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Block-based physical modeling is a methodology for modeling physical systems with different subsystems. Each subsystem
may be modeled according to a different paradigm. Connecting systems of diverse nature in the discrete-time domain
requires a unified interconnection strategy. Such a strategy is provided by the well-known wave digital principle, which
had been introduced initially for the design of digital filters. It serves as a starting point for the more general idea of block-
based physical modeling, where arbitrary discrete-time state space representations can communicate via wave variables.
An example in musical acoustics shows the application of block-based modeling to multidimensional physical systems.
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1. Introduction

Complex natural or technical systems consist of a variety
of components which interact with one another according
to the laws of physics. Modeling a component of a physi-
cal system means to identify the relevant quantities (force,
deflection, pressure, velocity, voltage, current, etc.), to
set up a mathematical description, and to find a suitable
discretization for the computational realization. At the
end of this process stands a discrete-time and possibly a
discrete-space algorithm for real-time simulation of the
corresponding system component. Encapsulating the al-
gorithm into an appropriate input-output description leads
to a component model which processes output-samples
from input-samples, preferably in real time and with no
latency. Such a component model is also called a block,
because it acts as a building block for larger systems.

Creating accurate and meaningful block models re-
quires considerable expertise in physics, engineering, nu-
merical mathematics, and computer science. It is therefore
desirable to provide tested and veryfied modeling blocks
in software libraries. Users of these libraries can then con-
centrate on the creation of complex models from the basic
building blocks.

Since the components of a physical system may be
quite different in nature, also their bocks may be modeled
according to different paradigms. Any connection of such
modeling blocks may therefore not rely on the compati-

bility of their inner variables but only on the input-output
samples at each time instant. Creating a correct interaction
between component models therefore means to provide a
meaningful connection between the input and output ports
of each block in the system.

Block-based modeling of physical systems thus con-
sists of two separate tasks: component modeling and mo-
del interaction. It is an established method in the simu-
lation of one-dimensional systems for which a variety of
simulation languages and graphical simulation tools exist
(e.g., Simulink). However, there are a number of special
requirements like distributed parameter systems, interac-
tive human control, real-time operation, and low latency,
which are rarely provided by standard simulation tools.

This contribution adopts a general view on model
interaction for satisfying these special requirements. To
exemplify the general results, musical acoustics is cho-
sen as an application scenario. The presentation is based
on elements from the keynote talk (Rabenstein and Pe-
trausch, 2006) and the magazine article (Rabenstein et al.,
2007).

Section 2 presents some general concepts of block-
based physical modeling with special consideration of the
wave digital principle. Section 3 introduces the idea of
block-based physical modeling with state space and wave
digital models. A detailed example in Section 4 shows the
application of these ideas to a musical instrument.

rabe@LNT.de


296 R. Rabenstein and S. Petrausch

2. Block-based physical modeling with
wave-based interconnections

2.1. Signals, ports and waves. When dealing with
physical models and their realization with discrete-time
systems, it is important to distinguish the domain of si-
gnals and systems from the domain of physics. Some con-
cepts from these domains are presented here. In particular,
signals, ports and wave variables are reviewed.

2.1.1. Signals. Signals are variable quantities which
carry information. They have no immediate physical re-
ality. However, for transmission, storage and proces-
sing, signals are usually represented by physical quanti-
ties like electrical voltage, magnetical flux, light intensity,
etc. Systems for signal processing are often described by
signal flow graphs. In a signal flow graph, blocks are fed
by input signals and respond with the corresponding out-
put signals. The output of one block serves as input for
one or more other blocks. The assumption in a signal flow
graph representation is that the output signal of one block
does not change its values when it is connected to another
block as an input signal.

Although blocks in a signal flow graph are described
by mathematical operators (e.g., multipliers, integrators,
input-putput-mappings, transfer functions, etc.), they may
also be realized by physical systems, e.g., electrical circu-
its. However, care has to be taken not to violate the above
assumption. Using block realizations with high input im-
pedance and low output impedance ensures that their out-
put voltages are valid representations of the corresponding
signals.

2.1.2. Ports. Interconnections of physical models are
described by ports. A port is a pair of variables which
serve for communication with other blocks. The physi-
cal description of a system leads to potential and flow
variables, also referred to as across and through varia-
bles. Typical port variables are voltage and current, pres-
sure and flow, or force and velocity. In electrical circuits,
voltage and current obey the Kirchhoff laws. Similar ba-
lance relations exist for mechanical, hydraulical, pneuma-
tic, and other physical regimes. Therefore, these physical
variables are also called Kirchhoff variables or simply K-
variables.

For continuous-time systems the balance equations
are satisfied at any time instant. Since potential and flow
variables at a port depend on each other, they cannot be
grouped into input and output signals. Connecting two
ports will in general change potential and flow variables
at both ports.

2.1.3. Delay-free loops. For discrete-time approxima-
tions, the differential operators in a physical description

are replaced by difference equations. Connecting two
discrete-time systems may lead to delay free loops, which
inhibit the implementation by digital computation.

Consider two blocks fi, i = 1, 2 with input vi(k)
and output yi(k), where k is the discrete time variable. If
both blocks contain a direct path between the input and
the output, then the sequence

y1(k) = f1{v1(k)},
v2(k) = y1(k),
y2(k) = f2{v2(k)},
v1(k) = y2(k)

is not computable. Although each discrete-time model fi

may be correctly implemented, the blocks cannot be direc-
tly connected. A naive way to overcome this problem is
to insert a delay in the interconnection, e.g., by computing
y1(k) = f{v1(k − 1)}, but this crude measure changes
the dynamics of the systems in an unpredictable way.

2.1.4. Wave variables. A more elegant and mathe-
matically rigorous way to avoid delay-free loops involves
wave variables. They are defined as a linear combination
of potential and flow variables, e.g., voltage u(t) and cur-
rent i(t) in a electrical circuit. The compatibility of the
physical units is ensured by the port resistance Rp as

a(t) = u(t) + Rp i(t), (1)

b(t) = u(t) − Rp i(t). (2)

In accordance with physical intuition, a(t) is called the
incident wave and b(t) the reflected wave. They are also
called wave variables or W-variables. Figure 1 shows the
K-variables u(t) and i(t) as well as the wave variables
a(t) and b(t) at a one-port with port resistance Rp.

u(t)

i(t)

b(t)
a(t)

Rp

Fig. 1. K- and W-variables at a one-port with the port resi-
stance Rp.

2.1.5. Interconnection of ports with wave variables.
To interconnect ports with wave variables, relations have
to be established between the voltages and currents and
the corresponding waves. This procedure is shown in
Fig. 2 for the simplest case, the interconnection of two
one-ports with the port resistances R1 and R2. The K-
variables are restricted by the Kirchhoff laws as

u1(t) = u2(t), i1(t) = −i2(t). (3)
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u1 u2

i1 i2

b1

a1

b2

a2
R1 R2

Fig. 2. Interconnection of two one-ports.

Also the wave variables have to satisfy certain rela-
tions. The definitions of the wave variables for Fig. 2 and
their sum and difference are compiled below for n = 1, 2
and Gn = R−1

n (the time index t is omitted):

an = un + Rnin, 2un = an + bn,

bn = un − Rnin, 2in = Gn(an − bn).
(4)

Expressing the Kirchhoff laws (3) for un and in in terms
of the wave variables an and bn results in the matrix equ-
ation[

1 −1
G1 G2

][
a1

a2

]
−
[

−1 1
G1 G2

][
b1

b2

]

=

[
0
0

]
.

(5)

It can be solved for the incident waves an in terms of the
reflected waves bn as[

a1

a2

]
=

([
α1 α2

α1 α2

]
− I2

)[
b1

b2

]
, (6)

αn =
2Gn

G1 + G2
, (7)

where I2 is the 2 × 2 identity matrix. Such relations be-
tween incident and reflected waves are also called scatte-
ring relations.

When the ports in Fig. 2 are not expressed in terms of
the port variables but in terms of the wave variables (wave
ports), then the validity of (6) has to be ensured by a spe-
cial block. It can be regarded as an impedance matcher
between the port resistances and is called the adaptor. Fi-
gure 3 shows the two ports from Fig. 2 as wave ports with
the corresponding two-port adaptor. Note that the connec-
tions in Fig. 3 are expressed in W-variables in contrast to
the K-variables in Fig. 2. For the adaptor, the roles of the
incident and reflected waves are interchanged such that its
defining equations are (see (6))

b′1 = (α1 − 1) a′
1 + α2 a′

2 , (8)

b′2 = α1 a′
1 + (α2 − 1) a′

2 . (9)

The interconnection of blocks in terms of W-
variables is an important component of the so-called wave
digital principle described below.

a1 a2

b1 b2a′
1 a′

2

b′1 b′2

R1 R2

two-
port
adaptor

Fig. 3. Interconnection of two wave ports with a parallel adap-
tor.

2.2. Wave digital principle. The wave digital princi-
ple evolved as a method for designing digital filters (wave
digital filters) from analog counterparts, which were
described by ordinary differential equations (Fettweis,
1971). A unifying treatment of the theory and applica-
tion of wave digital filters is given in the classical paper
(Fettweis, 1986). Later this principle was extended to di-
stributed parameter systems, described by partial differen-
tial equations (Fettweis and Nitsche, 1991). Modern de-
scriptions of the wave digital principle as a tool for nume-
rical integration and modeling are given in (Ochs, 2001;
Bilbao, 2004; Välimäki et al., 2006; Smith, 2007). The
following subsections present a short introduction to the
basic idea of wave digital filters.

2.2.1. Simple example. A quick overview of the de-
sign of wave digital filters is given here by a very simple
example: the charging of a capacitor by a voltage source
with an internal resistance. The network description in
the form of an RC-circuit is shown in Fig. 4. The time-
varying voltage u0(t) of the source is the input and the
voltage u(t) across the capacitor is the output.

u0(t)

i(t)R

C u(t)

Fig. 4. Network description of an RC-circuit.

2.2.2. Energy storage element. The energy storage
element in the RC-circuit is the capacitor which relates u
and i by integration,

u(t) =
1
C

t∫
−∞

i(τ) dτ. (10)

Numerical integration by the trapezoidal rule with
the time step size T performs the time discretization ac-
cording to the bilinear transformation (k is the discrete
time index)
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u
(
(k+1)T

)
= u(kT )+

T

2C

[
i(k+1)T )+ i(kT )

]
. (11)

However, this difference equation in terms of K-variables
is not computable, since neither u((k + 1)T ) nor i((k +
1)T ) is known at the time instant (k + 1)T .

To prepare the transition to wave variables, the unk-
nown quantities are sorted according to time,

u((k+1)T )− T

2C
i((k+1)T ) = u(kT )+

T

2C
i(kT ) . (12)

Then the discrete wave quantities are defined as

a[k] = u(kT ) + Rp i(kT ) , (13)

b[k] = u(kT )− Rp i(kT ) . (14)

Their introduction is the key element of the wave di-
gital principle. While the across and through variables u
and i mutually depend on each other, there is a causal rela-
tion between the wave variables a and b, which ensures the
computability of the resulting structure. Expressing (12)
in terms of the wave quantities and choosing the reference
resistance as Rp = T/2C results in the simple relation
(cf. also Table 1)

b[k] = a[k − 1] . (15)

Thus the numerical integration (12) becomes computable
by expressing the reflected wave b[k] at the time instant k
by the incoming wave a[k− 1] at the previous time k − 1.

Table 1 lists some selected elements of electrical net-
works and their wave digital counterparts. Since electrical
networks are frequently used as an analogon for other net-
works (mechanical, thermal, flow), the more general term
“Kirchhoff network” has been chosen.

The behavior of the wave digital equivalents follows
from similar derivations as for the capacitor in (10)–(15).
For all linear elements, the reflected wave b[k] is given by
known quantities or by the incident wave a[k−1] from the
previous time step. For non-linear elements, the relation
between a and b depends on the type of non-linearity.

2.2.3. Wave digital filter. Now all required elements
have been presented for the derivation of the wave digital
filter equivalent of the RC-circuit from Fig. 4. It is shown
again in Fig. 5 with the decomposition into its two basic
components: a voltage source with internal resistance and
a capacitor. In addition, the incident and reflected waves
of both components are shown.

The port resistances are R and T/2C. They will be
different in general, and thus a two-port adaptor according
to Fig. 2 is required. Figure 6 shows the resulting wave
digital filter structure. Obviously, the reflected waves of
the two one-port elements are the incident waves of the
adaptor (indicated by primes) and vice versa.

u0

iR C

u
a1

b1

a2

b2

Fig. 5. RC-circuit with decomposition into basic components
and wave variables.

a1

b1

a2

b2a′
1

b′1

a′
2

b′2

u0
Two-Port
Adaptor

Fig. 6. Wave digital filter structure of the RC-circuit from Fig. 5.

Finally, the computational structure of the resulting
discrete-time system is shown in Fig. 7. It consists of ad-
ders, multipliers and a delay only. The two-port adaptor is
represented by the equations from Fig. 2 with a′

1 = u0.
The reflected wave b′1 is not required since the voltage
source needs no incident wave (see Table 1). The delay
between the incident and the reflected wave at the capaci-
tor according to (15) is indicated by z−1, the z-transform
equivalent of a delay. The output voltage u follows from

u0
−1

−α
R T

2C
a2

b2

z−1

Fig. 7. Computational structure of the resulting discrete-time
system.

the definition of the wave variables (13,14) as

u =
1
2
(
a2 + b2

)
. (16)

Now it is straightforward to derive the transfer func-
tion of the discrete-time implementation as the relation be-
tween the z-transforms U(z) and U0(z) of the output and
the input signal, respectively,

H(z) =
U(z)
U0(z)

=
α

2
z + 1

z − (1−α)
. (17)

This transfer function can also be obtained from the
continuous-time transfer function of the RC-circuit by a
bilinear transformation. However, the wave digital prin-
ciple provides not only the transfer function of the RC-
circuit’s discrete-time counterpart but also its internal
structure. The algorithmic advantages of this strategy are
discussed in detail in (Fettweis, 1986).

To apply the presented method also to larger net-
works, these have to be decomposed into serial and pa-
rallel arrangements of their network elements. Instead of
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Kirchhoff network element Wave digital filter equivalent

Network Element Behavior Symbol Behavior

u(t)
i(t)

R u(t) = R · i(t)
a[k]

b[k]

b[k] = 0

Rp = R

u(t)
i(t)

L u(t) = L · ∂
∂t i(t)

a[k]

b[k]

b[k] = −a[k − 1]

Rp = 2L
T

u(t)
i(t)

C i(t) = C · ∂
∂tu(t)

a[k]

b[k]

b[k] = a[k − 1]

Rp = T
2C

u(t)
i(t)

u0
R

u(t) = u0(t)+R ·i(t)
a[k]

b[k]

b[k] = u0[k]

Rp = R

u(t)
i(t)

NL non-linear behavior
a[k]

b[k]

b[k] = f(a[k])

Rp problem depen-
dent

Table 1. Kirchhoff network elements and their wave digital counterparts. From top to bottom: resistor, inductance, capacitance,
voltage source with internal resistance, non-linear element.

the two-port adaptor, general multi-port adaptors are re-
quired (Fränken et al., 2005; Sarti and Sanctis, 2006).

2.2.4. Summary of the one-dimensional wave digi-
tal approach. The basic elements of the wave digi-
tal approach have been presented using a most simple
example. For an in-depth coverage of the fundamental
theory and implementation of wave digital filters, see,
e.g., (Fettweis, 1986). The most prominent features are
now briefly summarized:

• The wave digital approach is a method for the di-
scretization of continuous-variable systems given by
a physical description of their internal structure, e.g.,
an electrical network.

• It preserves not only the stability of the input-output
system, but also the internal physical structure and its
properties.

• If the continuous-variable system is passive, then
also the corresponding discrete wave digital filter
structure has the same property. This is also true in

the presence of certain finite wordlength effects of a
computer implementation.

Due to these properties, the wave digital approach is a
powerful candidate for the modeling of continuous-time
systems beyond lumped-parameter networks. Applica-
tions to distributed parameter systems were discussed,
e.g., in (Fettweis and Nitsche, 1991; Fettweis, 1992; Ra-
benstein and Trautmann, 2003)

The theory of the wave digital principle is well fo-
unded on the theory of analog electrical networks, signals
and systems, and digital signal processing. After many
refinements and extensions (even to the theory of relati-
vity (Fettweis, 2002)), it can be considered a rather ma-
ture field. Recently, also design methodologies and com-
puter programs for the automated generation of wave di-
gital structures were developed (Sanctis, Sarti and Tubaro,
2003; Sanctis, Sarti, Scarparo and Tubaro, 2005; Voll-
mer, 2005; Fränken et al., 2005; Sarti and Sanctis, 2006).
However, in its present form the wave digital principle is
an all-or-nothing strategy, since the above design methods
require to design the complete system from scratch. Al-
though the wave digital principle allows great flexibility
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within its framework, there are no provisions to consider
models or simulation methods from outside the wave di-
gital world. The next section presents an approach in this
direction.

3. Block-based physical modeling

3.1. Beyond the wave digital principle. The wave di-
gital principle as described above offers many advanta-
ges but it also puts severe restrictions on the designer. As
a block-based modeling approach, it permits only blocks
that have been designed according to this principle. There
is no freedom to include subsystems adhering to a diffe-
rent modeling paradigm or to reuse an existing simulation
code. It would be attractive to alleviate this restriction by
permitting also other discretization strategies according to
other modeling paradigms. Of course, the preservation of
passivity and stability is then no more guaranteed by the
wave digital principle. It has to be ensured for each block
individually.

To make an arbitrary model suitable for interconnec-
tion with wave variables, it has to be augmented with an
interface that converts its inputs and outputs to wave va-
riables and vice versa. Such an interface is called a K-W-
converter (Petrausch and Rabenstein, 2005b). Similar to
an adaptor which connects wave digital blocks with dif-
ferent port resistances, a K-W-converter connects an arbi-
trary model to an adaptor. Mixed modeling with digital
waveguides and finite difference structures was also di-
scussed in (Karjalainen and Erkut, 2004; Rabenstein et
al., 2007).

This extension of the wave digital principle is called
block-based physical modeling. Block-based means that
different subsystems are modeled as individual blocks.
Physical modeling means that the discrete-time and po-
ssibly discrete-space modeling blocks are derived from a
physical description in terms of ordinary or partial diffe-
rential equations. In this sense, the wave digital princi-
ple is a block-based physical modeling method, although
a very special one. In general, block-based physical mo-
deling permits also non-wave digital blocks or even only
non-wave digital blocks if they are connected via K-W-
converters and wave variables.

3.2. Wave ports. It remains to specify the idea of a
K-W-converter. Here it is shown how a very wide class
of models can be equipped with a wave port, i.e., a con-
nection to the wave digital world. No special modeling
paradigm is assumed. All discretizations which represent
a continuous lumped or distributed parameter system by a
discrete-time state space representation are permitted.

Consider a state space representation of a discrete-
time system with the vector of inputs v[k], the vector of
outputs y[k] and the state vector z[k]. The discrete time

index is k. We have

z[k + 1] = Az[k] + Bv[k], (18)

y[k] = Cz[k] + Dv[k]. (19)

Now define the vectors of incident and reflected waves
a[k] and b[k] with the matrix of port resistances R and
the identity matrix I:[

a[k]
b[k]

]
=

[
I R
I −R

][
y[k]
v[k]

]
. (20)

This definition can be solved for the quantities which sho-
uld leave the wave port, i.e., for the input v[k] of the state
space structure and for the reflected wave b[k] into the
wave digital world. The result defines a first version of
the K-W-converter called the K-W-converter I. We have[

v[k]
b[k]

]
=

[
−R−1 R−1

2I −I

][
y[k]
a[k]

]
. (21)

However, comparing (19) and the top equation from (21)
shows that the combination of the state space structure
and K-W-converter I creates a delay-free loop for D �= 0.
Therefore the K-W-converter I is suitable only for discrete
systems with D = 0 (see Fig. 8). Since it contains a di-
rect path between incident and reflected waves, it must be
connected to an adaptor with a reflection-free port.

To derive a version of the K-W-converter which is
suitable for D �= 0, the output equation of the state space
representation is inserted into the definition of the wave
variables,

a[k] = Cz[k] + (D + R)v[k], (22)

b[k] = Cz[k] + (D− R)v[k]. (23)

Choosing the port resistance R = D yields a reflec-
ted wave b[k] in (23) without any instantaneous feed-
back. As the state vector z[k] only depends on past values
(see (18)), a delayed reflected wave b[k] results. Thus the
set of equations

z[k + 1] = Az[k] + Bv[k], (24)

b[k] = Cz[k] (25)

constitutes a state space representation with a built-in W-
variable output for b[k], also called the wave port. Setting
R = D in (22) and (23), and solving for v[k] and b[k]
gives[

v[k]
b[k]

]
=

[
− 1

2D
−1 1

2D
−1

I 0

] [
Cz[k]
a[k]

]
, (26)

which constitutes the K-W-converter of type II (see
Fig. 9).
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A

B C

R−1

2

a[k]

b[k]
z[k] y[k]

v[k]

z−1

R

SSS with D = 0 K-W-converter I

Fig. 8. State space structure (SSS) without direct feedback
(D = 0) and a K-W-converter of type I with an arbitrary
port resistance R. The instantaneous feedback from the
incident to the reflected wave is accentuated by the da-
shed line.

A

B C

D
1
2
D−1

y[k]

v[k]

z[k]

a[k]

b[k]
b[k]

z−1

SSS with D �= 0 K-W-converter II

D

Fig. 9. Connection of a general linear K-variable model in the
state space structure to W-variables.

The introduction of the K-W-converters of types I
and II is the key to the connection of models in a state
space structure to wave variables. Using the wave digi-
tal interconnection strategy, an arbitrary number of such
models may be connected with each other, with wave di-
gital equivalents of network elements, and with other mo-
dels using wave ports. Also existing models can be reused
when an appropriate K-W-converter is attached. Compa-
red with the wave digital principle introduced before, the
range of possible blocks for model building is greatly en-
hanced. An example is presented in the next section.

4. Example

The construction of complex systems with different kinds
of models is now discussed in greater detail. To this
end, the block-based physical modeling approach presen-
ted above is applied to a problem from the area of musical
instrument modeling.

4.1. Musical instrument modeling. The modeling
and simulation of musical instruments for digital sound
synthesis plays an increasing role in computer music and
multimedia applications. This field is chosen as an exam-
ple because it comprises a number of tough problems
which are also encountered in other areas of simulation
and modeling:

• Musical instruments are composed of different sub-
systems which are described by linear and non-linear
ordinary and partial differential equations with time-
varying parameters.

• Digital sound synthesis requires real-time computa-
tion of the above models under consumer oriented
hardware and cost constraints.

• A digital musical instrument is a typical human-in-
the-loop system which requires low latency. Typical
values are some ten milliseconds from sensor input
(e.g., a keyboard) to sound output.

4.2. Model of a brass instrument. The ability to mo-
del complex structures is now highlighted by a model of
a brass instrument. Figure 10 shows the profile of a brass
instrument with its four essential parts. The player’s lips
are the excitation mechanism and require a non-linear mo-
del. The mouthpiece is a resonator with a bandpass cha-
racteristic. The cylindrical air-column acts as an acoustic
waveguide, and the horn matches the acoustic impedance
to the free field. Both the air-column and the horn are
distributed parameter systems and require partial differen-
tial equations as mathematical models. However, for an
efficient realization, the differences in mathematical com-
plexity between the air-column model and the horn mo-
del should be exploited. These models are discussed be-
low based on (Krach et al., 2004; Petrausch and Raben-
stein, 2005a).

4.2.1. Lip model. When playing a brass instrument,
the player interacts with the instrument by using his lips,
which are pressed against the mouthpiece. Thereby the
lips behave as an oscillator that excites the air column in-
side the instrument. The lip oscillation is supported with
energy provided by the player himself and reflections co-
ming back from the instrument. The lip model is chosen
to provide the behavior of lips towards a brass instrument
in general and neglects details.

Physical models of the player’s lips are usually for-
mulated as pressure controlled valves, see, e.g., (Fletcher,
1993; Vergez and Rodet, 1997). Here a basic upward stri-
king model is used as shown in Fig. 11. A mathematical
description of the model is given by the following ODE:

m0ẍl(t) + r0ẋl(t) + k0xl(t) = γ(Ps − pl(t)), (27)

where xl is the opening of the lip, m0 denotes the mass
of the lip, r0 is a damping constant and k0 stands for the
spring constant. Here γ is a constant related to the geo-
metric details of the lip model, Ps indicates the blowing
pressure inside the mouth and pl is the pressure inside
the mouthpiece. The volume flow ul entering the mouth-
piece is set to zero except when the condition (xl(t) >
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Lip Mouthpiece Air-Column Horn

Fig. 10. Profile of a brass instrument. Details of the shape vary with the instrument. The model consists of four essential parts: the
player’s lips, the mouthpiece, the cylindrical air-column, and the horn.

0)∧ (Ps − pl(t) > 0) is fulfiled. Then it is computed with

u(t) = l

√
2
�0

xl(t)
√

Ps − pl(t) . (28)

The parameter l is a constant describing the width of the
lip and �0 is the static density of air.

m0

r0 k0

ul

pl

0

xl

Ps

Fig. 11. Physical model for the lips of a brass player.

4.2.2. Mouthpiece model. The mouthpiece is the con-
nection between the lips of the player and the air column.
There are brass mouthpieces in various shapes and sizes.
The details vary with the style of the instrument and the
player’s preferences, but all mouthpieces have the com-
mon general design shown in Fig. 12. The player presses
the lips against the surface of the mouthpiece cup, which
has a characteristic volume Vb. A narrower passage of the
diameter Sc and the length of lc connects the cup to the
main bore of the instrument.

A simple physical model of a mouthpiece can be fo-
und in (Fletcher and Rossing, 1998). The analogous aco-
ustic network depicted in Fig. 13 is used to describe the
basic physical behavior of a brass mouthpiece. The cup is

Vb

Sc, lc

Fig. 12. Profile of a brass instrument mouthpiece.

RL

C

u1 u2

p1 p2

Fig. 13. Analogous acoustic network for a brass mouthpiece.

modeled as an acoustic compliance C and the passage of
constriction as an acoustic inertance L. Lossy effects in
the mouthpiece are included in the model with a dissipa-
tive element R. The impedance quantities denote the ratio
of the pressure to the volume flow. The values L and C of
the physical model can be computed from the mouthpiece
geometry as

C =
Vb

�0c2
, L =

�0lc
Sc

, (29)

where c is the speed of sound. Pressure p1 and u1 on the
left-hand side correspond to pl and ul from the lip model.

The network from Fig. 13 is realized here as a clas-
sical wave digital filter as shown in Fig. 16. It uses
the wave digital filter equivalents of the Kirchhoff net-
work elements according to Table 1 along with three-port
serial and parallel adaptors (see, e.g., (Fettweis, 1986)
for details).

4.2.3. Air-column. The model for the cylindrical air-
column is the acoustic wave equation in one spatial di-
mension. Its solution can be formulated in terms of for-
ward and backward travelling waves (d’Alembert solu-
tion). A very simple and efficient realization of this model
is a dual delay line or a digital wave guide (Smith, 1998).
The delay lines consist of M delay elements for the sam-
pling instant T . Their number M is given by the length la
of the air column as M = la/(cT ). For non-integer de-
lays, the so-called fractional delay elements are required.
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4.2.4. Horn. The standard model for sound propaga-
tion in horns and flares is Webster’s well-known horn equ-
ation, here formulated in terms of the particle velocity po-
tential Φ(x, t),

Φ′′(x, t) +
A′(x)
A(x)

Φ′(x, t) =
1
c2

Φ̈(x, t) . (30)

Primes serve as a shorthand notation for spatial derivation
while dots denote time derivatives. The particle velocity
potential is related to the pressure ph(x, t) and the particle
velocity vh(x, t) in the horn as given by (33).

Here, the shape of the brass instrument’s horn is as-
sumed to be close to a Bessel horn. The radius function r
of such a horn is given by

r(x) = rhx−ε,
A′(x)
A(x)

= −2ε

x
, (31)

where ε is the flare parameter of the horn and rh is a sca-
ling factor. Then the model for the Bessel horn is

Φ′′(x, t) − 2ε

x
Φ′(x, t) − 1

c2
Φ̈(x, t) = 0 (32)

or, in terms of the port variables Φ′(x, t) and Φ̇(x, t),

y(x, t) =

(
Φ′(x, t)
Φ̇(x, t)

)
=

(
vh(x, t)

− 1
ρ0

ph(x, t)

)
(33)

as [
Ah + I

∂

∂x
− Ch

∂

∂t

]
y(x, t) = 0 (34)

with the identity matrix I and

Ah =

(
− 2ε

x 0
0 0

)
, Ch =

(
0 c−2

1 0

)
.

(35)
A numerical method for models as in (34) is obta-

ined by the functional transformation method. The pro-
cedure is based on an expansion of the operator Ah +
I∂/∂x in (34) into its eigenfunctions and is described
in (Trautmann and Rabenstein, 2003; Krach et al., 2004).
It results in an algorithmic structure according to Fig. 14
with the sampled physical quantities Φ′[k] and Φ̇[k] as in-
put and output. The input weighting constants bμ, out-
put weighting constants cμ and eigenvalues βμ result from
(Krach et al., 2004; Petrausch and Rabenstein, 2004).

The physical port variables from Fig. 14 cannot be
directly connected to the digital waveguide model for the
air column. Therefore, the algorithmic structure is repre-
sented as a state space model according to Figs. 8 and 9.
Here the matrix A turns out to be diagonal due to the pa-
rallel structure in Fig. 14.

Connecting the physical variables to a K-W-
converter II as shown in Fig. 9 results in a horn imple-
mentation with a wave port as shown in Fig. 15. The co-
efficients in Figs. 14 and 15 are related by b̂μ = e−βµT bμ

and D =
∑N

μ=1 bμcμ. In this form, the algorithmic model
is suitable for connection to wave variables.

Φ′[k]

Φ̇[k]

z−1

z−1

e−β1T

e−βN T

c1

cN

b1

bN

Fig. 14. Structure of the horn implementation with the physical
variables Φ′[k] and Φ̇[k] as input and output.

Φ′[k]
a[k]

b[k]

z−1

z−1

e−β1T

e−βNT

c1

cN

b̂1

b̂N

D−11
2

Fig. 15. Structure of the horn implementation with the wave va-
riables a[k] and b[k] for input and output.

4.2.5. Block-based model. A block-based physical
model is shown in Fig. 16. It is built from the algorithmic
models discussed in Sections 4.2.1 to 4.2.4. The leftmost
and the rightmost sections (lips and horn) are represen-
ted by K-variables, i.e., by potential and flow variables.
The non-linear lip model according to (27) is formulated
in terms of the pressure pl in the mouthpiece and the flow
ul entering into the mouthpiece. The horn model is re-
presented by the pressure ph and the particle velocity v
according to (33).

The two sections in the center (mouthpiece and air-
column) are formulated in terms of wave variables (W-
variables). The linear lumped parameter model of the mo-
uthpiece is realized by a standard wave digital filter struc-
ture shown in Fig. 16. The air-column is a distributed
parameter system without loss and dispersion, and it is
realized as a dual delay line, resembling the d’Alembert
solution of the acoustic wave equation. The connection
of both sections is easily accomplished by connecting the
respective incident and reflected wave variables.

The connection of the lip model to the mouthpiece
on the one hand and the connection of the air-column to
the horn on the other hand require the transition between
K-variables to W-variables and vice versa. The latter con-
nection between the air-column and the horn is accompli-
shed by attaching a wave port to the distributed parameter
model of the horn as shown in Fig. 15. The connection
between lip and mouthpiece models is based on a formu-
lation of the non-linear model (27) in wave variables. De-
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z−M

z−M

Fig. 16. Block-based model of a brass instrument. All blocks are compatible to the wave digital interaction topology. The horn is
terminated by a simple resistor to simulate losses due to the sound radiation.

tails are not shown in Fig. 15 for simplicity but can be
found in (Petrausch and Rabenstein, 2005a). The horn is
terminated by a resistor to model the loss due to sound
radiation. This resistor is considered as a boundary condi-
tion for (34) and determines the eigenfunctions βμ.

5. Conclusion

The distinction between input-output models and physical
models is important for the construction of software libra-
ries for modeling blocks. The connection of inputs and
outputs does not change the values of the corresponding
signals and thus does not require special consideration.
The connection of physical models affects all port values
and thus requires the consideration of the Kirchhoff laws
for potential and flow variables. Another point to be re-
garded is the computability of a discrete-time model, i.e.,
avoiding delay-free loops. Both topics, the consideration
of the Kirchhoff laws and avoiding delay-free loops, lead
to a formulation of physical problems with wave variables.
They form the basis of a general interconnection strategy
for modeling blocks which encompasses models based on
both Kirchhoff and wave variables.

A rather special example was considered as an appli-
cation scenario, namely, a block-based model of a brass
instrument. It was chosen because it combines linear and
non-linear lumped parameter models along with linear di-
stributed parameter models with different geometries. The
presented block-based modeling method were applied to
room acoustic simulation for the composition of complex
geometries from basic building blocks.
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