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The objective of the article is to obtain general conditions for several types of controllability at once for an abstract differ-
ential equation of arbitrary order, instead of conditions for a fixed order equation. This innovative approach was possible
owing to analyzing the n-th order linear system in the Frobenius form which generates a Jordan transition matrix of the
Vandermonde form. We extensively used the fact that the knowledge of the inverse of a Jordan transition matrix enables us
to directly verify the controllability by Chen’s theorem. We used the explicit analytical form of the inverse Vandermonde
matrix. This enabled us to obtain more general conditions for different types of controllability for infinite dimensional
systems than the conditions existing in the literature so far. The methods introduced can be easily adapted to the analysis
of other dynamic properties of the systems considered.
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1. Introduction

In the literature there are many articles investigating the
controllability of infinite dimensional dynamic systems
of fixed order, and most often they focus on the sec-
ond order (Chen and Russel, 1982; Chen and Triaggani,
1990; Huang, 1988; Ito and Kunimatsu, 1988; Respon-
dek, 2005b; Sakawa, 1974; Sakawa, 1984; Sakawa, 1983).
However, it is difficult to find works on the fourth order
infinite dimensional systems, though the papers (Ito and
Kunimatsu, 1991; Coleman and Wang, 1993; Kim and Re-
nardy, 1987; Shi et al., 1998; Shi et al., 2001; Shubov,
1999; Xu, 2005) provide some information on the issue.
In the literature there is an incomprehensible lack of pa-
pers pertaining to general n-th order distributed systems.
So far, theorems giving conditions for controllability with-
out constraints, with cone-type constraints, as well as ab-
solute and relative controllability with delays in control
are known for systems of arbitrary order only in the case
of finite dimensional systems. The reason behind this
are computational problems. One has to carry out time-
consuming calculations for each order of the infinite di-
mensional system to find the corresponding conditions of
the four types of controllability of infinite dimensional
systems of any order using the classical controllability cri-

terion (38). These calculations can be carried out in a
symbolic manner only for systems of low order. Such a
general approach to an equation of arbitrary order is much
more sophisticated.

We found the following solutions to these problems:

• Using Chen’s theorem in the examination of all four
types of controllability. Chen’s theorem requires
only the knowledge of the inverse of a Jordan tran-
sition matrix instead of determining a block matrix.

• Bringing the n-th order linear system to the Frobe-
nius form, as a Jordan matrix in this form is a Vander-
monde matrix. The innovation is based on the idea
of using the well-known form of the inverse of the
Vandermonde matrix, which forms, in turn, a basis
for controllability examination with the use of Chen’s
theorem.

This approach allowed us to get conditions for the exam-
ined types of controllability for infinite dimensional sys-
tems of arbitrary order.

The obtained results obviously hold true for first
and second order systems with unconstrained controls,
and are identical to those already presented in the liter-
ature for that case. Equivalent results for first order sys-
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tems can be found in (Fattorini and Russel, 1971; Trig-
giani, 1976; Triggiani, 1978; Curtain and Zwart, 1995)
and for second order systems in (Triggiani, 1978). Con-
ditions for the approximate controllability of second order
systems with nonnegative controls are analyzed in the pa-
per (Respondek, 2005a) and are a particular case of The-
orem 4.

It should be pointed out that the results presented in
this paper can be applied only to systems whose eigenval-
ues and eigenvectors have explicit analytic forms. There
are many systems of this type; a comprehensive work on
this topic is the monograph (Butkowskij, 1979). More-
over, the test of an infinite controllability condition must
be feasible by analytical means. If this is impossible, ap-
proximate methods must be involved (an example is the
paper (Respondek, 2005b)).

Recent years have witnessed a few new main
branches in controllability research:

– controllability of nonlinear systems (Klamka, 2000),

– stochastic controllability (Mahmudov and Zorlu,
2005),

– controllability of industrial systems (Alotaibi et al.,
2004; Respondek, 2007),

– numerical controllability analysis (Labbe and Trelat,
2006; Respondek, 2005b).

Besides, classical controllability is still in question (Vieru,
2005). As a possible direction for further work, we indi-
cate stochastic controllability for systems of arbitrary or-
der.

We start examining the controllability of the systems
in question with the simplest type with neither delays nor
constraints. The examination conditions for finite dimen-
sional systems are described by Chen’s theorem, which is
given in Section 5. The obtained conditions of approx-
imate controllability for any order of the infinite dimen-
sional system are discussed in Theorem 2.

In Section 7 we examine the controllability of sys-
tems with nonnegative cone-type control constraints. For
this purpose, we use Theorem 3, which is well known in
the literature (Klamka, 1991; Brammer, 1972; Schmiten-
dorf and Barmish, 1980). While examining the fourth con-
dition of this theorem, we apply the inverse of the Vander-
monde matrix. The obtained conditions for the examined
infinite dimensional system are given by Theorem 4.

It is commonly known that in systems with delays
in control, which we examine in Section 8, we can dis-
tinguish absolute and relative controllability. To exam-
ine these types of controllability of the infinite dimen-
sional systems in question, it is best to use well-known
theorems, i.e., Theorems 5 (Klamka, 1991, pp. 202, 130),
(Klamka, 1977) and 6 (Klamka, 1976; Klamka, 1991,
pp. 202,130), which we mention in Sections 8.4 and 8.5.

Both theorems are based on the transformation of the ini-
tial system with delays in control into the corresponding
system with no delays. This allows us to apply Chen’s the-
orem with the use of the inverse of the Vandermonde ma-
trix to examine the system’s controllability. Consequently,
we obtain a concise form of controllability conditions for
the examined infinite dimensional system of arbitrary or-
der. In order to prove it, all we needed was the widely used
algebra and matrix analysis. The obtained conditions for
the approximate absolute and relative controllability of the
infinite dimensional system of arbitrary order are shown
respectively in Theorems 7 and 8.

In Section 9, as an example, we investigate two kinds
of the controllability of an elastic beam with internal
damping. This example shows how to make use of the
fractional powers of the state operator in the modeling of
physical objects.

The apt choice of the theorems used, especially
Chen’s theorem, as well as the use of linear algebra al-
lows us to concisely prove the sought conditions for the
controllability types in question for the analyzed system
of arbitrary order.

2. Problem statement

Let us consider a linear dynamic system described by the
following n-th order abstract differential equation:

dnx(t)
dtn

+ fn−1(A)
dn−1x(t)

dtn−1
+ · · · + fq(A)

dqx(t)
dtq

+ · · · + f1(A)
dx(t)

dt
+ f0(a)x(t)

=
M∑

k=0

Bku(t− hk), t ≥ t0, (1)

where fq (A) denotes the following sequence of damping
terms:

fq (A) = α
(q)
0 + α

(q)
1 A+

δq∑
k=2

α
(q)
k Aγ

(q)
k ,

q = 0, 1, . . . , n− 1, (2)

with initial conditions

x(0) = x0 ∈ D(A),
x(q)(0) = xq ∈ X, q = 1, 2, . . . , n− 1. (3)

Here x(t) ∈ X (X is a Hilbert space), the constant co-
efficients α(q)

k ∈ R and the exponents γ(q)
k ∈ R of the

operator A are constrained by the following inequalities:

0 < γ
(q)
k < 1, (4)

k = 2, 3, . . . , δq , and q = 1, 2, . . . , n − 1. The input
operators Bk are defined as

Bku(t− hk) =
p∑

l=1

ul(t− hk), Bk ∈ L(U,X), (5)
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where
b
(l)
k ∈ X, u1 ∈ L2

loc([t0,∞), U),

k = 0, 1, . . . ,M, l = 1, 2, . . . , p, U being a Hilbert
control space, dimU = p. The constant delays hk fulfill
0 = h0 < h1 < · · · < hk < · · · < hM .

As for the state space X , we assume that it is a
Hilbert space of square integrable functions on a bounded
domain D, i.e., X = L2 (D).

As for the state operator A : X ⊃ D(A) → X , we
assume that it

• has a domain D(A) dense in X ,

• has a compact resolvent R(λ,A) for each λ in the
resolvent set ρ(A),

• is linear,

• is generally unbounded,

• is self-adjoint,

• is positive definite,

• has eigenvectors forming a Riesz basis.

Moreover, we assume that the Frobenius matrix operator⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . . 1
−f0 (A) −f1 (A) −f2 (A) · · · −fn−1 (A)

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)
of the system (1) is an infinitesimal generator of a strongly
continuous semigroup.

3. Transformation of the state equation

The infinite dimensional dynamic system is given by the
abstract differential equation (1). Using spectral prop-
erties of the state operator A (Fattorini, 1966; Fattorini,
1967; Huang, 1988; Sakawa, 1974), we can easily trans-
form this system into the equivalent form of an infinite
sequence of finite dimensional first-order linear dynamic
systems with constant coefficients of the form

ς̇i(t) = Aiςi(t) +
M∑

k=0

Bkiu(t− hk),

i = 1, 2, 3, . . . , t ≥ t0, (7)

where the state vector is given by

ςi(t)

=
[
[ς ′i1(t)]

T · · · [
ς ′ij(t)

]T · · · [
ς ′imi

(t)
]T ]T

,

i = 1, 2, 3, . . . , (8)

ξ′ij =
[
xij(t) . . .

dqxij(t)
dtq

. . .
dn−1xij(t)

dtn−1

]T

,

i = 1, 2, 3, . . . , j = 1, 2, . . . ,mi, (9)

for each i = 1, 2, 3, . . . and j = 1, 2, . . . ,mi xij(t) =
〈x(t), φij〉x denotes the ij-th coefficient of the Fourier se-
quence of the spectral representation for the element x in
the state spaceX , φij is the ij-th eigenfunction of the state
operator A, and mi is the multiplicity of the eigenvalues
of the state operator A. The state matrices Ai and the in-
put matrices Bki are respectively the following diagonal
block and block matrices:

Ai = diag [A′
i| . . . |A′

i ]︸ ︷︷ ︸
mi

Bki =
[

[B′
ki1]

T · · ·
[
B′

kij

]T

· · · [
B′

kimi

]T ]T

,

k = 0, 1, . . . ,M, i = 1, 2, 3, . . . . (10)

The submatrices A′
i in (11) are the Frobenius matri-

ces

A′
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
−f∗i0 −f∗i1 −f∗i2 · · · −f∗i(n−2) −f∗i(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

i = 1, 2, 3, . . . (11)

The submatrices B′
kij are given by (12) for i =

1, 2, 3, . . . and j = 1, 2, . . . ,mi and k = 0, 1, . . . ,M.
Based on (2), the constant coefficients f∗iq in the submatri-
ces A′

i are defined by

f∗iq = α
(q)
0 + α

(q)
1 λi +

δq∑
k=2

α
(q)
k λ

γ
(q)
k

i , (13)

where q = 0, 1, . . . , n − 1, and for each i = 1, 2, 3, . . . ,
λi is the i-th eigenvalue of the state operator A.

The state matrix of the system (7) is a block diag-
onal matrix (cf. (10)). The determinant of this matrix
is a product of submatrix determinants (Kaczorek, 1998,
pp. 70). Thus the characteristic equation of (7) follows
directly from (14):(
sn

i + f∗i(n−1)s
n−1
i + · · · + f∗iqs

q
i + . . .

+f∗i1si + f∗i0
)mi

= 0, i = 1, 2, 3, . . . . (14)

We assumed that the Frobenius matrix operator of the
system (1) is an infinitesimal generator of a strongly con-
tinuous semigroup. Thus, all the real parts of the roots of
the characteristic equation (14) have an upper limit, i.e.,

lim
i→∞

Re [sik] <∞, i = 1, 2, 3, . . . , k = 1, 2, . . . , ri.
(15)
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B′
kij =

⎡
⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0
〈b(1)k , ψij〉X · · · 〈b(l)k , ψij〉X · · · 〈b(p)

k , ψij〉X

⎤
⎥⎥⎥⎥⎦ . (12)

It is well known that the approximate controllability
of the system (1) is equivalent to the approximate control-
lability of the infinite sequence of the finite dimensional
systems (7). This fact enables us to apply Theorems 1,
3, 5 and 6, concerning different types of controllability of
finite dimensional systems, to each finite dimensional sub-
system in the sequence (7). This methodology is used in
the analysis of all the types of controllability investigated
in this paper, i.e., in Theorems 2, 4, 7 and 8.

4. Jordan decomposition of the state matrix

This decomposition is convenient while verifying all types
of controllability investigated in this paper. It can be easily
noticed that this matrix has n distinct eigenvalues, each
with the same multiplicity mi (16), equal to the root siq

of the characteristic equation (14):

σ (Ai) = {si1, . . . , siq, . . . , sin} , i = 1, 2, 3, . . . .
(16)

Using these eigenvalues, we can prove that the Jordan
canonical form of the state matrices Ai (10) has the form
of the following diagonal matrix:

J(Ai)

= diag
[ si1 . . . si1︸ ︷︷ ︸

mi times

· · · siq . . . siq︸ ︷︷ ︸
mi times

· · · sin . . . sin︸ ︷︷ ︸
mi times

]
,

i = 1, 2, 3, . . . . (17)

The transformation matrix T (Ai) has a rather sophisti-
cated form of the block matrix

T (Ai) =
[
Ti1 · · · Tiq · · · Tin

]
, (18)

where

Tiq =

⎡
⎢⎢⎣

0 · · · tiq
... . .

. ...

tiq · · · 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
mi times

, (19)

q = 1, 2, . . . , n, and i = 1, 2, 3, . . . .
Note that 0 in (19) denotes the n-element vertical

zero vector. It is well known (Górecki, 1986, pp. 86) that
the Jordan canonical form of the Frobenius matrix (11) is
a Vandermonde matrix, and therefore the blocks tiq in the

block Jordan transformation matrix (19) are vertical vec-
tors defined by

[ ti1 | . . . | tiq | . . . | tin]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 · · · 1 · · · 1
si1 · · · siq · · · sin

s2i1 · · · s2iq · · · s2in
...

. . .
...

. . .
...

sn−1
i1 · · · sn−1

iq · · · sn−1
in

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

i = 1, 2, 3, . . . . (20)

The basis for the entire controllability research in this
paper is Chen’s controllability Theorem 1. In that theo-
rem the inverse of the Jordan transformation matrix T (Ai)
plays a crucial role. This inverse is also useful in the
verification of controllability with cone-type control con-
straints, in the formula expressing the eigenvectors of the
transposed state matrix. It is well known (Górecki, 1986,
pp. 86) that the inverse of the Vandermonde matrix is
expressed by the so-called basic symmetric polynomials.
Further in this section, we shall present how the inverse is
built in the case of the block transformation matrix T (Ai)
(19). Namely, the desired inverse T−1(Ai) can be ex-
pressed by

T−1(Ai)

=
[

(T o
i1)

T · · · (
T o

iq

)T · · · (T o
in)T

]T

,

(21)

where

T o
iq =

⎡
⎢⎢⎣

0 · · · toiq
... . .

. ...

toiq · · · 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
mi times

, (22)

q = 1, 2, . . . , n, and i = 1, 2, 3, . . . .
Note that 0 in (22) denotes the n-element horizontal

zero vector and the blocks toiq are now horizontal vectors

defined by (23) (Górecki, 1986, pp. 86). Here w(v)
ik de-

notes for k > 0 the k-th order basic symmetric polynomial
in n − 1 variables si1, si2, . . . , si(v−1), si(v+1), . . . , sin,

and w(v)
i0

df= 1, i.e., for each i = 1, 2, 3, . . . we have (24).



Approximate controllability of infinite dimensional systems of the n-th order 203

⎡
⎢⎢⎣
toi1
...

toin

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w
(1)
i(n−1)(−1)1−1

(si2 − si1) . . . (sin − si1)

w
(1)
i(n−2)(−1)2−1

(si2 − si1) . . . (sin − si1)
. . .

w
(1)
i0 (−1)n−1

(si2 − si1) . . . (sin − si1)
...

...
. . .

...

w
(n)
i(n−1)(−1)1−1

(si1 − sin) . . .
(
si(n−1) − sin

) w
(n)
i(n−2)(−1)2−1

(si1 − sin) . . .
(
si(n−1) − sin

) . . .
w

(n)
i0 (−1)n−1

(si1 − sin) . . .
(
si(n−1) − sin

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

i = 1, 2, 3, . . . (23)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w
(v)
i1 = si1 + si2 + · · · + si(v−1) + si(v+1) + · · · + sin,

w
(v)
i2 = si1si2 + · · · + si1si(v−1) + si1si(v+1) + · · · + si1sin + · · · + si(n−1)sin,

...

w
(v)
i(n−1) = si1si2 . . . si(v−1)si(v+1) . . . sin.

(24)

Summarising this section, the Jordan transformation
matrix T (Ai) of the infinite sequence of the finite dimen-
sional systems (7) is given by (18)–(20), and its inverse
T−1(Ai) is given by (21)–(24).

5. Chen’s controllability theorem

Consider a linear, stationary, finite dimensional dynamic
system described by

x(t) = A0x(t) +B0u(t), t ≥ 0, (25)

where A0 and B0 are constant matrices with dimensions
n× n and n× p, respectively. Chen’s controllability the-
orem pertains to the system (25) in the Jordan canonical
form. Hence, before formulating Chen’s theorem, the fol-
lowing remark will be useful:

Remark 1. (Klamka, 1991; Chen, 1970, pp. 22) The
controllability of the dynamic system (25) is invariant un-
der any linear transformation x = Tz, where x ∈ R

n, z ∈
R

n and T is an n× n-dimensional, nonsingular transfor-
mation matrix.

Assume that the Jordan canonical form of the dy-
namic system (25) is represented by the matrices J and
G = T−1B0, where

J =

⎡
⎢⎢⎣
J1 0

. . .

0 Jk

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎢⎢⎣
G1

G2

...

Gk

⎤
⎥⎥⎥⎥⎦ , (26)

Ji =

⎡
⎢⎢⎣
Ji1 0

. . .

0 Jir(i)

⎤
⎥⎥⎦ , Gi =

⎡
⎢⎢⎢⎢⎣
Gi1

Gi2

...

Gir(i)

⎤
⎥⎥⎥⎥⎦ ,

i = 1, 2, . . . , k, (27)

Jij =

⎡
⎢⎢⎢⎢⎣
si 1 0

. . .
. . .

si 1
0 si

⎤
⎥⎥⎥⎥⎦ , Gij =

⎡
⎢⎢⎢⎢⎣

gij1

gij2

...

gijn(ij)

⎤
⎥⎥⎥⎥⎦ ,

i = 1, 2, . . . , k, j = 1, 2, . . . , r (i) . (28)

Here s1, s2, . . . , sk are distinct eigenvalues of the ma-
trix A0 with multiplicities ni, i = 1, 2, . . . , k; Ji, i =
1, 2, . . . , k are ni × ni-dimensional matrices containing
all the Jordan blocks associated with the eigenvalues si;
Jij , i = 1, 2, . . . , k and j = 1, 2, . . . , r (i) are nij × nij-
dimensional Jordan blocks in Ji; r(i) is the number
of Jordan blocks in the submatrix Ji, i = 1, 2, . . . , k;
Gi, i = 1, 2, . . . , k are ni ×m-dimensional submatri-
ces of the matrix G corresponding to the submatrices Ji;
Gij , i = 1, 2, . . . , k and j = 1, 2, . . . , r (i) are nij ×m-
dimensional submatrices of the matrix Gi corresponding
to the Jordan blocks Jij ; gijn(ij) , i = 1, 2, . . . , k and
j = 1, 2, . . . , r (i) are the rows of the submatrix Gij cor-
responding to the rows of the Jordan blocks Jij .

Now, using the Jordan canonical form of the dynamic
system (25) represented by the matrices (26)–(28), we can
recall Chen’s controllability theorem.

Theorem 1. (Chen, 1970; Klamka, 1991, pp. 25) The dy-
namic system (25) is controllable if and only if for each
i = 1, 2, . . . , k the rows gi1ni1 , gi2ni2 , . . . , gir(i)nir(i)

of
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the matrix G are linearly independent over the field of the
complex numbers.

6. Unconstrained approximate
controllability without delays

In this section we will assume no delays, so M = 0 and
the control space U = R

p. Necessary and sufficient con-
ditions for the approximate controllability of the analysed
dynamic system (1) will be formulated and proved.

The condition for this kind of controllability of first-
order systems is presented in the book (Curtain and
Zwart, 1995, pp. 163), cf. Theorem 4.2.1. In this sec-
tion we shall generalize this result to dynamic systems of
arbitrary order. First, recall the definition of approximate
controllability.

Definition 1. (Klamka, 1991, pp. 2, 130) The dynamic
system (1) is approximately controllable if and only if
there exists a control u(t) which will transfer the system
from any given initial state x0 ∈ X̃ to any final state
x1 ∈ X̃ in a finite time, where X̃ is a dense subspace
of X .

In order to verify the controllability, we shall make
use of the Jordan canonical form of the state equation (7).
According to Remark 1, the controllability of a linear, sta-
tionary finite dimensional system is invariant under any
nonsingular linear transformation. Thus, let us transform
the sequence of the dynamic systems (7) using the Jordan
transition matrix T (Ai) (19):

ςi(t) = T (Ai)θi(t), i = 1, 2, 3, . . . . (29)

After the linear transformation (29), Eqn. (7) gets its Jor-
dan canonical form

θ̇i(t) = J (Ai) θi(t) +Giu(t), i = 1, 2, 3, . . . , (30)

where J (Ai) is given by (17) and Gi = T−1
i (Ai)B0i .

The input matrix B0i is given by (10). Now, let us deter-
mine Gi = T−1

i (Ai)B0i on the basis of (10) and (21)–
(24). We obtain (31), where ⊗ denotes the Kronecker
product (Bellman, 1960, pp. 255) and the matrices (B∗

0i)
′

can be obtained from (32) by reversing the order of the
rows and setting k = 0 .

Now let us return to the verification of the control-
lability of the dynamic system (7) in the form (30). The
conditions for the controllability of linear dynamic sys-
tems in the canonical Jordan form are given by Theorem 1.
We can obtain a sequence of conditions (33) by applying
Chen’s theorem to the system (30) with respect to the par-
ticular Jordan canonical form of the system (30) and the
matrix Gi = T−1

i (Ai)B0i. The sequence of conditions

(33) is the following:

rank

⎡
⎢⎢⎢⎢⎣
w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)
(B∗

0i)
′

⎤
⎥⎥⎥⎥⎦ = mi,

q = 1, 2, . . . , n, i = 1, 2, 3, . . . . (33)

After simple linear transformations, Eqns. (33) can be
rewritten in the most compact form of one equation:

rank [B∗
0i] = mi, i = 1, 2, 3, . . . . (34)

Theorem 2. The dynamic system (1) without delays in
control (M = 0) is approximately controllable if and only
if the infinite sequence of the equalities (34) is fulfilled.

Corollary 1. The dynamic system (1) without delays
in control (M = 0), with only single multiplicities of the
eigenvalues of the state operatorA , is approximately con-
trollable if and only if the infinite sequence of the equali-
ties

p∑
k=1

〈b(k)
0 , φi1〉2X 
= 0, i = 1, 2, 3, . . . (35)

is fulfilled.

7. Approximate controllability without
delays with nonnegative cone-type
constraints

In this section we shall also assume no delays, so M = 0,
but as the control space we shall take a nonnegative cone
U ⊂ R

p
+. The necessary and sufficient conditions for the

so-called U -controllability with this type of constraints of
the analysed dynamic system (1) will be formulated and
proved as Theorem 4.

Definition 2. (Klamka, 1991, pp. 36, 130) The dynamic
system (1) is globally approximately U -controllable to
zero if for each initial state x0 ∈ X̃ , where X̃ is a
dense subspace of X , there exists an admissible control
u ∈ L2([t0,∞), U) such that the corresponding trajectory
x (t, x (t0) , u) of the dynamic system satisfies

x(t1, x(t0), u) = 0 (36)

for some t1 ∈ [t0,∞). The conditions for the ap-
proximate U -controllability of finite dimensional linear
dynamic systems with cone-type control constraints are
well known and presented in (Klamka, 1991, pp. 52), cf.
Theorem 1.9.1, and (Brammer, 1972; Schmitendorf and
Barmish, 1980).

Theorem 3. (Brammer, 1972; Klamka, 1991; Schmiten-
dorf and Barmish, 1980) The dynamic system

ẋ(t) = A0x(t) +B0u(t), t ≥ 0,
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Gi =

⎡
⎢⎣ w

(1)
i0 (−1)n−1

n∏
r=2

(sir − si1)
· · · w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)
· · · w

(n)
i0 (−1)n−1

n−1∏
r=1

(sir − sin)

⎤
⎥⎦

T

⊗ [
(B∗

0i)
′]
, i = 1, 2, 3, . . . , (31)

B∗
ki =

⎡
⎢⎢⎢⎢⎣

〈b(1)k , φi1〉X . . . 〈b(l2)k , φi1〉X . . . 〈b(p)
k , φi1〉X

...
. . .

...
. . .

...

〈b(1)k , φil1〉X . . . 〈b(l2)k , φil1〉X . . . 〈b(p)
k , φil1〉X

〈b(1)k , φimi
〉X . . . 〈b(l2)k , φimi

〉X . . . 〈b(p)
k , φimi

〉X

⎤
⎥⎥⎥⎥⎦ ,

k = 0, 1, . . . ,M, and i = 1, 2, 3, . . . (32)

where A0 and B0 are constant matrices with dimensions
n × n and n × p, respectively, is globally U -controllable
to zero if and only if the following conditions are simulta-
neously satisfied:

(i) There exists a w ∈ U such that B0w = 0.

(ii) The convex hull CH(U) has a nonempty interior in
the space R

p.

(iii) There holds

rank
[
B0|A0B0|A2

0B0| . . . |An−1
0 B0

]
= n. (37)

(iv) There is no real eigenvector v ∈ R
n of the matrixAT

0

satisfying vTB0w ≤ 0 for all w ∈ U .

(v) No eigenvalue of the matrix A0 has a positive real
part.

Theorem 4. Assume that all the assumptions made in
Sections 1–4 are valid. The dynamic system (1) is glob-
ally approximately U -controllable to zero with nonnega-
tive cone-type controls if and only if the following condi-
tions are simultaneously satisfied:

(i) There exists a wi ∈ U such that B∗
0iwi = 0 for each

i = 1, 2, 3, . . . .

(ii) The convex hull CH(U) has a nonempty interior in
the space Rp.

(iii) The infinite sequence of the equalities (35) are ful-
filled.

(iv) For every i in the set

{i ∈ Z+ : ∃ q ∈ {1, 2, . . . , n}, Im [siq] = 0}
in each n-th row of the i-th input matrix B0i in (11)
there must exist a pair of the scalar products of the
opposite sign.

(v) No eigenvalue of the sequence of the state matrices
(11) and (12) has a positive real part.

Proof. As was described in Section 3, the approximate
controllability of the system (1) is equivalent to the ap-
proximate controllability of the infinite sequence of the
finite dimensional systems (7). Moreover, it is well
known that any finite dimensional subsystem (7) is U -
controllable if and only if Conditions (i–v) of Theorem 3
are satisfied simultaneously. Therefore, the original sys-
tem (1) is approximately U -controllable if and only if
Conditions (i)–(v) of Theorem 3 are satisfied for each of
the finite dimensional subsystems in the infinite sequence
(8). Now, let us apply sequentially each of the five con-
ditions of Theorem 3 to every subsystem from the infinite
sequence (8). Conditions (i), (ii) and (v) of this theorem
follow directly from Theorem 3

Condition (iii) is that of unconstrained controllability
and was given in this paper for the system (1) by Theo-
rem 2.

Condition (iv) pertains to the real eigenvectors of the
state matricesAi in (10) and (11) corresponding to the real
eigenvalues of the characteristic equation (14). Write

ZRe =
{

(i ∈ Z+, q ∈ {1, 2, . . . , n}) : Im [siq] = 0
}
.

(38)
As has already been mentioned, the eigenvectors of

the state matrices Ai in (10) and (11) have the form of the
Vandermonde block matrix (18)–(20). The eigenvectors
of the transposed state matrix are

T (AT
i ) =

[
T−1(Ai)

]T
, i = 1, 2, 3, . . . . (39)

On the basis of (39) and (21)–(23), the eigenvectors
v
(l)
i (siq) of the matrices AT

i are given by (40).
Let us determine the term B0iwi. Using (10) and

(12), we get (41).
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v
(l)
i (siq)

=

⎡
⎢⎢⎣ 0 · · · 0︸ ︷︷ ︸

n×mi−n×l times

w
(q)
i(n−1)(−1)1−1

n∏
r=1
r �=q

(sir − siq)
· · ·

w
(q)
i(n−2)(−1)2−1

n∏
r=1
r �=q

(sir − siq)
· · · w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)
0 · · · 0︸ ︷︷ ︸
n×l−n times

⎤
⎥⎥⎦

T

,

(i, q) ∈ ZRe. (40)

B0iwi

=

⎡
⎢⎣ 0 · · · 0︸ ︷︷ ︸

n−1

p∑
k=1

〈b(k)
0 , φi1〉Xuk · · · 0 · · · 0︸ ︷︷ ︸

n−1

p∑
k=1

〈b(k)
0 , φil〉Xuk · · · 0 · · · 0︸ ︷︷ ︸

n−1

p∑
k=1

〈b(k)
0 , φimi

〉Xuk

⎤
⎥⎦

T

.

(41)

Finally, let us evaluate the term
(
v
(l)
i

(
siq

))T
B0iwi.

Combining (40) with (41), we get(
v
(l)
i (siq)

)T
B0iwi

= y
w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)

p∑
k=1

〈b(k)
0 , φil〉Xuk,

(i, q) ∈ ZRe, l = 1, 2, . . . ,mi. (42)

Since the controls are constrained to a nonneg-
ative cone, by the particular form (42) of the term
(v(l)

i (siq))TB0iwi for the analysed dynamic system (7),
we deduce that Condition (iv) reduces to the require-
ment that the expression (v(l)

i (siq))TB0iwi, (i, q) ∈
ZRe, l = 1, 2, . . . ,mi , given by (42), have values of
both signs in the admissible control space. Under this con-
dition there is no eigenvector v(l)

i of the matrix AT
i such

that (43) holds, i.e.,

∀(i, q) ∈ ZRe ∀wi ∈ U ∀l = 1, 2, . . . ,mi,

(v(l)
i (siq))T B0iwi ≤ 0. (43)

From (42) it can be deduced that the expression(
v
(l)
i (siq)

)T
B0iwi will have values of both signs for the

nonnegative controls if and only if in each n-th row in the
matrix (10) there exists a pair of scalar products of oppo-
site signs, for each i in the set ZRe.

8. Unconstrained approximate
controllability with delays

In this section we shall assume delays in control and un-
constrained controls, so that U = R

p. To pursue the

objective of analysing the approximate controllability of
the infinite dimensional system with delays (1), let us
present this notion first. For the dynamic system of the
form (1), besides the instantaneous state x(t) ∈ X , we
also introduce the notion of the so-called complete state
at time t, z(t) = {x(t), ut(s)}, where ut(s) = u(s) for
s ∈ [t− hM , t] (Klamka, 1991, pp. 195). Therefore we
distinguish two basic notions of approximate controllabil-
ity for the dynamic system (1), namely: relative approx-
imate controllability and absolute approximate controlla-
bility (Klamka, 1991, pp. 195, 130). Definitions 3 and 4
are taken from (Klamka, 1991, pp. 195, 130) and adapted
to the dynamic system (1), i.e., with multiple, lumped
time-invariant delays in control.

Definition 3. (Klamka, 1977; Klamka, 1991, pp. 130,
195). The dynamic system (1) is absolutely approximately
controllable in [t0, t1] if for any initial complete state

z(t0) = {x(t0), ut(s)} , x(t0) ∈ X̃,

any state x1 ∈ X̃ , where X̃ is a dense subspace ofX , and
an arbitrary functionw ∈ L2 ([t1 − hM , t1] , U), there ex-
ists a control u ∈ L2 ([t0, t1] , U) such that the complete
state of the dynamic system (1) satisfies

z(t1) = {x1, w} . (44)

Definition 4. (Klamka, 1976; Klamka, 1991, pp. 130,
195). The dynamic system (1) is relatively approximately
controllable in [t0, t1] if for any initial complete state
z(t0) = {x(t0), ut(s)} , x(t0) ∈ X̃ , any state x1 ∈ X̃ ,
where X̃ is a dense subspace of X , there exists a control
u ∈ L2 ([t0, t1] , U) such that the corresponding trajectory
x (t, z(t0), u) of the system (1) satisfies

x (t1, z(t0), u) = x1. (45)
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Definition 3 immediately implies that absolute con-
trollability has sense only for a sufficiently long time hori-
zon, i.e., when t1 > t0 + hM (Klamka, 1991). There are
some known theorems for verifying the relative and ab-
solute controllability of linear time-varying systems with
delays and control. Let us present two main theorems in
the form adapted to the stationary dynamic system (1).

Theorem 5. (Klamka, 1977; Klamka, 1991, pp. 207,
130). The dynamic system (1) is absolutely approximately
controllable in [t0, t1] , t1 > t0 + hM , if and only if the
dynamic system without delays in control

ζ(t) = Aiζi(t)+B̂iu(t), t ∈ [t0, t1], t1 > t0+hM ,

i = 1, 2, 3, . . . , (46)

where

B̂i =
M∑

k=0

e−AihkBki, i = 1, 2, 3, . . . , (47)

is approximately controllable in [t0, t1 − hM ].

To simplify the notation, with no loss of generality,
we may assume that there exists an index k0 ≤ M such
that t1 − hk0 = 0. If such k0 does not exist, then we
introduce an additional delay hk0 with the control matrix
Bk0i = 0 (Klamka, 1991). The index k0 plays an impor-
tant role in the definition of relative controllability. Rela-
tive controllability is defined for an arbitrary time interval
[t0, t1] , t1 > t0 (Klamka, 1991).

Theorem 6. (Klamka, 1976; Klamka, 1991, pp. 202, 130).
The dynamic system (1) is relatively approximately con-
trollable in [t0, t1] , for any time interval t1 > t0 , if and
only if the dynamic system without delays in control

ζi(t) = Aiζi(t) + B̃iu(t), t ∈ [t0, t1], t1 > t0,

i = 1, 2, 3, . . . , (48)

where

B̃i = [B0i|B1i| . . . |B(k0−1)i],

t ∈ [t0, t1], t1 > t0, w ∈ R
k0p,

i = 1, 2, 3, . . . , (49)

is approximately controllable in [t0 + hk0−1, t1].

Theorem 7. The dynamic system (1) is approximately
absolutely controllable in the time interval [t0, t1] , t1 >
t0 + hM , if and only if the infinite sequence of equalities

rank
M∑

k=0

e−siqhkB∗
ki = mi,

q = 1, 2, . . . , n, i = 1, 2, 3, . . . , (50)

is fulfilled, where B∗
ki is given by (33), siq are the eigen-

values (16) of the state operator Ai in (11), hk are the de-
lays, and mi are the eigenvalue multiplicities of the state
operator (6).

Proof. We shall prove the conditions for the absolute con-
trollability of the system (1) in the form of the sequence
(8) by Theorems 1–4. First, let us determine the matrix B̂i

for the system (8) (the matrix (47) from Theorem 4):

B̂i =
M∑

k=0

e−AihkBki =
M∑

k=0

Tie
−JihkT−1

i Bki,

i = 1, 2, 3, . . . . (51)

The term T−1
i B̂i plays a key role in Chen’s theo-

rem. From (10), (17), (21) and (51) we have (52), where
Jmi

(f) is a diagonal matrix with mi diagonal entries
equal to f . Observing that only every n-th row in the se-
quence of the matrices Bki (10) is nonzero, from (52) and
(21)–(23) we directly get (53), where the matrices (B∗

ki)
′

can also be obtained fromB∗
ki, given by (32), by reversing

the order of the rows. Now, let us return to the verifica-
tion of the controllability of the dynamic system (1) in the
form (46) from Theorem 4. Applying Chen’s theorem to
(53), the system considered, presented in the correspond-
ing form without delays with the input matrix B̂i (given
by (51)), is approximately controllable if and only if

rank

⎡
⎢⎢⎢⎢⎣
w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)

M∑
k=0

e−siqhk (B∗
ki)

′

⎤
⎥⎥⎥⎥⎦ = mi,

q = 1, 2, . . . , n, i = 1, 2, 3, . . . . (54)

Applying the basic linear algebra rules to (54), we get
(50). Chen’s theorem gives the controllability condi-
tions at any time interval, including obviously the interval
[t0, t1 − hM ] required by Theorem 4.

Theorem 8. The dynamic system (1) is approximately
relatively controllable in [t0, t1], for any time interval
t1 > t0, if and only if

rank
[
B∗

0i | B∗
1i | . . .

∣∣∣B∗
(k0−1) i

]
= mi,

i = 1, 2, 3, . . . , (55)

where B∗
ki is given by (32).

Proof. The proof is based on Theorems 1 and 5. The term
T−1

i B̃i from Theorem 5 can be easily calculated as (56),
using (21)–(23) and (49), where the matrices (B∗

ki)
′ can

be obtained from the input matrices B∗
ki (32) by reversing
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T−1
i B̂i =

M∑
k=0

e−JihkT−1
i Bki

=
M∑

k=0

diag

[
Jmi

(
e−si1hk

)
, . . . , Jmi

(
e−siqhk

)
, . . . , Jmi

(
e−sinhk

)]

×
[

(T o
i1)

T · · · (
T o

iq

)T · · · (T o
in)T

]T

Bki

=
M∑

k=0

[
e−si1hk (T o

i1)
T · · · e−siqhk

(
T o

iq

)T · · · e−sinhk (T o
in)T

]T

Bki, i = 1, 2, 3, . . . (52)

T−1
i B̂i =

M∑
k=0

⎡
⎢⎣ w

(1)
i0 (−1)n−1

n∏
r=2

(sir − si1)
e−si1hk · · · w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)
e−siqhk · · · w

(n)
i0 (−1)n−1

n−1∏
r=1

(sir − sin)
e−sinhk

⎤
⎥⎦

T

⊗ [
(B∗

ki)
′]
, i = 1, 2, 3, . . . (53)

T−1
i B̃i =

⎡
⎢⎣ w

(1)
i0 (−1)n−1

n∏
r=2

(sir − si1)
· · · w

(q)
i0 (−1)n−1

n∏
r=1
r �=q

(sir − siq)
· · · w

(n)
i0 (−1)n−1

n−1∏
r=1

(sir − sin)

⎤
⎥⎦

T

,

⊗
[
(B∗

0i)
′ ∣∣ (B∗

1i)
′ ∣∣ . . . ∣∣∣∣ (B∗

(k0−1)i

)′ ]
, i = 1, 2, 3, . . . (56)

the order of the rows. Applying Chen’s theorem to the
term T−1

i B̃i, (56) leads to the sequence of equalities

rank
[
B∗

0i | B∗
1i | . . .

∣∣∣B∗
(k0−1) i

]
= mi,

i = 1, 2, 3, . . . . (57)

As as previously been mentioned, Chen’s theorem gives
the controllability condition on any time interval, in this
case also including the interval [t0 + hk0−1, t1] required
by Theorem 5. Thus (58) fulfills the conditions of Theo-
rem 5 for any k0 ≤M .

9. Example

We shall show how to apply some results obtained in this
paper to the investigation of the controllability of an elas-
tic beam with internal damping and two control forces.
First, we shall show how to transform a classical, dis-
tributed parameter mathematical model into an abstract
differential equation. Next, we shall transform it into the
form of an infinite sequence of finite dimensional equa-
tions. Finally, we shall analyse two types of controllabil-
ity of the elastic beam considered. The example shows

the importance of the damping terms in the form of linear
combinations of different powers of the state operator.

Let us consider a mechanical system described by the
following linear partial differential equation with two con-
trol forces:

∂2x(z, t)
∂t2

+
∂4x(z, t)
∂z4

+ α
∂5x(z, t)
∂z4∂t

− β
∂3x(z, t)
∂z2∂t

+ γ
∂2x(z, t)
∂z2

= ezu1(t) − zu2(t), (58)

for x ∈ (0, L0), t ≥ t0, α, γ > 0, β > 2, with initial
conditions

x(z, 0) = x0(z),
∂x(z, 0)
∂t

= x1(z), z ∈ (0, L0),
(59)

and boundary conditions

x(0, t) = x(L0, t) =
∂2x(0, t)
∂z2

=
∂2x(L0, t)

∂z2
= 0,

t ≥ 0. (60)

The function x(z, t) is equal to the movement of the anal-
ysed elastic beam in the direction of the y-axis at the time
moment t ≥ t0 and at the point z ∈ (0, L0). The first two
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terms in (58) are the only terms taken into account for the
ideally springy elastic beam. The next two terms repre-
sent internal structural dampings, and the remaining fifth
term represents the effect of the axial force on the beam.
A more detailed description of these terms and the phe-
nomenon they describe can be found in (Chen and Rus-
sel, 1982; Ito and Kunimatsu, 1991; Sakawa, 1984).

9.1. Transformation of the partial differential equa-
tion. In this section we shall transform the partial dif-
ferential equation (58) into the form of an abstract differ-
ential equation (1) and then into an infinite sequence (8).
Define the unbounded linear differential operator A (Ito
and Kunimatsu, 1988; Sakawa, 1983):

Ax(z) =
∂4x(z)
∂z4

, x ∈ D(A), (61)

D(A) =
{
x(z) ∈ X4([0, L0],R) :

d4

dz4
x(z) ∈ L2([0, L0],R),

x(0) = x(L0) =
d2x

dz2
(0) =

d2x

dz2
(L0) = 0

}
, (62)

where X4 ([0, L0],R) denotes the Sobolev space of all
square integrable functions defined on the interval [0, L0]
such that their first four derivatives are also square in-
tegrable. It can be proved (Ito and Kunimatsu, 1988;
Sakawa, 1983) that the eigenvalues λi and the eigenfunc-
tions φi(z) of the operator A are respectively given by

λi =
(
iπ

L0

)4

, φi(z) =
√

2
L0

sin
(πiz
L0

)
,

i = 1, 2, 3, . . . (63)

and the operator A is linear, self-adjoint and positive def-
inite. Particularly, one can define the following fractional
power of the operator A:

A
1
2x = −∂

2x

∂z2
, (64)

D(A
1
2 ) =

{
x ∈ X2 ([0, L0],R) :

d2

dz2
x(z) ∈ L2 ([0, L0],R) ,

x(0) = x(L0) = 0
}
, (65)

where X2 denotes the second-order Sobolev space. The
mechanical system considered does not contain delayed
controls, so we have M = 0 and the input operator can be
defined as follows:

B0u(t) =
2∑

l=1

b
(l)
0 ul(t), Bk ∈ L(U,X),

X = L2([0, L0],R), (66)

where b(1)0 = ez, b
(2)
0 = −z. Applying the operators A

(61) and B0 (66) to the partial differential equation (58),
we obtain the following abstract, ordinary second-order
differential equation with respect to t in the Hilbert space
X:

d2x(t)
dt2

+
(
αA+ βA

1
2
)dx(t)

dt
+
(
A− γA

1
2

)
x(t)

= B0u(t) t ≥ t0. (67)

Let us now check whether the abstract differential
equation (67) fulfills the assumptions of the system (1)
stated in Section 2. Based on (13) and (67), we can com-
pute the coefficients of its characteristic equation:

f∗i1 = α

(
iπ

L0

)4

+ β

(
iπ

L0

)2

,

f∗i0 =
(
iπ

L0

)4

− γ

(
iπ

L0

)2

, i = 1, 2, 3, . . . . (68)

The roots of the characteristic equation of the system (67)
can be expressed as

si1 =
−f∗i1 −

√
f∗2i1 − 4f∗i0
2

,

si2 =
−f∗i1 +

√
f∗2i1 − 4f∗i0
2

, i = 1, 2, 3, . . . . (69)

From (68) we can see that for α, γ > 0, and β > 2, the
term f∗2i1 −4f∗i0 is positive for each i = 1, 2, 3, . . . . Thus
from (69) we see that si1 
= si2 for each i = 1, 2, 3, . . .
Similarly, we can see that roots si1 and si2 have an upper
limit for i = 1, 2, 3, . . . . Thus the operator A is the in-
finitesimal generator of a strongly continuous semigroup
(Curtain and Zwart, 1995, pp. 17).

Taking into account that the operator (61) has only
single eigenvalues (cf. (63)), we can find the sequence
of the state and input matrices Ai, B0i in the infinite se-
quence of the finite dimensional systems (8) in the form

Ai =

[
0 1

−f∗i0 −f∗i1

]
,

B0i =

[
0 0

〈b(1)0 , φi〉X 〈b(2)0 , φi〉X

]
,

i = 1, 2, 3, . . . , (70)

where φi is given by (63). The scalar products 〈b(l)0 , φi〉X
can be calculated as follows:

〈b(1)0 , φi〉X =
√

2
L0

L0∫
0

ez sin

(
πiz

L0

)
dz

=
√

2L0πi

L2
0 + π2i2

[
1 − eL0 (−1)i

]
,

i = 1, 2, 3, . . . , (71)
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〈b(2)0 , φi〉X =
√

2
L0

L0∫
0

−z sin

(
πiz

L0

)
dz

=
√

2
L0

L2
0 (−1)i

πi
, i = 1, 2, 3, . . . . (72)

Based on (71) and (72), the matrix B∗
0i can be obtained

from (32):

B∗
0i =

[
〈b(1)0 , φi〉X 〈b(2)0 , φi〉X

]
,

i = 1, 2, 3, . . . . (73)

We have already transformed the analysed mechani-
cal system (58) to the form (8) required by all the control-
lability theorems proved in this article. So let us analyse
whether or not that system is approximately controllable
with two kinds of admissible control sets.

9.2. Unconstrained approximate controllability. We
shall test the unconstrained approximate controllability of
the mechanical system (58) by Theorem 2. In this case the
infinite sequence of the equations (34) has the following
form:

rank
[ √

2L0πi

L2
0 + π2i2

[
1 − eL0 (−1)i

] √
2
L0

L2
0(−1)i

πi

]
= 1, i = 1, 2, 3, . . . . (74)

We see that the infinite sequence of the equations
(74) holds true for each i = 1, 2, 3, . . . , so the mechanical
system (58) is approximately controllable.

9.3. Approximate controllability with nonnegative
cone-type constraints. We shall verify this kind of con-
trollability of the mechanical system (58) by Theorem 4.
Condition (i) is fulfilled for each i = 1, 2, 3, . . . if we
choose wi = 0. Condition (ii) requires the convex hull of
the admissible control set U not to have a nonempty inte-
rior. Condition (iii) of Theorem 4 is equivalent to Theo-
rem 2 and was verified in the previous section. Moreover,
as has already been pointed out,

f∗2i1 − 4f∗i0 > 0, i = 1, 2, 3, . . . . (75)

Accordingly, all roots si1, si2 are real. Thus Condition
(iv) of Theorem 4 is equivalent to the requirement that
for each i = 1, 2, 3, . . . in the input matrix B0i (70) there
must exist a pair of scalar products of opposite signs. Con-
sidering the form of the matrix B0i (70) and the form of
the scalar products (71) and (72), Condition (iv) of Theo-
rem 4 is equivalent to[

1 − eL0 (−1)i
]
(−1)i

< 0, ∀i = 1, 2, 3, . . . . (76)

This inequality is true for both odd and even i, and hence
Condition (iv) is fulfilled.

Now, let us verify Condition (v). From (68) we can
see that

f∗i1 > 0, i = 1, 2, 3, . . . . (77)

Thus from (69) and (75) we can deduce that Re [si1] < 0
for each i = 1, 2, 3, . . . Now let us verify the remain-
ing inequality Re [si2] < 0, i = 1, 2, 3, . . . On the ba-
sis of (75), (77) and (69) we see that Re [si2] < 0, i =
1, 2, 3, . . . if and only if

f∗i0 > 0, i = 1, 2, 3, . . . . (78)

From (68) we can deduce that the infinite sequence of in-
equalities (78) is fulfilled if and only if γ < π2/L2

0 .

9.4. Summary of the example. The elastic beam (58)
with the conditions (59) and (60) is

• approximately controllable,

• approximately controllable with nonnegative cone-
type constraints if and only if the convex hull of the
admissible cone control set U has nonempty interior
and the parameter γ satisfies γ < π2/L2

0.

10. Conclusions

We obtained general conditions for various types of con-
trollability for infinite dimensional systems, at once for
any order of the system. This problem turned out to be
more sophisticated than for fixed equation order. This was
possible by analyzing the n-th order linear system in the
Frobenius form, generating a Jordan transition matrix in
the Vandermonde form, and making use of Chen’s theo-
rem. To accomplish the task, we introduced a general an-
alytical form of the inverse Vandermonde matrix, known
from linear algebra, into controllability theory. The ob-
tained theorems of approximate controllability without
constraints, with cone-type constraints, and with delays
in control hold true for any order of the verified infinite
dimensional dynamic system. This is a new result in con-
trollability theory.

Moreover, it should be pointed out that the presented
methods can be easily adapted to the analysis of other dy-
namic properties of the n-th order system considered, i.e.,
observability, attainability, stability and optimal control.

Fulfilling the condition (15) does not depend on the
class of the equation considered, but on the values of the
equation coefficients. A possible direction of further in-
vestigations can be a generalization of the presented re-
sults to the case of arbitrary eigenvalue multiplicities of
the state operator.

Acknowledgment

The author’s research was supported by a Foundation for
Polish Science stipend for young scientists.



Approximate controllability of infinite dimensional systems of the n-th order 211

References
Alotaibi S., M. Sen, B. Goodwine and K.T. Yang (2004). Con-

trollability of cross-flow heat exchangers, International
Journal of Heat and Mass Transfer 47: 913–924.

Bellman R. (1960). Introduction to Matrix Analysis, McGraw-
Hill, New York .

Balakrishnan A.V. (1998). Dynamics and Control of Dis-
tributed Systems, Cambridge University Press, Cambridge,
pp. 121–201.

Brammer R. F. (1972). Controllability in linear autonomous sys-
tems with positive controllers, SIAM Journal on Control
and Optimization 10: 339–353.

Butkowskij A. G. (1979). Characteristics of Distributed Param-
eter Systems, Nauka, Moscow, (in Russian).

Chen C.T. (1970). Introduction to Linear System Theory, Holt,
Rinehart and Winston Inc, New York.

Chen G. and D.L. Russel (1982). A mathematical model for lin-
ear elastic systems with structural damping, Quarterly of
Applied Mathematics 39: 433–454.

Chen G. and R. Triaggani (1990). Gevrey class semigroup aris-
ing from elastic systems with gentle dissipation: The case
0 < α < 1/2, Proceedings of the American Mathematical
Society 100(2): 401–415.

Coleman M.P. and H. Wang (1993). Analysis of vibration spec-
trum of a Timoshenko beam with boundary damping by the
wave method, Wave Motion 17: 223–239.

Curtain R. and H. Zwart (1995). An Introduction to Infinite-
Dimensional Systems Theory, Springer-Verlag, New York.

Davison E.J. and S.H. Wang (1975). New results on the con-
trollability and observability of general composite systems,
IEEE Transactions on Automatic Control 20: 123–128.

Dunford N. and J. Schwartz (1963). Linear Operators. Vols. 1
and 2, Interscience, New York.

Fattorini H.O. (1966). Some remarks on complete control-
lability, SIAM Journal on Control and Optimization 4:
686–694.

Fattorini H.O. (1967). On complete controllability of linear sys-
tems, Journal of Differential Equations 3: 391–402.

Fattorini H.O. and Russel D.L. (1971). Exact controllability the-
orem for linear parabolic equations in one space dimen-
sion, Archive for Rational Mechanics and Analysis 43:
272–292.

Górecki H. (1986). Optimization of Dynamic Systems, WNT,
Warsaw (in Polish).

Huang F. (1988). On the mathematical model with analytic
damping, SIAM Journal on Control Optimization 26(3):
714–724.

Ito K. and N. Kunimatsu (1988). Stabilization of non-linear dis-
tribuded parameter vibratory system, International Journal
of Control 48:(2) 2389–2415.

Ito K. and N. Kunimatsu (1991). Semigroup model of struc-
turally damped Timoshenko beam with boundary input, In-
ternational Journal of Control 54: 367–391.

Kalman R.E. (1960). On the general theory of control sys-
tems, Proceedings of the 1st IFAC Congress, London,
pp. 481–493.

Kim J.U. and Y. Renardy (1987). Boundary control of the Timo-
shenko beam, SIAM Journal on Control and Optimization
25: 1417–1429.

Kaczorek T. (1998). Vectors and Matrices in Automatic Control
and Electrical Engineering, WNT Warsaw (in Polish).

Klamka J. (2000). Schauder’s fixed point theorem in non-
linear controllability problems, Control Cybernetics 29:
1377–1393.

Klamka J. (2002). Constrained exact controllability of semilin-
ear systems, Systems and Control Letters 47(2): 139–147.

Klamka J. (1992). Approximate controllability of second order
dynamical systems, Applied Mathematics and Computer
Sciences 2: 135–148.

Klamka J. (1991). Controllability of Dynamical Systems,
Kluwer, Dordrecht.

Klamka J. (1976). Controllability of linear systems with time-
variable delays in control, International Journal of Control
24: 869–878.

Klamka J. (1977). Absolute controllability of linear systems with
time-variable delays in control, International Journal of
Control 26: 57–63.

Labbe S. and E. Trelat (2006). Uniform controllability of
semidiscrete approximations of parabolic control systems,
Systems and Control Letters 55 (7): 597–609.

Mahmudov N.I. and S. Zorlu (2005). Controllability of semi-
linear stochastic systems, International Journal of Control
78(13): 997–1004.

Miller L. (2006). Non-structural controllability of linear elas-
tic systems with structural damping, Journal of Functional
Analysis 236(2): 592–608.

Respondek J. (2005a). Controllability of dynamical systems with
constraints, Systems and Control Letters 54(4): 293–314.

Respondek J. (2005b). Numerical approach to the non-linear
diofantic equations with applications to the controllability
of infinite dimensional dynamical systems, International
Journal of Control 78(13/10): 1017–1030.

Respondek J. (2007). Numerical analysis of controllability
of diffusive-convective system with limited manipulating
variables, International Communications in Heat and Mass
Transfer 34(8): 934–944.

Sakawa Y. (1974). Controllability for partial differential equa-
tions of parabolic type, SIAM Journal on Control and Op-
timization 12: 389–400.

Sakawa Y. (1984). Feedback control of second order evolution
equations with damping, SIAM Journal Control and Opti-
mization 22: 343–361.

Sakawa Y. (1983). Feedback stabilization of linear diffusion
system, SIAM Journal on Control an Optimization 21(5):
667–675.

Shi D.H., S.H. Hou and D. Feng (1998). Feedback stabilization
of a Timoshenko beam with an end mass, International
Journal of Control 69(2): 285–300.



212 J.S. Respondek

Shi D.H., D. Feng and Q. Yan (2001). Feedback stabilization
of rotating Timoshenko beam with adaptive gain, Interna-
tional Journal of Control 74(3): 239–251.

Shubov M.A. (1999). Spectral operators generated by Tim-
oshenko beam model, Systems and Control Letters 38:
249–258.

Shubov M.A. (2000). Exact controllability of damped Timo-
shenko beam, IMA Journal of Mathematical Control and
Information 17: 375–395.

Schmitendorf W.E. and B.R. Barmish (1980). Null controllabil-
ity of linear system with constrained controls, SIAM Jour-
nal on Control and Optimization 18: 327–345.

Tanabe H. (1979). Equations of Evolution, Pitman, London.

Triggiani R. (1975). Controllability and observability in Banach
space with bounded operators, SIAM Journal on Control
and Optimization 13: 462–491.

Triggiani R. (1976). Extensions of rank conditions for controlla-
bility and observability to Banach spaces with unbounded
operators, SIAM Journal on Control and Optimization 14:
313–338.

Triggiani R. (1978). On the relationship between first and second
order controllable systems in Banach spaces, SIAM Jour-
nal Control and Optimization 16: 847–859.

Vieru A. (2005). On null controllability of linear systems in Ba-
nach spaces, Systems and Control Letters 54(4): 331–337.

Xu G.Q. (2005). Boundary feedback exponential stabilization
of a Timoshenko beam with both ends free, International
Journal of Control 78(4/10): 286–297.

Received: 12 July 2007
Revised: 12 November 2007
Re-revised: 30 November 2007


	Introduction
	Problem statement
	Transformation of the state equation
	Jordan decomposition of the state matrix
	Chen’s controllability theorem
	Unconstrained approximate controllability without delays
	Approximate controllability without delays with nonnegative cone-type constraints
	Unconstrained approximate controllability with delays
	Example
	Transformation of the partial differential equation
	Unconstrained approximate controllability
	Approximate controllability with nonnegative cone-type constraints
	Summary of the example

	Conclusions

