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A NEW APPROACH TO IMAGE RECONSTRUCTION FROM PROJECTIONS
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A new neural network approach to image reconstruction from projections considering the parallel geometry of the scanner
is presented. To solve this key problem in computed tomography, a special recurrent neural network is proposed. The re-
construction process is performed during the minimization of the energy function in this network. The performed computer
simulations show that the neural network reconstruction algorithm designed to work in this way outperforms conventional
methods in the obtained image quality.
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1. Introduction

Since Cormack’s publication (Cormack, 1963), one of the
key tasks in the computed tomography has been to inte-
grate many new algorithms into studies and apply them to
the problem of reconstructing an image from projections.
The most important reconstruction methods are those
using convolution and back-projection (Jain, 1989; Le-
witt, 1983; Ramachandran and Lakshminarayanan, 1971),
Fourier inversion or an algebraic reconstruction technique
(ART) (Censor, 1983; Gordon and Bender, 1970; Kacz-
marz, 1937). Considering the increasing number of soft
computing algorithms applicable to various science dis-
ciplines, it is possible that in the foreseeable future these
algorithms will occupy an important place in computed
tomography. In the framework of soft computing, the
most popular approach to image reconstruction from pro-
jections is based on neural networks—a very popular and
important tool of artificial intelligence systems for solving
image processing problems, e.g., as described in (Cier-
niak and Rutkowski, 2000). The idea of a neural net-
work applied to image reconstruction from projections is
presented in (Kerr and Barlett, 1995a; Kerr and Barlett,
1995b; Kerr and Barlett, 1995c; Knoll et al., 1999; Munl-
lay et al., 1994). Unfortunately, the supervised learning of
algorithms described in these papers cannot lead to good
performance. The main issue is the inability to learn all
the possible image samples. Other structures were studied

in the papers (Srinivasan and Han, 1993; Wang and Wahl,
1997). These structures represent the so-called algebraic
approach to image reconstruction from projections. The
main disadvantage of the algebraic approach applied to
this problem is the huge size of the variable matrix which
is used during the reconstruction process. In that case the
computational complexity of the reconstruction process is
proportional to the square of the image size multiplied by
the number of projections. It directly affects the number
of connections between the neurons in the net.

In order to overcome the above drawbacks of the ex-
isting algorithms, in this paper a new approach to tomo-
graphic image reconstruction from projections is devel-
oped and investigated. The network studied in the paper
resembles a Hopfield structure. Similar structures were
proposed in (Cichocki et al., 1995; Ingman and Merlis,
1992; Luo and Unbehauen, 1998) to solve the 1D sig-
nal reconstruction problem. That idea will be adopted to
the algorithm of image reconstruction from projections in
2D. In the literature on the subject, two approaches to to-
mographic reconstruction algorithms dominate: transform
methods and algebraic reconstruction techniques. In our
paper, the neural reconstruction algorithm is very close to
the transformation methodology, in contrast to algebraic
algorithms using the neural network proposed in (Srini-
vasan and Han, 1993; Wang and Wahl, 1997). The ap-
proach presented in this paper significantly decreases the
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complexity of the reconstruction problem. In our case the
number of neurons in the network is proportional only to
the square of the image size. This means that the size
of the neural network is independent of the resolution of
the projections performed earlier. As a result, we have a
drastic decrease in the number of connections in the neu-
ral network. The reconstruction method presented herein,
originally formulated by the author, can be directly ap-
plied to parallel beam tomography (see, e.g., (Cierniak,
2002; Cierniak, 2006)). The weights of the neural net-
work arising in our reconstruction method will be orig-
inally determined, taking into account the interpolation
function which was used earlier in the back-projection op-
eration. The calculations of these weights will be carried
out before the principal part of the reconstruction process
is started. It will be shown that the weights are the same
for all the neurons in the network.

2. Neural algorithm of image
reconstruction from projections

Our reconstruction algorithm resembles the ρ-filtered lay-
ergram method (Lewitt, 1983). The main difference be-
tween these two methods is the realization of the filtering.
In our case a recurrent neural network is implemented in-
stead of the two-dimensional filtering of the blurred im-
age obtained after the back-projection operation. The idea
of the presented reconstruction method using a neural net-
work is shown in Fig.1, where the parallel-beam geometry
of collected projections is taken into consideration.
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Fig. 1. Neural network image reconstruction algorithm
using parallel beams.

2.1. Acquisition of projections. Only a limited num-
ber of parallel projections pp (s, αp) is chosen for further

processing. Let p̂p (l, ψ) denote discrete values of paral-
lel projections taken at angles indexed by the variable ψ,
where ψ = − (I − 1) /2, . . . , 0, . . . , (3 (I − 1) /2) − 1
and 2 (I − 1) is the number of projections. According to
the concept of the discrete Radon transform (DRT) (Aver-
buch et al., 2001; Kingston and Svalbe, 2003), we choose
only “grid friendly” angles of parallel projections, instead
of an equiangular sample, considering the following con-
dition for discrete values of the parameter αp:

αpΨ =
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The proposed distribution of the projection angles is
approximately equiangular in the range of αp ∈
[−3π/4, π/4), which is depicted clearly in Fig. 2.
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Fig. 2. The choice of parallel projection angles.

2.2. Operation of back-projection. In the next step
we apply the back-projection operation (Jain, 1989; Le-
witt, 1983). This can be performed in a continuous do-
main as follows:

μ̃ (x, y) =

π∫
0

pp (s, αp) dαp (2)

In a practical realization of the proposed reconstruc-
tion algorithm it is highly possible that for any given pro-
jection no ray passes through a given point (i, j) of the
image. To take this into account, we can apply interpola-
tion. In this case a projection value mapped to a certain
point of the reconstructed image is given by

p̄p (sxy, αp) =

∞∫
−∞

pp (s, αp) I (ṡ− s) ds, (3)
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where pp (s, αp) is expressed by the formula (1), sxy =
x cosαp + y sinαp.

In the presented method we take into consideration
discrete forms of images μ (x, y) and μ̃ (x, y). This means
that we will substitute the continuous functions of the
images in (3) for their discrete equivalents μ̂ (i, j) and
ˆ̃μ (i, j), respectively, where i = 1, 2, . . . , I and j =
1, 2, . . . , J . I and J are the numbers of pixels in hori-
zontal and vertical directions, respectively. The discrete
approximation of (3) is given by

ˆ̄pp (iΔp
scosψΔp

α + jΔp
ssinψΔp

α, ψ)

∼= Δp
s

∑
l

{
p̂p (l, ψ)

× I (iΔp
scosψΔp

α + jΔp
ssinψΔp

α − lΔp
s)
}
, (4)

which is convenient from a computational point of view.
In (4), I (Δs) is an interpolation function, Δs =
iΔscosα + jΔssinα − lΔs. If we use the linear inter-
polation function (Lewitt, 1983), then

IL(Δs) =

⎧⎪⎨
⎪⎩

1
Δs

(
1 − |Δs|

Δs

)
if |Δs| ≤ Δs,

0 if |Δs| > Δs.

(5)

Equation (4) has only two terms and can be reformu-
lated as (Kak and Slanley, 1988)

ˆ̄pp (sij , ψ)

∼= p̂p
(
l↓, ψ

)
+
(
sij
Δp
s
− l↓

)(
p̂p
(
l↑, ψ

)− p̂p
(
l↓, ψ

))
,

(6)

where sij = iΔicosψΔp
ψ+jΔjsinψΔp

ψ, l
↓ is the highest

integer value less than the value of the variable sij , l↑ =
l↓ + 1.

The obtained image after the back-projection oper-
ation, taking into consideration the interpolation, can be
expressed by the following equation:

μ̃ (x, y) =

π∫
0

p̄p (sxy, αp) dαp. (7)

In practice only a limited number of projec-
tions is performed at angles αpψ , where ψ =
− (I − 1) /2, . . . , 0, . . . , (3 (I − 1) /2) − 1 (I stands for
the size of the processed image), and we can approximate
integration over the angle αp by a finite sum. In conse-
quence, Eqn. (7) takes the following form:

ˆ̃μ (i, j) =
∑
ψ

1
Δp
αpψ

ˆ̄pp
(
sij , α

p
ψ

)
, (8)

where sij = iΔp
scosαpψ+jΔp

ssinα
p
ψ , Δp

αpψ
= αpψ−αpψ−1.

2.3. Reconstruction using the recurrent neural net-
work. The discrete image obtained after the back-
projection operation ˆ̃μ (i, j) includes information about
the original image μ̂ (i, j) blurred by a geometrical term.
Our task is to reconstruct the original image from the
given form of ˆ̃μ (i, j) using a recurrent neural network
(Hopfield, 1982). Before we start the design process of
this network, it is necessary to formulate a discrete re-
construction problem and, in particular, to calculate co-
efficients representing the geometrical term distorting the
original image. In our approach we take into consideration
the interpolation function used during the back-projection
operation.

2.3.1. Discrete reconstruction problem. Owing to
the relations (3) and (7), it is possible to define the image
obtained after the back-projection operation, in the fol-
lowing way:

μ̃(x, y) =
∫ π

0

(∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
(μ(ẍ, ÿ)

× δ(ẍ cosαp + ÿ sinαp − ṡ) dẍ dÿ)

× I(ṡ− s)
)

ds

)
dαp, (9)

where s = xcosαp + ysinαp. The function μ̃ (x, y) de-
notes a blurred image obtained after the operations of pro-
jection and back-projection. Interchanging the order of
the integration and taking in account the independence of
μ (ẍ, ÿ) from variable s allows us to rewrite (9) in the form

μ̃(x, y) =
∫ π

0

(∫ ∞

−∞

∫ ∞

−∞

(
μ(ẍ, ÿ)

×
∫ ∞

−∞
(δ(ẍ cosαp + ÿ sinαp − ṡ)

× I(ṡ− s))ds
)

dẍdÿ

)
dαp. (10)

It should be noted that to the blurred image μ̃(x, y)
obtained after the back-projection operation only these
places in the original image contribute for which

ẍ cosαp + ÿ sinαp = ṡ. (11)

Assuming that the constraint (11) holds, we can
transform (10) to

μ̃(x, y) =
∫ π

0

(∫ ∞

−∞

∫ ∞

−∞

(
μ(ẍ, ÿ)

× I
(
ẍ cosαp + ÿ sinαp − x cosαp

− y sinαp
))

dẍdÿ

)
dαp. (12)
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Again we interchange the order of integration tak-
ing into account the independence of the function μ (ẍ, ÿ)
from the variable αp. Thus

μ̃(x, y) =
∫ ∞

−∞

∫ ∞

−∞
μ(ẍ, ÿ)(∫ π

0

I(ẍ cosαp + ÿ sinαp − x cosαp

− y sinαp) dαp
)

dẍdÿ. (13)

According to the discrete Radon transform method-
ology, in our approach only a limited number of projec-
tions are performed at “grid friendly” angles αpψ , where

ψ = − (I − 1) /2, . . . , 0, . . . , (3 (I − 1) /2) − 1

(Averbuch et al., 2001; Kingston and Svalbe, 2003). We
can approximate the integration over the angle αp by a
finite sum. Additionally, we approximate the 2-D convo-
lution using two finite sums of ranges from 1 to I and from
1 to J . In this way, we reformulate (13) as follows:

ˆ̃μ (i, j) ∼=
∑
ï

∑
j̈

μ̂
(̈
i,j̈
)
hijïj̈ , (14)

where

hijÏj̈
∼= (Δs)2

∑
Ψ

Δp
ΨÎ(ÏΔs cosαpψ + j̈Δs sinαpΨ

− IΔs cosαpΨ − jΔs sinαpΨ). (15)

Since the interpolation function Î (Δs) is even, we
can write

hïj̈ij = hijïj̈

= (Δs)2
∑
Ψ

αpΨÎ(|i−ï|Δs cosαpΨ+|j−j̈|Δs sinαpΨ).

(16)

Therefore, we are able to formulate a very convenient
relation between the original image and that obtained after
the back-projection operation in the form of

ˆ̃μ (i, j) ∼=
∑
ï

∑
j̈

μ̂
(̈
i,j̈
)
hΔi,Δj , (17)

where

hΔi,Δj

= (Δs)2
∑
Ψ

Δp
ΨÎ(ΔiΔs cosαpψ + ΔjΔs sinαpΨ).

(18)

As one can see from (17), the original image in a
given cross-section of the object, obtained in the way de-
scribed above, is equal to the amalgamation of this im-
age and the geometrical distortion element expressed by

(18). Owing to the form of (17), the number of coeffi-
cients hΔi,Δj is reduced and, owing to (18), the values of
these coefficients are easily calculated. The coefficients
hΔi,Δj are used to determine the weights in the recurrent
neural network.

2.3.2. Design of the recurrent neural network. The
recurrent neural network structure presented in Fig. 5 was
proposed for the first time in (Cichocki et al., 1995; Ing-
man and Merlis, 1992; Luo and Unbehauen, 1998). The
network performs image reconstruction from projection
by the deconvolution of the relation (17). This can be for-
mulated as the following optimization problem:

min
M

⎛
⎝w I∑

i=1

J∑
j=1

f (eij (M))

⎞
⎠ , (19)

where M = [μ̂ (i, j)] is the matrix with elements from the

original image of a given object, M̃ =
[
ˆ̃μ (i, j)

]
consti-

tutes the matrix with elements from the distorted image
of a given object, H = [hij ] signifies the matrix of the
reconstruction coefficients, w stands for a suitable large
positive coefficient, f (·) means a penalty function, and

eij(M) =
I∑
ï=1

J∑
j̈=1

hΔi,Δj μ̂(̈i, j̈) − ˆ̃μ(i, j). (20)

If the value of the coefficient v tends to infinity or is
suitably large, then the solution to the optimization prob-
lem (19) tends to the optimal one. Our research has shown
that the following penalty function yields the best result:

f (eij) = λln cosh
(eij
λ

)
, λ > 0. (21)

Observe that the derivative of the function (21) is eas-
ily calculated and takes the form of

f ′(eij) =
∂f(eij)
∂eij

= tanh
(eij
λ

)

=
1 − exp(−2eij/λ)
1 + exp(−2eij/λ)

, (22)

where λ is a slope coefficient.
Now we will formulate the energy function which

will be minimized by a constructed neural network. Si-
multaneously, we will realize the deconvolution task (cf.
(17)). The energy function is given by

Et = v

I∑
i=1

J∑
j=1

f
(
eij
(
Mt
))
. (23)

In order to find the minimum of (23), we determine the
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derivative

dEt

dt
= w

I∑
i=1

J∑
j=1

I∑
ï=1

J∑
j̈=1

=
df(eij(Mt))

deij(Mt)
deij(Mt)
dμ̂t(̈i, j̈)

dμ̂t(̈i, j̈)
dt

(24)

or

dEt

dt
= −

I∑
ï=1

J∑
j̈=1

dμ̂t(̈i, j̈)
dt(

− w
I∑
k=1

J∑
l=1

df(eij(Mt))
deij(Mt)

deij(Mt)
dμ̂t(̈i, j̈)

)
, (25)

where the index t means the dependence of the variable
denoted by this symbol during the reconstruction process.
If we let

dμ̂t(̈i, j̈)
dt

= −w
I∑
i=1

J∑
j=1

df(eij(Mt))
deij(Mt)

deij(Mt)
dμ̂t(̈i, j̈)

= −w
I∑
i=1

J∑
j=1

f ′(eij(Mt))hΔi,Δj , (26)

then (25) takes the form of

dEt

dt
= −

I∑
ï=1

J∑
j̈=1

(
dμ̂t

(̈
i, j̈
)

dt

)2

. (27)

One can see that the right-hand side of (27) is always
nonpositive, i.e., dEt/dt ≤ 0. Therefore, if dEt/dt = 0,
then this means that dμ̂t (i, j)/dt = 0 and the minimum
of E is obtained. At this moment, calculations for each
pixel (i, j) are completed.

The neural network performing the minimization
task consists of two layers, with the same topology of neu-
rons. The structure is shown in Fig. 3. All of the symbols
which appear in the neural network structure are listed in
order from the input to the output of the network.
First layer:

• weights of the connections:

w
(1)

ijïj̈
= hi−ï,j−j̈ ,

• weighting sums:

s
(1)
ij = etij(F)t =

∑
ï

∑
j̈

w
(1)

ijïj̈
μ̂t(̈i, j̈) − ˆ̃μ(i, j),

• neurons outputs:

y
(1)
ij = f (a1)(s(1)ij ) =

df(s(1)ij )

ds(1)ij
= tanh

(s(1)ij
λ

)
.

Second layer:

• weights of the connections:

w
(2)

ï,j̈,i,j
= −w δetij

δμ̂(̈i, j̈)
= −w · hï−i,j̈−j ,

• weighting sums:

s
(2)
ij =

∑
i

∑
j

w
(2)
ij f

(a1)(s(1)ij )

=
∑
i

∑
j

w
(2)

ï,j̈,i,j
y
(1)
ij ,

s
(2)

ïj̈
=

dμ̂t
(̈
i, j̈
)

dt
,

• neurons outputs:

μ̂t(̈i, j̈) = f (a2)(s(2)ij ) =
∫ t

0

s
(2)
ij dt.

3. Experimental results

The size of the processed image was fixed at I × J =
129 × 129 pixels, which determines the number of neu-
rons in each layer of the net. Before the reconstruction
process using a recurrent neural network is started, it is
necessary to calculate coefficients hij using (27). In the
case of using linear interpolation, the values of these co-
efficients for j = 0 are presented in Fig. 4.

h

i

0 128-128
0

i0

6,2829

 

Fig. 4. Values of the coefficients hi0.

Owing to the lack of physical projection data from
the tomograph, it is necessary to construct a mathematical
model of the projected object, the so-called phantom. This
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Fig. 3. Structure of the recurrent neural network in question: (a) topology of neurons in the net, (b) scheme of connections in the net.
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Fig. 5. A view obtained from the mathematical model of the

cross-section of a skull.

example was proposed in the books (Jaene, 1991; Jain,
1989), see Fig. 5.

To estimate a particular projection obtained at any
angle, we have to calculate the projections for each ele-
ment of the model separately and then add them to each
point of the screen. This means that calculating the pro-
jection values for an element of the model requires cal-
culating the length of the path which a given ray passes
across an element of the model at a given angle and then
multiplying this length by the attenuation coefficient of
the element. After calculating the projection values for
each element of the mathematical model at certain points
on the screen (where radiation detectors are located), these
projections are summed. During the simulations we used
183 measure points (detectors) on the screen and the pro-
jections were obtained at 128 rotation angles with a total
rotation angle of 180◦.

The proposed form of interpolation presented in (14)
could be applied to obtain the values of projections as-
signed to each pixel of the image.

After collecting the projections at every point of the
image (operation of back-projection) we obtain the dis-
tribution of the x-ray attenuation coefficient in a given
cross-section of the investigated object. A mathematical
model with distortion is shown, after appropriate scaling,
in Fig. 6.

In this way the obtained image was subjected to the
process of reconstruction using a neural network whose
structure was explained in the previous section. In an ex-
perimental way the values of the weight w were selected
at w = 6.2×1010, with the slope at the level of λ = 1010.
These two parameters determine the speed of the recon-
struction process. A greater value of parameter w at the
same value of parameter λ leads to instabilities during the
numerical simulations. The progress in the reconstruc-
tion process is presented in Fig. 7, where the left-hand
side figures represent views of the reconstructed images

 

Fig. 6. A distorted image of the mathematical model obtained
after projections.

for the parameters of the window (Kak and Slanley, 1988)
C = 1.0,W = 0.11, and the right-hand side figures show
central vertical cross-sections of the reconstructed images.

One can see above that the result after about 9,000
iterations of the reconstruction process is stabilized at a
satisfactory level. Therefore, at this point the image is
reconstructed and the process can be stopped.

The quality of the reconstructed image was evaluated
in this case by error measures defined as follows:

MSE =
1
IJ

I∑
i=1

J∑
j=1

[μ (i, j) − μ̂ (i, j)]2, (28)

SNR = 10log10

⎛
⎜⎜⎜⎝

I∑
i=1

J∑
j=1

[μ (i, j)]2

I∑
i=1

J∑
j=1

[μ (i, j) − μ̂ (i, j)]2

⎞
⎟⎟⎟⎠ , (29)

where μ (i, j) is the original image of the Shepp-Logan
mathematical phantom.

Consider the case where projections p(s, α) are cor-
rupted by additive Gaussian noise. For the simulations we
can generate noisy projections pN (s, α) using

PN (s, α) =
(
1 +N(p0, σ

2)
)
p(s, α), (30)

where N(p0, σ
2) is a Gaussian probability distribution

with mean p0 and variance σ2 (in our simulations, we set
p0 = 0 and σ2 = 0.0025).

At the beginning of simulations, we determined the
value of the weight w. The results of experiments for dif-
ferent values of w are depicted in Fig. 8.

Simulations show that if the weight w is higher, then
the reconstruction process is quicker. For w = 6.2× 1010

this reconstruction process becomes unstable. Figures
9 (projections without noise) and 10 (noisy projections)
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present a comparison of the simulation results (the left-
hand figures represent views of the reconstructed images
for window parameters (Kak and Slanley, 1988) C =
1.0,W = 0.11 and the right-hand side figures show cen-
tral vertical cross-sections of the reconstructed images).

For comparison, the reconstructed images obtained
using the convolution back-projection algorithm (Shepp-
Logan convolution kernel) under the same noisy projec-
tions are shown in Figs. 9(b) and 10(b). The results of this
standard approach and results achieved by neural network
methods described in this paper are presented in Table 1.

1

654

3
2

 

Fig. 8. Progress of the reconstruction process depending on the
value of the weight w.

A very important factor of image reconstruction from
the projection method is its algorithmic complexity. In
the case of a fully parallel implementation of the neural
approach presented in this paper, the computational time
depends only on the used frequency and on the numbers
of performed iterations. For comparison, in the case of the
standard convolution/back-projection method the compu-
tational time depends on Ψ · 2 · I2 additions and multipli-
cations, where I is the dimension of the processed image
and Ψ means the number of projections. For example, in
the experiments described above, the computational time
of our method is proportional to 30000 iterations and for
the referential convolution/back-projection algorithm it is
proportional to 4260096. The same back-projection oper-
ation is performed in both compared methods and is not
taken into consideration for the comparison.

4. Conclusions

The performed simulations demonstrated the convergence
of the image reconstruction algorithm based on the pro-
posed recurrent neural network. The image of the cross-
section of the investigated mathematical model obtained
after a sufficient number of iterations is reconstructed with
a high objective fidelity.

In comparison with the previous neural approaches
to algebraic reconstruction techniques presented in (Srini-
vasan and Han, 1993; Wang and Wahl, 1997), one can
observe a dramatic decrease in the number of neurons in

the Hopfield-type network described in this work. More
precisely, the size of each layer in our network was equal
to 129× 129 neurons. In previous approaches (Srinivasan
and Han, 1993; Wang and Wahl, 1997), under the same
conditions of the reconstructed image and projections, the
number of neurons was equal to 129 × 129 × 183 × 720.
That number was further reduced in (Srinivasan and Han,
1993) by a factor of 102, but it is a very small profit com-
pared with the results of our paper.

The algorithm described in this paper outperforms
standard reconstruction methods in the sense of the mean
square error. It should be noted that the simulations were
performed using a sequential realization of the image re-
construction algorithm, as opposed to the natural parallel
calculations in neural networks.

Therefore, a hardware realization of our neural net-
work structure which keeps the parallel signal processing,
e.g., by effective implementation using VLSI could give
incomparably better results than the other methods of im-
age reconstruction from projections concerning the time
and quality of reconstruction.

Having a solution to the problem of image recon-
struction from projections for parallel beams, one can ex-
tend our results to other geometries of projections: fan-
beams and cone-beams, in particularly incorporated in
spiral tomography. That means a possibility to implement
a recurrent neural network in new designs of tomograph
devices.
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a) 

 

b) 
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network structure, w = 6.2×1010, (b) convolution back-projection algorithm.
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