
t i
,j
/
m
in
{i
t i
,j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of QP iterations

FRANKE
MEHROTRA

GONDZIO
OOQP-MEHROTRA

OOQP-GONDZIO
MOSEK
BPMPD

LOQO

Fig. 6. Performance profiles comparing the computation time,
the number of major iterations and the total number of
QP-iterations for the SQP solver in the case of using
different quadratic programming solvers; the Zambezi
testing set was considered.

matrix solver for dynamic optimization problems, and
the general QP-solvers use for that purpose general (i.e.,
slower) sparse matrix solvers (e.g., the OOQP solver uses
the MA27 Fortran procedure form the HSL library). Let
us remind here, the fact that the run time of the QP solver
is dominated by the computational effort needed for solv-
ing a sequence of linear systems with sparse symmetrical
indefinite matrices. As for the required number of major
SQP iterations, the performance profiles for QP solvers
are similar. In addition, some advantage is attributed to
the specialized Franke interior-point solver.

The testing set of 244 Zambezi problems was also
used to compare the efficiency of different versions of the
dynamic SQP solver and the method based on the solu-
tion of the dynamic optimization problem by the appli-

cation of a general nonlinear programming solver—we
chose the nonlinear interior-point optimizer IPOPT. For
comparison, we used the following methods:

• the Powell SQP solver with an interior-point method
for QP,

• the Schittkowski SQP solver with an interior-point
method for QP,

• the Powell SQP solver with active-set strategy for
QP,

• the old version (2.2.1) of the IPOPT solver (imple-
mented in Fortran),

• the new version (3.2.2) of the IPOPT solver (imple-
mented in C++).

For the discussed solvers, the performance profiles
were generated using the following metrics: computation
time, the required number of algorithm iterations and the
number of objective function evaluations. They are dis-
played in Fig. 7. All compared solvers solved all test
problems. In terms of the computation time, the fastest
solver turned out to be the SQP solver with an active-set
strategy (P = 0.39) and the C++ version of the IPOPT
solver (P = 0.37). For the runtime metric the perfor-
mance profiles for the SQP solvers of Powell (P = 0.18)
and Schittkowski (P = 0.08) and the old version of the
IPOPT solver are worse than others. Let us notice that
the plots of performance profiles for the Powell and Schit-
tkowski SQP solvers are very close to each other. In terms
of the number of iterations and objective function evalua-
tions, the SQP solver with an active-set strategy was also
the best one . The second place was taken by the Pow-
ell SQP solver with the interior-point method, and a bit
worse from it was the Schittkowski SQP solver. However,
both of the versions of the IPOPT solver required defi-
nitely large numbers of iterations and objective function
evaluations. Their performance profiles for these mea-
sures were identical. To sum up, the computational per-
formance of the SQP methods, specialized for dynamic
optimization problems and using only the first derivatives,
is quite similar to the performance of a general nonlinear
interior-point method implemented in the IPOPT solver.
The good results of the IPOPT solver in this benchmark
are largely due to using second derivatives of problem
functions, effectively calculated owing to automatic dif-
ferentiation techniques and considerably accelerating the
convergence of solver iterations. Moreover, it is worth
noting the performance improvement after the reimple-
mentation of the IPOPT solver from Fortran to the C++
language.

It is interesting to study performance profiles for
larger test problems, as shown in Fig. 8. From the whole
Zambezi testing set we chose for comparison problems

534 J. Błaszczyk et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – computation time

SQP-POWELL
SQP-SCHITTKOWSKI

SQP-AS
IPOPT-F

IPOPT-C++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of iterations

SQP-POWELL
SQP-SCHITTKOWSKI

SQP-AS
IPOPT-F

IPOPT-C++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of objective function evaluations

SQP-POWELL
SQP-SCHITTKOWSKI

SQP-AS
IPOPT-F

IPOPT-C++

Fig. 7. Performance profiles comparing the computational time,
the number of iterations and the number of objective
function evaluations for different versions of SQP and
IPOPT solvers; the Zambezi testing set was consid-
ered.

with the number of stages of the control horizonN ≥ 216,
which gave 84 test problems. For large problems, both
of the SQP solvers with an interior-point method and
the IPOPT solvers in terms of the computation time had
quite similar performance profiles, while the SQP solver
with an active-set strategy was definitely the weakest one
(P = 0.02) in that benchmark. It is a result of the fact that
for problems with a larger number of decision variables
the required number of active set changes in the quadratic
programming subproblem increases considerably, which
significantly extends the total runtime of the SQP method.
For larger test problems, the C++ version of the IPOPT
solver was the best—for 54% of test problems it was the
fastest. The worst solver (SQP with an active-set strat-
egy) for about 58% of large problems was no more than

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1 1.25 1.5 1.75 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – computation time

SQP-POWELL
SQP-SCHITTKOWSKI

SQP-AS
IPOPT-F

IPOPT-C++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of iterations

SQP-POWELL
SQP-SCHITTKOWSKI

SQP-AS
IPOPT-F

IPOPT-C++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 . . . rM

P
(l
og
2
(t
i,
j
/
m
in
{t
i,
j
:
1
¬
j
¬
n
s
})
¬
τ
)

τ

Performance profiles – number of objective function evaluations

SQP-POWELL
SQP-SCHITTKOWSKI

SQP-AS
IPOPT-F

IPOPT-C++

Fig. 8. Performance profiles comparing the computation time,
number of iterations and objective function evalua-
tions number for different versions of SQP and IPOPT
solvers; the Zambezi testing set consisting with prob-
lems with N ≥ 216 was considered.

twice worse than the best solver for every test problem.
For large problems, the performance profiles for a number
of iterations and objective function evaluations are similar
to the solvers on the whole testing set.

7. Conclusions
The main achievement of the presented work was the
implementation of an object-oriented numerical library
programmed in the C++ language; this allows easy for-
mulation and effective solution of a broad range of dy-
namic optimization problems. The library was released
under the name OLADO (Object Library of Algorithms
for Dynamic Optimization) and its C++ source code is
freely available upon request from the authors.

Object library of algorithms for dynamic optimization problems. . . 535

The experience gathered during designing and pro-
gramming our library allows us to state that adopting the
object-oriented methodology for the construction of nu-
merical software was a good decision. By using object-
oriented programming techniques, in particular inheri-
tance and polymorphism, we obtained flexible software
that could be used for a wide spectrum of numerical exper-
iments: from investigating general performance of differ-
ent algorithms of dynamic optimization to the analysis of
the influence of various parameters in the problem formu-
lation and in the numerical algorithm on the optimization
results.

The class hierarchy we created is extensible—for an
experienced C++ programmer it is relatively simple to im-
plement and test new algorithms of dynamic optimiza-
tion. Our library also provides facilities for effective com-
putation of exact values of the first and second deriva-
tives of the functions in dynamic optimization problem
formulations—we used automatic differentiation utilities
provided by the ADOL-C library. For linear algebra com-
putations a potential user of our library can use vector and
matrix classes of the NEWMAT or UBLAS libraries with
our additional extensions.

The current version of the library contains several
methods of dynamic optimization without constraints,
mainly classical ones, based on computation of the re-
duced gradient of the functional with respect to control,
and also two methods based on the dynamic program-
ming algorithm. For problems with simple constraints on
control we have the method of projection with different
versions of computing the improvement direction. Con-
strained DOCPs, after their transformation into large NLP
problems, are solved efficiently by various SQP methods
(especially if a special structure of the dynamic optimiza-
tion problem is exploited during the solution of a sequence
of QP subproblems) or general-purpose NLP solvers, such
as IPOPT, LOQO, and KNITRO.

Our main contribution when developing the dynamic
optimization library is the implementation of advanced
numerical algorithms, based on available software tools.
The library solvers show very interesting performance for
the solution of discrete-time optimal control problems, es-
pecially those caused by the application of specialized
SQP-type methods with interior-point QP solvers, and
also using the general large-scale nonlinear interior-point
solver IPOPT. The efficiency and robustness of those two
main library solvers for constrained problems was inves-
tigated using the performance profile methodology on a
large testing set of dynamic optimization problems.

References

Arnold E. and Puta H. (1994): An SQP-type solution method
for constrained discrete-time optimal control problems. In:

Computational Optimal Control (R. Bulirsch and D. Kraft,
Eds.), Birkhäuser Verlag, Basel, Switzerland, pp. 127–136.

Arnold E., Tatjewski P. and Wołochowicz P. (1994): Two meth-
ods for large-scale nonlinear optimization and their com-
parison on a case study of hydropower optimization. Jour-
nal of Optimization Theory and Applications, Vol. 81,
No. 2, pp. 221–248.

Benson H. Y., Shanno D. F. and Vanderbei R. J. (2001):
Interior-point methods for nonconvex nonlinear program-
ming: Filter methods and merit functions. Technical
Report ORFE-00-06, Operations Research and Finan-
cial Engineering, Princeton University. Available at
http://www.princeton.edu/~rvdb/tex/
loqo4/loqo4_4.pdf.

Benson H. Y., Shanno D. F. and Vanderbei R. J. (2002):
A comparative study of large-scale nonlinear optimiza-
tion algorithms. Technical Report ORFE-01-04, Opera-
tions Research and Financial Engineering, Princeton Uni-
versity. Available at http://www.princeton.edu/
~rvdb/tex/loqo5/loqo5_5.pdf.

Bertsekas D. P. (1982): Projected Newton methods for optimiza-
tion problems with simple constraints. SIAM Journal on
Control and Optimization, Vol. 20, No. 2, pp. 221–246.

Błaszczyk J., Karbowski A. and Malinowski K. (2002a): Object
library of algorithms for unconstrained dynamic optimiza-
tion problems. Proceedings of the 14-th National Confer-
ence on Automatic Control (KKA), Vol. I, Zielona Góra,
Poland, pp. 451–456.

Błaszczyk J., Karbowski A. and Malinowski K. (2002b): Ob-
ject library of algorithms for dynamic optimization prob-
lems without constraints or with simple bounds on control.
Proceedings of the 8th IEEE International Conference on
Methods and Models in Automation and Robotics, Vol. 1,
Szczecin, Poland, pp. 257–262.

Błaszczyk J., Karbowski A. and Malinowski K. (2003): Ob-
ject library of algorithms for dynamic optimization prob-
lems with general constraints. Proceedings of the 9th IEEE
International Conference on Methods and Models in Au-
tomation and Robotics, Vol. 1, Międzyzdroje, Poland,
pp. 271–276.

Bryson A. E. (1998): Dynamic Optimization. Menlo Park CA:
Addison-Wesley, p. 550.

Byrd R. H., Hribar M. E. and J. Nocedal (1999): An interior
point algorithm for large scale nonlinear programming.
SIAM Journal on Optimization, Vol. 9, No. 4, pp. 877–
900.

Byrd R. H., Gilbert J. Ch. and Nocedal J. (2000): A trust re-
gion method based on interior point techniques for non-
linear programming. Mathematical Programming, Vol. 89,
pp. 149–185.

Chamberlain R. M., Powell M. J. D., Lemarechal C. and Peder-
sen H. C. (1982): The watchdog technique for forcing con-
vergence in algorithms for constrained optimization. Math-
ematical Programming Study, Vol. 16, pp. 1–17.

Dolan E. D. and Moré J. J. (2002): Benchmarking optimiza-
tion software with performance profiles. Mathematical Pro-
gramming, Vol. 91, No. 2, pp. 201–213.

http://www.princeton.edu/~rvdb/tex/loqo4/loqo4_4.pdf
http://www.princeton.edu/~rvdb/tex/loqo4/loqo4_4.pdf
http://www.princeton.edu/~rvdb/tex/loqo5/loqo5_5.pdf
http://www.princeton.edu/~rvdb/tex/loqo5/loqo5_5.pdf

536 J. Błaszczyk et al.

Fiacco A. V. and McCormick G. P. (1968): Nonlinear Program-
ming: Sequential Unconstrained Minimization Techniques.
John Wiley and Sons, New York/London.

Findeisen W., Szymanowski J. and Wierzbicki A. (1980): The-
ory and Computational Methods of Optimization. Polish
Scientific Publishers, Warsaw (in Polish).

Fletcher R. (1987): Practical Methods of Optimization. John Wi-
ley and Sons, New York, NY, USA.

Fletcher R. (1995): An optimal positive definite update for
sparse Hessian matrices. SIAM Journal on Optimization,
Vol. 5, No. 1, pp. 192–218.

Fletcher R. and Leyffer S. (2002): Nonlinear programming
without a penalty function. Mathematical Programming,
Vol. 91, No. 2, pp. 239–269.

Fletcher R., Leyffer S. and Toint Ph. L. (2006): A brief
history of filter methods. Technical Report ANL/MCS-
P1372-0906, Mathematics and Computer Science
Division, Argonne National Laboratory. Available at
http://www.optimization-online.org/DB_
FILE/2006/10/1489.pdf.

Franke R. (1994): Anwendung von Interior-Point-Methoden zur
Lösung zeitdiskreter Optimalsteuerungsprobleme. M.S.
thesis, Techniche Universität Ilmenau, Fakultät für Infor-
matik und Automatsierung, Institut für Automatisierungs-
und Systemtechnik Fachgebiet Dynamik und Simulation
ökologischer Systeme, Ilmenau, Germany, (in German).

Franke R. (1998): OMUSES – A tool for the optimization of mul-
tistage systems and HQP – A solver for sparse nonlinear
optimization. Version 1.5. Department of Automation and
Systems Engineering, Technical University of Ilmenau,
Germany. Available at ftp://ftp.systemtechnik.
tu-ilmenau.de/pub/reports/omuses.ps.gz.

Franke R. and Arnold E. (1997): Applying new numerical algo-
rithms to the solution of discrete-time optimal control prob-
lems. In: Computer–Intensive Methods in Control and Sig-
nal Processing: The Curse of Dimensionality, (Warwick K.
and Kárný M., Eds.), Birkhäuser Verlag, Basel, Switzer-
land, pp. 105–118.

The solver Omuses/HQP for structured large-scale constrained
optimization: Algorithm, implementation, and example ap-
plication. Proceedings of the 6-th SIAM Conference on
OPTIMIZATION, Atlanta.

Goldfarb D. and Idnani A. (1983): A numerically stable dual
method for solving strictly convex quadratic programs.
Mathematical Programming, Vol. 27, No. 1, pp. 1–33.

Gondzio J. (1994): Multiple centrality corrections in a
primal-dual method for linear programming. Techni-
cal Report. 20, Department of Management Studies,
University of Geneva, Geneva, Switzerland. Available
at http://www.maths.ed.ac.uk/~gondzio/
software/correctors.ps.

Griewank A., Juedes D., Mitev H., Utke J., Vogel O. and
Walther A. (1999): ADOL-C: A package for the automatic
differentiation of algorithms written in C/C++, Version
1.8.2, March 1999. Available at http://www.math.
tu-dresden.de/~adol-c/.

Karmarkar N. (1984): A new polynomial-time algorithm for lin-
ear programming. Combinatorica, Vol. 4, No. 4, pp. 373–
395.

Luus R. (2000): Iterative Dynamic Programming. CRC Press,
Inc., Boca Raton, FL, USA.

Mehrotra S. (1992): On the implementation of a primal–dual
interior point method. SIAM Journal on Optimization,
Vol. 2, No. 4, pp. 575–601.

Misc J.-P. (2003): Large scale nonconvex optimization. SIAM’s
SIAG/OPT Newsletter Views-and-News, Vol. 14, No. 1,
pp. 1–25. Available at http://fewcal.uvt.nl/
sturm/siagopt/vn14_1.pdf.

Morales J. L., Nocedal J., Waltz R. A., Liu G. and Goux J.-P.
(2001): Assessing the potential of interior methods for
nonlinear optimization. Technical Report OTC 2001/4,
Optimization Technology Center of Northwestern Univer-
sity.
Available at http://www.ece.northwestern.
edu/~morales/PSfiles/assess.ps.

Nocedal J. and Wright S. J. (1999): Numerical Optimization.
Berlin: Springer-Verlag.

De O. Pantoja J. F.A. (1988): Differential dynamic program-
ming and Newton’s method. International Journal of Con-
trol, Vol. 47, No. 5, pp. 1539–1553.

Powell M. J. D. (1978): A fast algorithm for nonlinearly con-
strained optimization calculations. In: Numerical Analy-
sis, Dundee (G. A. Watson, Ed.), Dundee: Springer-Verlag,
pp. 144–157.

Powell M. J. D. (1985): On the quadratic programming algo-
rithm of Goldfarb and Idnani. Mathematical Programming
Study, Vol. 25, pp. 46–61.

Salahi M., Peng J. and Terlaky T. (2005): On Mehrotra-
type predictor-corrector algorithms. Technical
report, Advanced Optimization Lab, Department
of Computing and Software, McMaster Univer-
sity, Hamilton, Ontario, Canada. Available at
http://www.optimization-online.org/
DB_FILE/2005/03/1104.pdf.

Schittkowski K. (1980): Nonlinear Programming Codes: Infor-
mation, Tests, Performance. Berlin: Springer-Verlag.

Schittkowski K. (1983): On the convergence of a sequential
quadratic programming method with an augmented La-
grangian line search function. Mathematishe Operations
Forschung und Statistik, Ser. Optimization, Vol. 14, No. 2,
pp. 197–216.

Schwartz A. and Polak E. (1997): Family of projected descent
methods for optimization problems with simple bounds.
Journal of Optimization Theory and Applications, Vol. 92,
No. 1, pp. 1–31.

Tenny M. J., Wright S. J. and Rawlings J. B. (2002):
Nonlinear model predictive control via feasibility-
perturbed sequential quadratic programming. Tech-
nical Report TWMCC-2002-02, Texas-Wisconsin
Modeling and Control Consortium. Available at
http://jbrwww.che.wisc.edu/jbr-group/
tech-reports/twmcc-2002-02.pdf.

http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
ftp://ftp.systemtechnik.tu-ilmenau.de/pub/reports/omuses.ps.gz
ftp://ftp.systemtechnik.tu-ilmenau.de/pub/reports/omuses.ps.gz
http://www.maths.ed.ac.uk/~gondzio/software/correctors.ps
http://www.maths.ed.ac.uk/~gondzio/software/correctors.ps
http://www.math.tu-dresden.de/~adol-c/
http://www.math.tu-dresden.de/~adol-c/
http://fewcal.uvt.nl/sturm/siagopt/vn14_1.pdf
http://fewcal.uvt.nl/sturm/siagopt/vn14_1.pdf
http://www.ece.northwestern.edu/~morales/PSfiles/assess.ps
http://www.ece.northwestern.edu/~morales/PSfiles/assess.ps
http://www.optimization-online.org/DB_FILE/2005/03/1104.pdf
http://www.optimization-online.org/DB_FILE/2005/03/1104.pdf
http://jbrwww.che.wisc.edu/jbr-group/tech-reports/twmcc-2002-02.pdf
http://jbrwww.che.wisc.edu/jbr-group/tech-reports/twmcc-2002-02.pdf

Object library of algorithms for dynamic optimization problems. . . 537

Tits A. L., Wächter A., Bakhtiari S., Urban T. J. and Lawrence
C.T. (2002): A primal-dual interior-point method for non-
linear programming with strong global and local conver-
gence properties. Technical Report TR 2002-29, Institute
for Systems Research, University of Maryland. Available
at http://www.ee.umd.edu/~andre/pdiprev.
ps.

Ulbrich M., Ulbrich S. and Vicente L. N. (2004): A globally con-
vergent primal-dual interior-point filter method for nonlin-
ear programming. Mathematical Programming, Vol. 100,
No. 2, pp. 379–410.

Vanderbei R. J. and Shanno D. F. (1997): An interior-point al-
gorithm for non-convex nonlinear programming. Techni-
cal Report SOR-97-21, Statistics and Operations Research,
Princeton University. Available at http://www.sor.
princeton.edu/~rvdb/ps/nonlin.ps.gz.

Wächter A. (2002): An Interior Point Algorithm for Large-Scale
Nonlinear Optimization with Applications in Process Engi-
neering. Ph.D. dissertation, Department of Chemical Engi-
neering, Carnegie Mellon University, Pittsburgh, PA, USA.
Available at http://www.research.ibm.com/
people/a/andreasw/papers/thesis.pdf.

Wächter A. and Biegler L. T. (2000): Failure of global conver-
gence for a class of interior point methods for nonlinear
programming. Mathematical Programming, Vol. 88, No. 3,
pp. 565–574.

Wächter A. and Biegler L. T. (2005): Line search filter methods
for nonlinear programming: Motivation and global con-
vergence. SIAM Journal on Optimization, Vol. 16, No. 1,
pp. 1–31.

Wächter A. and Biegler L. T. (2006): On the implementation
of a primal-dual interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical Pro-
gramming, Vol. 106, No. 1, pp. 25–57.

Waltz R. A. and Plantenga T. (2006): KNITRO 5.0 User’s Man-
ual. Available at http://www.ziena.com/docs/
knitroman.pdf.

Wierzbicki A. (1984): Models and Sensitivity of Control Sys-
tems. Elsevier, Amsterdam.

Wright S. J. (1993): Interior point methods for optimal control
of discrete time systems. Journal of Optimization Theory
and Applications, Vol. 77, No. 1, pp. 161–187.

Wright S. J. (1997): Primal-Dual Interior-Point Methods.
SIAM, Philadelphia, PA.

Yakowitz S. and Rutherford B. (1984): Computational aspects
of discrete-time optimal control. Applied Mathematics and
Computation, Vol. 15, No. 1, pp. 29–45.

Received: 21 March 2007
Revised: 8 July 2007

http://www.ee.umd.edu/~andre/pdiprev.ps
http://www.ee.umd.edu/~andre/pdiprev.ps
http://www.sor.princeton.edu/~rvdb/ps/nonlin.ps.gz
http://www.sor.princeton.edu/~rvdb/ps/nonlin.ps.gz
http://www.research.ibm.com/people/a/andreasw/papers/thesis.pdf
http://www.research.ibm.com/people/a/andreasw/papers/thesis.pdf
http://www.ziena.com/docs/knitroman.pdf
http://www.ziena.com/docs/knitroman.pdf

	Introduction
	Description of the Dynamic Optimization Library
	Classes for Problem Formulation
	Solver Classes
	Computation of Derivative Values

	Discrete--Time Optimal Control Problem
	Main Algorithm for Constrained Problems
	Large-Scale Nonlinear Problem
	SQP Method
	SQP Solver
	QP Solver
	Matrix Solver

	Interior-Point Methods for NLP Problems
	Introduction
	IPOPT Solver
	SQP Methods vs. Nonlinear Interior-Point Methods

	Dynamic Optimization of the Zambezi Reservoir System
	Benchmarking SQP and Nonlinear Interior--Point Methods
	Conclusions

