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OPTIMAL INTERNAL DISSIPATION OF A DAMPED WAVE EQUATION
USING A TOPOLOGICAL APPROACH
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We consider a linear damped wave equation defined on a two-dimensional domain Ω, with a dissipative term localized in a
subset ω. We address the shape design problem which consists in optimizing the shape of ω in order to minimize the energy
of the system at a given time T . By introducing an adjoint problem, we first obtain explicitly the (shape) derivative of the
energy at time T with respect to the variation in ω. Expressed as a boundary integral on ∂ω, this derivative is then used
as an advection velocity in a Hamilton-Jacobi equation for shape changes. We use the level-set methodology on a fixed
working Eulerian mesh as well as the notion of the topological derivative. We also consider optimization with respect to
the value of the damping parameter. The numerical approximation is presented in detail and several numerical experiments
are performed which relate the over-damping phenomenon to the well-posedness of the problem.
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1. Introduction and problem statement

Let T > 0 and Ω be a bounded domain of class C2(R2).
We consider the standard damped wave equation on the
cylinder,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y′′ω,a − Δyω,a + a(x)y′ω,a = 0 in Ω × (0, T ),

yω,a = 0 on ∂Ω × (0, T ),

yω,a(x, 0) = y0(x), y′ω,a(x, 0) = y1(x) in Ω,
(1)

where the prime denotes partial differentiation with re-
spect to time. We assume that the damping potential
a ∈ L∞(Ω,R+) has the form

a(x) = aXω(x), ∀x ∈ Ω (2)

for any a ∈ R
+. Xω stands for the characteristic func-

tion of any domain ω strictly included in Ω. Moreover,
we assume that (y0, y1) ∈ (H2(Ω) ∩ H1

0 (Ω)) × H1
0 (Ω)

are independent of ω and a. The system (1) is well-posed
(Lions and Magenes, 1968) and the unique solution satis-
fies

yω,a ∈C((0, T );H2(Ω) ∩H1
0 (Ω)) ∩ C1((0, T );H1

0 (Ω))

∩C2((0, T );L2(Ω)).
(3)

For all t > 0 the energy of the system (1),

E(ω, a, t) =
1
2

∫

Ω

(|y′ω,a(x, t)|2 + |∇yω,a(x, t)|2) dx,

(4)
satisfies the following dissipation law:

E′(ω, a, t) = −
∫

Ω

a(x)|y′ω,a(x, t)|2 dx ≤ 0, (5)

so that the linear wave equation (1) models the dissipation
of a membrane by an internal actuator. Here yω,a(x, t)
denotes the transversal displacement at point x and time
t, while y0 and y1 denote the initial position and velocity,
respectively.

In this work, we consider the numerical solution of
the following nonlinear problems:

(Pω) : inf
ω∈Ω

E(ω, a, T ),

(Pa) : inf
a∈L∞(Ω,R+)

E(ω, a, T ).
(6)

Problem (Pω), cf. Fig.1, is the so-called shape design
problem and consists in optimizing the dissipation of the
system with respect to ω at time T . It is a typical ill-posed
problem in the sense that the infimum may not be reached
in the class of the characteristic function; the optimal do-
main ω is then composed of an arbitrarily large number
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of disjoint components. In (Münch et al., 2006) (ex-
tended to the elasticity operator in (Münch et al., 2009)),
a full well-posed relaxation of (Pω) is given, using a
non-convex variational analysis (we also refer to (Fahroo
and Ito, 1997) for an analysis in the 1-D case). The
analysis performed in (Münch et al., 2006) highlights
the effect of the over-damping phenomenon characteris-
tic to this damped wave equation (Freitas, 1999; López-
Gómez, 1997), for which the dissipation vanishes for large
values of the constant a. Precisely, (Pω) looses its well-
posedness as soon as this constant is large enough (with
respect to the problem data). This observation motivates
the numerical solution of Problem (Pa), not studied so
far in the general case (for the 1-D case, we refer to
(Freitas, 1999)).

We highlight that in this work we do not make any
geometrical assumption on ω. This is in contrast to (Her-
brard and Henrot, 2003; 2005), where the exponential de-
cay rate of the energy was maximized with respect to ω,
assuming the optic geometrical condition, well-known in
control theory (Bardos et al., 1992).

damping

a(x) = 0

a(x) > 0

y′′ − Δy + a(x)y′ = 0

ω?

Ω fixed

Fig. 1. Illustration of (Pω): Optimization of the location and
shape of ω, the support of the damping function a, in
order to minimize the energy E at time T .

This paper provides a numerical solution to the non-
linear problems (6) in order to complete the previous the-
oretical work (Münch et al., 2006). Given some additional
geometrical conditions on ω, observe that Problem (Pω)
is well posed (Henrot and Pierre, 2005). In order to use
a gradient descent algorithm, a key point is to determine
the derivative of E with respect to ω and a. This is done
using the domain derivative method (Delfour and Zole-
sio, 2001): the derivative with respect to ω is expressed as
a curvilinear integral over Γ = ∂ω × (0, T ) and is a func-
tion of yω,a and pω,a, the solution of an adjoint problem,
and the jump of a across ∂ω. The derivative with respect
to a, expressed in ω × (0, T ), is also a function of pω,a.
Then the optimal shape design problem (Pω) is addressed
with a level set approach, following recent works (Allaire
et al., 2004; Wang et al., 2003); see also (Burger and Os-
her, 2005) for a survey regarding this question. From a

numerical viewpoint, we discuss the approximation of the
wave equation in such a way that the spurious high fre-
quencies get damped out uniformly with respect to the dis-
cretization parameters. In order to ensure the convergence
of the derivative of the energy derivative (which is neces-
sary for the convergence of the discrete optimal design),
we use a modified scheme with viscosity terms introduced
and analyzed in (Münch and Pazoto, 2007).

The paper is organized as follows: The next section
is devoted to the computation of the (shape) derivative of
E with respect to the variation of ω and also with respect
to the damping function. Section 3 aims at recalling some
aspects of level set methods and presents the minimization
algorithm. Section 4 is devoted to the numerical approx-
imation of the problem using a modified finite difference
scheme. Section 5 presents several numerical simulations
for Problems (Pω), (Pa) and also for Problem (Pω,a),
which consists of minimizing the energy which respect to
ω and a simultaneously. We conclude with some remarks
in Section 6.

2. Existence results and the derivative of E

2.1. Overview of existence results for (Pω) and (Pa).
The aim of this part is to recall some assumptions which
ensure the existence of at least one solution to Problems
(Pω) and (Pa). Let us first make the following important
remarks.

Remark 1. We underline that no condition is imposed
on ∂ω. This will allow us to use the level set approach,
which consists in decoupling the description of the mov-
ing boundary ∂ω from that of the mesh of Ω. It is also
important to notice that, in the case where a ∈ L∞(Ω),
the unique solution y of (1) is such that ∇y is contin-
uous on and through ∂ω. Precisely, we recall that, if
Ω = (Ω\ω) ∪ ω ∪ ∂ω, then

H1(Ω) = {v ∈ L2(Ω), v|ω ∈ H1(ω),

v|(Ω\ω) ∈ H1(Ω\ω), [[v]] = 0 on ∂ω}, (7)

where [[v]] denotes the jump in v through ∂ω. Then the
interpretation of the following variational formulation as-
sociated with (1), for all ϕ ∈ D(Ω) and for all t > 0,

〈y′′ω,a, ϕ〉(H−1(Ω),H1
0 (Ω))

+
∫

Ω

∇yω,a · ∇ϕdx+
∫

ω

ay′ω,aϕdx = 0 (8)

implies, using the density of D(Ω) in H1
0 (Ω), that∫

∂ω
[[∇yω,a · ν]]ϕdσ = 0 for all ϕ ∈ H1/2(∂ω) and

finally [[∇yω,a · ν]] = 0. Then [[yω,a]] = 0 implies
[[∇yω,a · τ ]] = 0.

Remark 2. The energy E at time T (in the sequel it
is called the cost function) is not monotonous with re-
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spect to the area of ω. Moreover, without any restric-
tion on the area of ω, one may conjecture that the triv-
ial solution is ω = Ω. Similarly, one may conjecture
that the inclusion ω1 ⊂ ω2 ⊂ Ω implies the inequality
E(ω2, a, T ) ≤ E(ω1, a, T ), ∀T > 0. These two points,
which seem open from the theoretical viewpoint, are nu-
merically observed. Consequently, in the sequel we use
the following subset:

VL = {ω ⊂ Ω, |ω| = L|Ω|}, L ∈ (0, 1), (9)

where |ω| denotes the measure of ω, and replace (Pω)
by Problem (Pω,L) : infω∈VL E(ω, a, T ) for L fixed in
(0, 1).

It is well known that the static version of (Pω) (and,
a fortiori, (Pω)) is not well posed on the set of admissi-
ble shapes VL and usually has no solution (Delfour and
Zolesio, 2001; Münch et al., 2006). In order to guarantee
the existence of solutions, some geometrical constraints
are required (Henrot and Pierre, 2005). We mention, e.g.,
the perimeter constraint leading to a well-posed problem.
Since the domainω is assumed time independent, it is easy
to adapt the results of the static case. Using the indepen-
dence of the initial condition (y0, y1) with respect to ω
and the decay of the energy, we obtain the following re-
sult (we refer to (Maestre et al., 2007) for a study of the
time-dependent case).

Proposition 1. Let L ∈ (0, 1). We assume that ω is
of class C1,1(Ω) (uniformly Lipschitz continuous on Ω).
Then there exists at least oneω ⊂ VL minimizing the func-
tional ω → E(ω, a, T ).

Since this work is devoted to numerical simulations,
we do not reproduce the proof here and refer to (Münch
et al., 2006) for a mathematical analysis. We also state
without proof the following simpler result obtained using
the independence of the initial condition with respect to
the damping function a.

Proposition 2. Let L ∈ (0, 1). Let ω be fixed in VL
and a(x) = aXω(x). Then there exists at least one scalar
a ∈ R

+
� minimizing the functional a→ E(ω, a, T ).

2.2. Shape derivative of the cost with respect to ω.
From now, we simply write y for yω,a. A standard pro-
cedure for this constrained problem (Pω,L) is to relax the
condition ω ∈ VL via a penalization parameter ε leading
to the new problem:

(P εω,L) : inf
ω⊂Ω

Eε(ω, a, T ), (10)

where

Eε(ω, a, T ) = E(ω, a, T ) +
1
2
ε−1(|ω| − L |Ω|)2. (11)

In order to solve (P εω,L) using a gradient descent pro-
cedure, we now compute explicitly an expression of the

derivative of the functional Eε with respect to ω. The
domain Ω is fixed and it is worth noticing that the initial
condition (y0, y1) is independent of ω. Let η ∈ R

+. From
now on, we assume that ω is in C1,1(Ω) and introduce a
vector field θ ∈ W 1,∞(Ω,R2), with θ|∂Ω = 0 and θ not
vanishing in a neighborhood of ∂ω.

Definition 1. The derivative of the functional Eε with re-
spect to a variation of ω ⊂ Ω in the direction θ is defined
as the Fréchet derivative in W 1,∞(Ω,R2) at 0 of the map-
ping θ → Eε((Id+ ηθ)(ω)), i.e.,

Eε((Id + ηθ)(ω), a, T )
= Eε(ω, a, T )

+ η
∂Eε(ω, a, T )

∂ω
· θ + o(||θ||W 1,∞(Ω,R2)).

(12)
We refer the reader to (Delfour and Zolesio, 2001;

Henrot and Pierre, 2005) for more details. Moreover, the
derivative is a continuous linear form on W 1,∞(Ω,R2)
and depends only of the field θ in an arbitrary small neigh-
borhood of ∂ω.

Theorem 1. The derivative of Eε is given by the follow-
ing expression:

∂Eε(ω, a, T )
∂ω

· θ

=
∫

∂ω

[

ε−1(|ω| − L|Ω|)

+ a

∫ T

0

y′(x, t)p(x, t) dt
]

θ · ν dσ, (13)

where ν denotes the outward normal and p the solution
of the following adjoint problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p′′ − Δp− a(x)p′ = 0 in Ω × (0, T ),

p = 0 on (∂Ω\∂ω) × (0, T ),

p(x, T ) = −y′(x, T ) in Ω,

p′(x, T ) = −a(x)y′(x, T )− Δy(x, T ) in Ω.
(14)

Remark 3. If the function a takes the value a1 on ω and
a2 on Ω\ω, the derivative takes the form

∂Eε(ω, a, T )
∂ω

· θ

=
∫

∂ω

[

ε−1(|ω| − L|Ω|)

+
∫ T

0

[[a]] y′(x, t)p(x, t) dt
]

θ · ν dσ, (15)

where the jump [[a]] of a across ∂ω is defined as [[a]] =
a1 − a2. In particular, if the jump is equal to zero and if
ω ⊂ VL, then the derivative with respect to ω is zero.
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Remark 4. From (3), (p(T ), p′(T )) ∈ (H1
0 (Ω), L2(Ω)).

Therefore, the system (14) is well posed and there exists a
unique solution p such that

p ∈ C((0, T );H1
0 (Ω)) ∩ C1((0, T );L2(Ω)). (16)

Consequently, ay′p ∈ C((0, T );W 1,1(Ω)) and the
derivative (1) is well defined as a function on ∂ω.

Proof. In order to simplify the notation and to avoid dual-
ity products, we present a formal proof assuming that the
solutions y and p are sufficiently regular to justify the in-
tegration by parts (we refer to (Cagnol and Zolésio, 1999)
for rigorous developments). With the system (1) we as-
sociate a variational formulation keeping in mind that
the domains Ω and ω are independent of time. For all
ϕ ∈ C((0, T );H1

0 (Ω)), we then consider the formulation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

∫

Ω

(

y′′ϕ+ ∇y · ∇ϕ
)

dxdt

+
∫ T

0

∫

ω

ay′ϕdxdt = 0,
∫

Ω

(y(·, 0) − y0)ϕ(·, 0) dx = 0,
∫

Ω

(y′(·, 0) − y1)ϕ(·, 0) dx = 0,

(17)

and apply the derivation method in order to obtain the for-
mulation associated with the first Lagrangian derivative
Y . We obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

∫

Ω

(Y ′′ϕ+ ∇Y · ∇ϕ) dxdt+
∫ T

0

∫

ω

aY ′ϕdxdt

+
∫ T

0

∫

Ω

(A(θ) · ∇y · ∇ϕ+ y′′divθϕ) dxdt

+
∫ T

0

∫

ω

ay′divθϕdxdt = 0,
∫

Ω

(Y (·, 0) −∇y0 · θ)ϕ(·, 0) dx = 0,
∫

Ω

(Y ′(·, 0) −∇y1 · θ)ϕ(·, 0) dx = 0.

(18)
The operator A : W 1,∞(Ω,R2) → L∞(Ω,R2) is

defined as A(θ) = divθId − (∇θ + ∇θ�), where ∇θ�

signifies the transpose of ∇θ. Using similar arguments,
the derivative of the energy is

∂E(ω, a, T )
∂ω

· θ

=
1
2

∫

Ω

(

(|y′(T )|2 + |∇y(T )|2)divθ

− (∇θ + (∇θ)�) · ∇y(T ) · ∇y(T )
)

dx

+
∫

Ω

(

y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )
)

dx.

(19)

Let us rewrite this derivative in terms of y and p. A
first computation leads to

∫

Ω

[y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )] dx

=
∫ T

0

∫

Ω

(p′′Y − Y ′′p) dxdt

+
∫

Ω

(p′(0)Y (0) − p(0)Y ′(0)) dx

+
∫

ω

ay′(T )Y (T ) dx.

(20)

Using the formulation (1) and (14), we obtain

∫ T

0

∫

Ω

(p′′Y − Y ′′p) dxdt

=
∫

ω

a(p(T )Y (T ) − p(0)Y (0)) dx

+
∫ T

0

∫

Ω

(A(θ) · ∇y · ∇p+ y′′p divθ) dxdt

+
∫ T

0

∫

ω

ay′p divθ dxdt.

(21)

The relation p(T ) = −y′(T ) then implies

∂E(ω, a, T )
∂ω

· θ

=
1
2

∫

Ω

(

(|y′(T )|2 + |∇y(T )|2)divθ

− (∇θ + (∇θ)�) · ∇y(T ) · ∇y(T )
)

dx

+
∫ T

0

∫

Ω

(A(θ) · ∇y · ∇p+ y′′p divθ) dxdt

+
∫ T

0

∫

ω

ay′p divθ dxdt

−
∫

ω

ap(0)Y (0) dx+
∫

Ω

(p′(0)Y (0) − p(0)Y ′(0)) dx.

(22)

Then, from A(θ) · ∇y · ∇p = (θ1,1 − θ2,2)(y,2p,2 −
y,1p,1) − (θ1,2 + θ2,1)(y,1p,2 + y,2p,1) and θ|∂Ω = 0,
we obtain
∫ T

0

∫

Ω

(A(θ) · ∇y · ∇p+ y′′p divθ) dxdt

=
∫ T

0

∫

Ω

(∇p · θ(Δy − y′′)

+ ∇y · θΔp−∇y′′ · θp) dxdt

=
∫ T

0

∫

ω

∇p · θ ay′ dxdt+
∫ T

0

∫

Ω

(∇y · θΔp

−∇y′′ · θp) dxdt.

(23)



Optimal internal dissipation of a damped wave equation using a topological approach 19

Additional integrations by part, using the fact that θ is
time-independent, lead to the following expression:

∂E(ω, a, T )
∂ω

· θ

=
1
2

∫

Ω

(

(|y′(T )|2 + |∇y(T )|2)divθ

− (∇θ + (∇θ)�) · ∇y(T ) · ∇y(T )
)

dx

+
∫ T

0

∫

ω

div(ay′p θ) dω dt

+
∫

Ω

(∇y′(T ) · θy′(T ) −∇y(T ).θΔy(T )) dx.

(24)

Then, from

div(|y′(T )|2θ) = |y′(T )|2divθ + 2y′(T )∇y′(T ) · θ
and the relation
∫

Ω

∇(|∇y(T )|2) · θ

= −
∫

Ω

(∇θ + ∇θ�) · ∇y(T ) · ∇y(T )

− 2
∫

Ω

∇y(T ) · θΔy(T ),

(25)

we finally obtain

∂E(ω, a, T )
∂ω

· θ

=
1
2

∫

Ω

div((|y′(T )|2 + |∇y(T )|2)θ) dx

+
∫ T

0

∫

ω

div(ay′pθ) dxdt

=
∫ T

0

∫

∂ω

ay′p θ · νdσ dt

(26)

using θ|∂Ω = 0 in the first integral. Finally, from

∂

∂ω
(|ω| − L |Ω|) · θ =

∫

∂ω

θ · ν dσ. (27)

we obtain the relation (1). �

2.3. Derivative of the cost with respect to the coeffi-
cient a. We now assume that the domain ω is fixed in Ω
and optimize E with respect to the value of the damping
coefficient a. Since the cost is not monotonous with re-
spect to a, it is not necessary to introduce a penalization
argument here. Let us consider a perturbation of a:

aη(x) = a(x) + ηa1(x), x ∈ Ω, (28)

while assuming η small enough for aη to remain in
L∞(Ω,R+). We then assume that the variation of the
solution of the wave equation can be written as follows:
yη = y + ηY +O(η2).

Theorem 2. The derivative of E with respect to a is

∂E(ω, a, T )
∂a

· a1 =
∫ T

0

∫

ω

a1y′(x, t)p(x, t) dxdt, (29)

where p is the solution of (14).

Proof. The proof is simpler than in the previous case. We
obtain that Y and a1 solve

∫ T

0

∫

Ω

(

Y ′′ϕ+ ∇Y · ∇ϕ
)

dxdt

+
∫ T

0

∫

ω

(aY ′ + a1y′)ϕdxdt = 0

(30)

for all ϕ ∈ C((0, T );H1
0 (Ω)). Furthermore, since the

initial conditions are independent of a, we have Y (·, 0) =
0 and Y ′(·, 0) = 0 in Ω. The derivative of E with respect
to a is then

∂Eε(ω, a, T )
∂a

· a1

=
∂E(ω, a, T )

∂a
· a1

=
∫

Ω

(

y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )
)

dx.

(31)

We then adapt (20) to obtain

∫

Ω

[y′(T )Y ′(T ) + ∇y(T ) · ∇Y (T )] dx

=
∫ T

0

∫

Ω

(p′′Y − Y ′′p) dxddt+
∫

ω

ay′(T )Y (T ) dx.

(32)
Y being solution of (30), we obtain

∫ T

0

∫

Ω

(p′′Y − Y ′′p) dxdt

=
∫

ω

a(Y (T )p(T )− Y (0)p(0)) dx+
∫ T

0

∫

ω

a1y′p dxdt

= −
∫

ω

aY (T )y′(T ) dx+
∫ T

0

∫

ω

a1y′p dxdt

(33)
and finally the relation (29). �

2.4. Topological derivative. In a similar manner, we
may also compute the topological derivative associated
with E, the notion introduced in (Sokołowski and Żo-
chowski, 1999) and then used efficiently in the context
of shape optimization (see, e.g., (Allaire et al., 2005; Ful-
manski et al., 2008)).

Theorem 3. For any x0 ∈ Ω and ρ such thatD(x0, ρ) ≡
{x ∈ R

2, dist(x,x0) ≤ ρ} ⊂ Ω, the functional associ-
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ated with D(x0, ρ) may be expressed as

E(D(x0, ρ), a, T )
= E(∅, a, T )

+ πρ2

∫ T

0

ay′∅,0(x0, t)p∅,0(x0, t) dt+ o(ρ2)

(34)

only in terms of the conservative solutions y∅,0 and p∅,0.
The factor of ρ2 is called the topological derivative of E.

Proof. The computation is very similar to the com-
putation of the shape derivative (we refer the reader to
(Sokołowski and Żochowski, 1999) for general develop-
ments). In our simple situation, we may obtain a relation
similar to (34) by using the interplay between ω and a
(i.e., E(ω, 0, T ) = E(∅, a, T ) for all a and ω) and the
variation of E with respect to a. Precisely, taking a = 0
and ω = D(x0, ρ) ⊂ Ω in the equality

E(ω, a+ ηa1, T )
= E(ω, a, T )

+ ηa1

∫

ω

∫ T

0

y′ω,a(x, t)pω,a(x, t) dt dx+ o(η)

(35)

leads to

E(D(x0, ρ), ηa1, T )
= E(D(x0, ρ), 0, T )

+ ηa1

∫

D(x0,ρ)

∫ T

0

y′∅,0(x, t)p∅,0(x, t) dt dx+ o(η).

(36)

Then, from E(D(x0, ρ), 0, T ) = E(∅, ηa1, T ) (and
replacing ηa1 by a), we obtain the difference of the en-
ergies associated with the dissipative and conservative
cases, respectively, as a function of only the solutions of
the conservative case y∅,0 and p∅,0,

E(D(x0, ρ), a, T )
= E(∅, a, T )

+ a

∫

D(x0,ρ)

∫ T

0

y′∅,0(x, t)p∅,0(x, t) dt dx+ o(a).

(37)

We then easily get (34). Once again, this relation
highlights the balance between a and ω (or, equivalently,
ρ) and illustrates the over-damping phenomenon. We will
use these relation to obtain an efficient prediction of ω, for
a or ρ small enough (see Section 5). �

3. Minimization of the cost

Thanks to the previous computations, we are now in a
position to apply a gradient descent method to the mini-
mization of the objective function Eε with respect to the

position of ω and for E with respect to the value of the
function a, respectively.

3.1. Minimization of Eε with respect to ω—Level set
approach. From (1), the shape derivative is

∂Eε(ω, a, T )
∂ω

· θ =
∫

∂ω

jε(yω,a, pω,a, T )θ · ν dσ (38)

with

jε(yω,a, pω,a, T )

= ε−1(|ω| − L|Ω|) + a

∫ T

0

y′ω,a(x, t)pω,a(x, t) dt

defined on Ω. A descent direction is found by defining on
∂ω the vector field θ as follows:

θ = −jε(yω, pω, T )ν. (39)

We then update the shape ω as ωη = (Id + ηθ)(ω)
(we recall that ω is in C1,1(Ω)). The parameter η > 0
denotes a descent step small enough so that the formal
relation

Eε(ωη, a, T )
= Eε(ω, a, T )

− η

∫

∂ω

(jε(yω,a, pω,a, T ))2 dσ +O(η2)
(40)

guarantees a decrease in Eε. This method can be imple-
mented in the Lagrangian framework: it suffices to form
meshes in the domains ω, Ω\ω and then advect the mesh
according to the descent direction θ defined on ∂ω by
(39). This imposes meshing the moving interface ∂ω.
Morever, the re-meshing of the domain at each step may
produce a costly method. Finally, the change in the topol-
ogy of ∂ω is quite difficult to handle with this approach.
Therefore, following recent works in optimal shape design
(Allaire et al., 2004; Wang et al., 2003), we adopt an Eu-
lerian approach and use a level-set method to capture the
shape ω on a fixed mesh. Let us briefly recall the main
features of this method.

The level set approach introduced in (Osher and
Sethian, 1988) (see Osher and Fedkiw, 2002; 1996) for
a survey) consists in giving a description of the evolving
interface ∂ω independent of the discretizing mesh on Ω.
We define the level-set function ψ in Ω in such a way that

⎧
⎪⎨

⎪⎩

ψ(x) ≤ 0 x ∈ ω,

ψ(x) = 0 x ∈ ∂ω,

ψ(x) ≥ 0 x ∈ Ω\ω.
(41)

Therefore, the evolving interface ∂ω is characterized by

∂ω = {x(τ) ∈ Ω such that ψ(x(τ), τ) = 0}, (42)
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where τ denotes a pseudo-time variable, increasing with
time, which may be the real time, a load or in our case, the
iterations of a given algorithm. The differentiation of (42)
with respect to τ then leads to

∂ψ

∂τ
(x(τ), τ) + ∇ψ(x(τ), τ) · dx(τ)

dτ
= 0. (43)

Denoting by F the speed in the outward normal di-
rection, such that dx(τ)

dτ · ν = F (x(τ)), where ν =
∇ψ/|∇ψ|, we obtain the following nonlinear Hamilton-
Jacobi equation of the first order for ψ:

∂ψ

∂τ
(x, τ) + F (x, τ)|∇ψ(x, τ)| = 0, (44)

given ψ(x, τ = 0).

Assuming that the shape ∂ω evolves in pseudo-time τ
with the normal velocity F = −jε(yω,a, pω,a, T )ν as
proposed in (39), the transport of the level set function ψ
is therefore equivalent to moving the boundary of ω (the
zero level-set of ψ) along the descent gradient direction
−∂Eε/∂ω. Consequently, the partial differential system
which has to be solved is given by

⎧
⎪⎪⎨

⎪⎪⎩

∂ψ

∂τ
− jε(yω,a, pω,a, T )|∇ψ| = 0 in Ω × (0,∞),

ψ(·, τ = 0) = ψ0 in Ω,
ψ = ψ0 > 0 on ∂Ω × (0,∞).

(45)
We further impose that ψ should be constant and pos-

itive on Ω in order to ensure that ∂ω∩∂Ω = ∅. Finally, be-
cause of its advection, the level-set function may become
too flat or too steep yielding either large errors in the loca-
tion of its zero level or large errors in the evaluation of its
gradient by finite differences. Therefore, a standard trick
(see (Osher and Fedkiw, 1996)) consists in replacing the
level-set ψ at the pseudo time τ0 by the regularized one,
which solves the following problem:

⎧
⎨

⎩

∂ψ̃

∂τ
+ sign(ψ(τ0))(|∇ψ̃| − 1) = 0 in Ω × (0,∞),

ψ̃(·, τ = 0) = ψ(τ0) in Ω,
(46)

admitting as a stationary solution the signed distance to
the initial interface {ψ(x, τ0) = 0}.

3.2. Minimization of E with respect to a. Similarly,
we use the expression (29) to minimize the cost function
with respect to a. The quantity a being constant on ω, a
descent direction is obtained by defining a1 as follows:

a1 = −
∫ T

0

∫

ω

y′(x, t)p(x, t) dxdt. (47)

Then, we update a on ω as aη = a + ηa1 on ω, where
η > 0 signifies a descent step small enough so that

E(ω, aη, T )
= E(ω, a, T )

− η

(∫ T

0

∫

ω

y′(x, t)p(x, t) dxdt
)2

+O(η2)

(48)

guarantees a decrease in E.

Remark 5. If we assume that a may vary in ω, then the
descent direction is

a1(x) = −
∫ T

0

y′(x, t)p(x, t) dt (49)

leading to

∂E(ω, a, T )
∂a

· a1 = −
∫

ω

(∫ T

0

y′(x, t)p(x, t) dt
)2

dx.

(50)

4. Numerical approximation and
optimization algorithm

In this section we present some important numerical as-
pects. In particular, we focus on the importance of adding
some viscosity terms in the usual discrete approximation
of the wave systems (1) and (14), which are more sensi-
tive to numerical approximation than elliptic or parabolic
systems.

4.1. Solution of the wave equations (1) and (14)—
Introduction of viscosity terms. For simplicity, we
take Ω = (0, 1)2 and choose to approximate the wave sys-
tem with finite difference schemes. Let us consider J ∈
N, h = 1/(J + 1) and a uniform grid (x1,i, x2,j)(i,j) of Ω
such that 0 = xk,0 < xk,1 < · · · < xk,J < xk,J+1 = 1,
with xk,j = jh and k = 1, 2. Let us also considerN ∈ N,
Δt = T/N and a uniform grid of the time interval (0, T )
given by 0 = t0 < t1 < · · · < tN = T , with tn = nΔt.
Here h and Δt denote the space and time step, respec-
tively. Let us denote by yni,j the approximation of y at the
point (x1,i, x2,j) and time tn:

yni,j ≈ y(x1,i, x2,j , tn),

0 ≤ i, j ≤ J + 1, 0 ≤ n ≤ N. (51)

The simplest way (Cohen, 2002) to approximate the
wave equation is to approximate the derivative in time by
a centered finite difference as follows:

2Δt y′ = yn+1 − yn−1 +O(Δt3),

Δt2 y′′ = yn+1 − 2yn + yn−1 +O(Δt4),
(52)
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and to approximate the Laplacian by the five-point finite
difference

h2Δy(x1,i, x2,j) = yi+1,j + yi−1,j + yi,j+1

+ yi,j−1 − 4yi,j +O(h4)

≡ h2Δhyi,j +O(h4)

(53)

leading to a centered scheme of order two in space and
time, which is stable under the condition Δt ≤ h/

√
2 (we

refer to (Münch and Pazoto, 2007) for details). However,
as observed initially in (Banks et al., 1991) in the context
of stabilization and in (Glowinski et al., 1989) in the con-
text of exact controllability, this scheme is not uniformly
convergent with respect to the dissipation property.

The interaction of waves with a numerical mesh pro-
duces dispersion phenomena and spurious high frequen-
cies. Because of this nonphysical interaction of waves
with the discrete medium, the velocity of propagation of
numerical waves may converge to zero when the wave-
length of solutions is of the order of the size of the mesh.
Consequently, the time needed to uniformly damp the nu-
merical waves from a subset of Ω\ω in which they propa-
gate may tend to infinity as the mesh becomes finer. Thus,
the dissipation mechanism may disappear completely if
the initial conditions are represented by high frequency
components (see (Münch and Pazoto, 2007) for numeri-
cal illustrations). This is the case for discontinuous initial
data. Mathematically speaking, the convergence of the so-
lution in the energy norm is not ensured.

We replace the standard scheme by the scheme asso-
ciated with the following equation:

y′′ − Δy + a(x)y′ − h2Δy′ = 0 in Ω × (0, T ) (54)

including the so-called viscous term h2Δy′ negligible for
the low frequency components and of the order of the en-
ergy for the high frequency ones. The modified implicit
scheme is then
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

1 +
Δt
2

(ai,j − Δh)
)

yn+1
i,j

= (2 + r2Δh)yni,j

−
(

1 − Δt
2

(ai,j − Δh)
)

yn−1
i,j ,

1 ≤ i, j ≤ J, 1 ≤ n ≤ N,

yni,j = 0, i = {0, J + 1}
or j = {0, J + 1}, 1 ≤ n ≤ N,

y0
i,j = y0(x1,i, x2,j),

y1
i,j =

(

1 +
r2

2
Δh

)

y0
i,j + Δt y1(x1,i, x2,j),

1 ≤ i, j ≤ J,
(55)

where r = Δt/h. In (Münch and Pazoto, 2007), it is
shown that this scheme is a convergent approximation of

(1) under the condition Δt ≤ h/
√

2 and provides a uni-
form approximation of the energy as h and Δt tend to
zero. The same modification is needed for the adjoint
problem. This is because the initial conditions at time T
defined by p(T ) = −y′(T ) and p′(T ) = a(x)p(T ) −
Δy(T ) are a priori less regular than y0 and y1. Therefore,
we consider the discretization of the following equation:

p′′ − Δp− a(x)p′ + h2Δp′ = 0 in Ω × (0, T ) (56)

leading to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

1 +
Δt
2

(ai,j − Δh)
)

pn−1
i,j

= (2 + r2Δh)pni,j

−
(

1 − Δt
2

(ai,j − Δh)
)

pn+1
i,j ,

1 ≤ i, j ≤ J, 1 ≤ n ≤ N,

pni,j = 0, i = {0, J + 1}
or j = {0, J + 1}, 1 ≤ n ≤ N,

pNi,j = −y
N+1
i,j − yN−1

i,j

2Δt
,

pN−1
i,j = (1 − ai,jΔt)pNi,j +

Δt
h2

Δhy
N
i,j ,

1 ≤ i, j ≤ J.
(57)

4.2. Solution of the Hamilton-Jacobi equation. Let
us now consider the solution of the non-linear Hamilton-
Jacobi equation (45). We introduce a parameter Δτ > 0
and denote by ψki,j the approximation of the function
ψ at the point xi,j = (x1,i, x2,j) and at the pseudo-
time τ = kΔt. We note by jεi,j the approximation of
jε(yω,a(xi,j), pω,a(xi,j)) such that

jεi,j = ε−1(|ωh| − L|Ωh|)

+ ai,j

N∑

n=0

yn+1
i,j − yn−1

i,j

2
pni,j ,

(58)

where we let ai,j = a(xi,j) = aX(ψi,j≤0), |Ωh| = 1
and |ωh| = ‖X(ψh(xi,j)≤0)‖L1

h(Ω). The hyperbolic system
(45) is solved using an explicit weighted essentially non-
oscillatory scheme of order one in pseudo-time τ and of
order two in space (see (Osher and Fedkiw, 2002; 1996)
for a complete description):

ψk+1 − ψk

Δτ
+
(

max(−jε(yk, pk), 0)∇+
k

+ min(−jε(yk, pk), 0)∇−
k

)

= 0
(59)

for all k > 0, where (∇+
k ,∇−

k ) stands for forward and
upward approximations of |∇ψk|. This explicit scheme
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is stable under the condition Δτ ≤ h/maxΩ|jε(yk, pk)|.
Finally, in order for the pseudo-time step Δτ to decrease
with respect to the iteration k, we consider the following
pseudo-time step:

Δτk = min

(

1,maxΩ|jε(yk, pk)|
)

h

maxΩ|jε(yk, pk)|
≤ Δτk−1, ∀k > 0.

(60)

Remark 6. The upwind scheme (59) is motivated by
the propagation of information through characteristics in
the first-order hyperbolic equation (44). Very interestingly
with respect to the discussion of the previous section, this
scheme may be replaced by usual centered finite differ-
ences, provided that an artificial viscosity term is added
(see (Osher and Sethian, 1988)), namely, the approxima-
tion of ψτ +F |∇ψ| = hΔψ instead of (44). However, the
reason to introduce this term here is different.

4.3. Optimization algorithm. The algorithm to nu-
merically solve Problem (P εω,L) may be structured as fol-
lows:

1. Meshing once the entire fixed domain Ω. Initializa-
tion of the level-set ψ0 corresponding to an initial
guess ω0 (obtained, for instance, using (34) or (36)).

2. Iteration until convergence, for k ≥ 0:

• Computation on Ω of the state yk, the solu-
tion of the forward wave system (1) using the
scheme (55).

• Computation of the adjoint state pk, the solu-
tion of the backward wave system (14) using
the scheme (57).

• Computation on Ω of the integrand jε(yk, pk)
(see Theorem 1) using the approximation (58).

• Deformation of the shape by solving the trans-
port Hamilton-Jacobi system (45) using the
scheme (59). The new domain ωk+1 is charac-
terized by the level-set function ψk+1 being the
solution of (45) after a pseudo-time step Δτk

starting from the initial condition ψk with ve-
locity −jε(yk, pk). The pseudo-time step Δτk

is chosen according to (60). The value Δτk

monitored by the stability condition (60) is usu-
ally small enough to ensure a decrease in the
cost function.

3. From time to time, for stability reasons, we re-
initialize the level-set function ψ by solving (46) us-
ing a scheme analogous to (59) .

Since, for each iteration, the computation of the state
yk and the adjoint pk is much more expensive in CPU time

than the resolution of the Hamilton-Jacobi system, we per-
form several explicit pseudo-time steps of (45) after each
resolution of (1) and (14). During these explicit pseudo-
time steps, we perform regularly some re-initialization of
the level set function by solving (46).

Remark 7. One of the main advantages of the level-set
method is easy handling of topology changes, i.e., merg-
ing and cancellation of holes. Under the strict stability
condition (60), the algorithm cannot create holes. This is
a consequence of the maximum principle associated with
the solution of (45). Therefore, the only possible mech-
anism is that an initial hole splits into two new holes.
This phenomenon will appear in one example developed
in Section 5.

The algorithm used to solve Problem (Pa) has a sim-
ilar structure. The integrand is obtained by approximating
(47) or (49).

Finally, we will consider the optimization of the en-
ergy with respect to ω and a simultaneously, i.e.,

inf
ω∈VL, a∈L∞(Ω,R+)

Eε(ω, a, T ). (61)

An iteration of the gradient algorithm may be then written
as follows:
(
ωk+1

ak+1

)

=
(
ωk
ak

)

−
(
η1νk
η2

)

·
(
ε−1(|ωk| − L|Ω|) +

∫ T
0 aky

′
kpk dt

∫ T
0

∫

ωk
y′kpk dxdt

)

(62)
with η = (η1, η2) small enough.

5. Numerical experiments

We now present some numerical simulations. In all the
computations, the domain Ω is the unit square. A uniform
mesh is used with h = 1/150 and Δt = h/

√
2. We first

consider smooth initial conditions, and then some irregu-
lar ones in order to stress the necessity of the additional
viscosity term in the discretization of the wave system.

5.1. Regular initial conditions.

5.1.1. Minimization with respect to ω. We assume
that the function a is fixed. We first consider the follow-
ing regular initial condition function of the first frequency
component:

(y0(x), y1(x)) = (100 sin(πx1) sin(πx2), 0), (63)

x = (x1, x2) ∈ Ω. We take L = 1/10, ε = 10−5, T = 1
and a(x) = 10Xω(x). Before giving numerical results,
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let us apply the relation (36). Let α =
√

2π. The con-
servative solution associated with (y0, y1) is yω,0(x, t) =
cos(αt)y0(x) so that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pω,0(x, t), p′ω,0(x, t))

= (α sin(αT ), α2 cos(αT ))y0(x),

pω,0(x, t) = α

(

sin(αT ) cos(α(t − T ))

+ cos(αT ) sin(α(t − T ))
)

y0(x)

(64)

and

∫ T

0

y′(x, t)p(x, t) dt

= −α
4

(2αT − sin(2αT ))y0(x)2 < 0.

From the relation (36), we have

E(ω, a, T ) − E(ω, 0, T )

= −aα
4

(2αT − sin(2αT ))
∫

ω

(y0(x))2 dx+ o(a),

∀T ≥ 0. (65)

For a small enough and for all T > 0, the dissipa-
tion is then optimal for ω which maximizes the integral∫

ω
(y0(x))2 dx, i.e., centered on the unit square Ω. The

simulations confirm this prediction. Figure 2 illustrates
the evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} =
∂ωk with respect to the iteration k (equivalently, with re-
spect to the pseudo-time parameter τ > 0). Let us denote
by ω(c) the disc with radius

√
L/π and center (c, c). The

sequence of domains, ωk, is initialized by ω0 = ω(0.35)

so that |ω0| = L (the boundary ∂ω0 is marked with the
dash-dot line in Fig 2). Figure 3 depicts the cost function
and |ωk| with respect to k. As expected, the limit of the
sequence (ωk)k>0 is near a disc centered at (1/2, 1/2).
We check that we obtain exactly a disc when Ω is itself a
disc. We also observe that the value of ε = 10−5 is small
enough to maintain |ωk| close to L. This result is invariant
with respect to T and also with respect to the initialization
ω0.

Figures 4 and 5 display the evolution of ∂ωk when
ω0 is composed of 4 and 9 disjoints discs, respectively.
Figures 6 and 7 display the evolution of the corresponding
area and cost. The limit cost functions obtained with these
three initializations are very similar. Let us now consider
the initial condition y0(x) = 100 sin(2πx1) sin(πx2) for
which yω,0(x, t) = 100 cos(

√
5πt) sin(2πx1) sin(πx2).

The relation (65) still holds for α =
√

5π showing that,
for a small enough, the optimal position of ω is related to
the points (1/4, 1/2) and (3/4, 1/2) where the function
y2
0 admits two maxima. Once again, the numerical simula-

tions are in good agreement with this prediction. Figures 8

and 9 display the evolution of the sequence (ωk)k>0 when
ω0 is composed of one and one hundred disjoints parts,
respectively. For these examples, the invariance with re-
spect to ω0 illustrates (for small a) the uniqueness of the
minimum.

On the other hand, with more general initial condi-
tions (for instance, without symmetries in space), the limit
of the sequence (ωk)k>0 may depend on both ω0 and T ,
highlighting the presence of local minima. In this case,
we observe that an initialization ω0 composed of several
components provides a lower value of the cost (i.e., bet-
ter local minima). Figure 10 displays the limit of ∂ωk
for T = 1 and T = 2 and four configurations of ω0

when y0(x) = 300x1x2(x1 − 1)(x2 − 1) cos(5πx1(x2 −
1)) sin(2πx1x2) and y1 = 0. Table 10 gives the energy
E(ω, a, T ) associated with these limits. Remark that the
existence of several local minima does not necessarily im-
ply that Problem (Pω) is ill posed: since a finite num-
ber of frequency components is present in y0 and since
a is small, we may conjecture that the optimal design
is composed of a finite number of disjoint components.
For these data, Fig 11 depicts the topological derivative
x → ∫ T

0 y′∅,0(x, t)p∅,0(x, t) dt in Ω (see Eqn. (36)); the
corresponding characteristic function (at the bottom) of
size L illustrates how this derivative provides an efficient
initialization (we refer to (Allaire et al., 2005; Fulmanski
et al., 2008) for a strong coupling between the level set
and the topological derivative).

Table 1. E(ω, a = 10., T ) for different initial predictions ω0.
Here � ω0 is the number of disjoint parts of ω0 (associ-
ated with Fig. 10).

T �ω0 = 1 � ω0 = 9 � ω0 = 25 � ω0 = 49
1 502.64 261.88 256.86 249.10
2 322.88 117.99 96.53 88.17

5.1.2. Minimization with respect to the damping
function a. We consider once again the initial condi-
tion y0(x) = 100 sin(πx1) sin(πx2), y1 = 0, fix ω and
optimize with respect to a. Figure 12 represents the en-
ergy E(ω(1/2), a, 1) with respect to the constant a on
ω = ω(1/2). The minimum of the energy with respect
to a is obtained for a ≈ 15.33 and E(ω(1/2), 15.33, 1) ≈
439.59. The value 15.33 is obtained using the descent
direction (47). Figure 12 illustrates the over-damping
phenomenon: since y1 = 0, E(ω, a, T = 1) converges
towards E(ω, a, 0) = E(∅, 0, 0) = E(ω, 0, T ) as a
tends to infinity. Numerically, we obtain E(ω, 0, T ) −
E(ω, a, T ) ≈ O(a−0.78).

Obviously, the value 439.59 is improved if we as-
sume that the function a may depend on x in ω. Fig-
ure 13 describes the graph of ak(x1, 1/2), x1 ∈ [0, 1] for
different iterations k of the descent algorithm using the
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Fig. 2. (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 10. Evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} with respect
to k.
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Fig. 3. (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1. Evolution of E(ωk, a, T ) (left) and |ωk| (right) with respect to k (associated
with Fig. 2).

direction (49). We observe, in agreement with the theoret-
ical analysis in (Freitas, 1999; López-Gómez, 1997), that
the functions ak(x) take negative values in ω. We also
observe that the norm ‖ak‖L∞(ω) is not bounded with re-
spect to k. Precisely, on the boundary ofω, the function ak
tends to infinity with k. This simulation suggests that the
derivative of the damping potential is as important as its
sign for the dissipation. This is in agreement with (Castro
and Cox, 2001), where it is shown that the unbounded
function a(x) = 1/x in (0, 1) extinguishes in finite time
the solution of the 1-d damped wave equation. We re-
mark, however, that the average

∫

ω ak(x) dx/|ω| remains
bounded and converges as k tends to infinity to the value
15.33 (optimal for a constant in ω). These observations
illustrate the influence of the over-damping phenomenon
and the richness of Problem (Pa).

The optimal value of a also depends on the domain
ω. For instance, for ω = ω(0.35), the optimal damping
constant is a ≈ 24.89 leading to E(ω(0.35), 24.89, 1) ≈
4916.93.

Very interestingly, if we now come back to Prob-
lem (Pω) with a value larger than a = 10 (used in Sec-
tion 5.1.1), e.g., a = 25 and ω0 = ω(0.35), we do not
obtain a centered disc anymore. The limit in k of the zero-
level set {x ∈ Ω, ψk(x) = 0} is depicted in Fig. 14 (top
left) leading to a cost E(ω(0.35), a = 25, T ) ≈ 101.08
(in comparison with E(ω(1/2), 15.33, T ) ≈ 439.59 <
E(ω(1/2), a = 25, T )). At the limit, the domain ω is di-
vided into three parts! Note that this point is not in con-
tradiction with the relation (65) because the value a = 25
is not “small” enough. We remark that this value is
in the increasing part of the function a → E(ω, a, T )
(see Fig. 12) whereas the value a = 10 used in Sec-
tion 5.1.1 is in the decreasing part. Moreover, for this
value, the invariance with respect to the initialization ω0

is lost. Figure 14 depicts the limit in k of the zero-level
set {x ∈ Ω, ψk(x) = 0} for three other initial predictions

ω0. Even for a symmetric ω0 (Fig. 14, bottom right), the
limit is not a centered disc but is associated with a limit
cost function E(ωk, a, T ) ≈ 50.35 significantly smaller
than E(ω(1/2), a = 25, T ) ≈ 1278.48. This highlights
the existence of several local minima. Actually, for this
value, Problem (Pω) is ill posed (Münch et al., 2006), and
the optimal domain is composed of an arbitrary number
of disjoint components distributed in ω: this phenomenon
may be numerically detected by taking a sequence (in
p) of initial guesses (ω0,p)(p) with an increasing num-
ber of disjoint components � ω0,p: if the corresponding
sequence � ωk,p, associated with the limit sequence of do-
mains (ωk,p)p, increases, then the ill-posedness is likely
to hold.

5.1.3. Minimization with respect to both ω and
a(x). Using the algorithm (62), we now minimize the
cost function with respect to both ω and a. Accord-
ing to our previous observations, these two variables are
strongly coupled. We simply consider the case of a
constant in ω. Figure 15, associated with (y0, y1) =
(100 sin(πx1) sin(πx2), 0.), depicts the limit of the zero-
level set sequence {x ∈ Ω, ψk(x) = 0} obtained for dif-
ferent initializations ω0 and a0 = 10, whereas Fig. 16 de-
picts the evolution of ak with respect to k. The results are
summarized in Table 2. Except for ω0 = ω(0.35) and a0 =
10 (see Fig. 16, top left) leading toE(ωk, a, T ) ≈ 140.12,
the minimization with respect to both ω and a leads to
an impressive reduction of the cost function. Once again,
the result depends on the initial values (ω0, a0) and is im-
proved when ω0 is composed of several disjoints parts.
Finally, a better reduction is observed when the function a
varies in ω. Similar results are obtained with the viscous
schemes (55) and (57).

5.1.4. Interplay between the values of a and |ω|
and the topological derivative. The previous numeri-
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Fig. 4. (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 10. Evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} with respect
to k.
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Fig. 5. (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 10. Evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} with respect
to k.
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(associated with Fig. 5).

Table 2. E(ω, a, T = 1) for different initial predictions ω0.
Here � ω0 is the number of disjoint parts of ω0 (associ-
ated with Figs. 15 and 16).
� ω0 1 4 16 49

E(ω2000, a2000, 1) 140.12 12.54 17.79 15.83
a2000 19.51 29.09 35.12 29.38

cal simulation suggest that, for fixed |ω|, Problem (Pω) is
not well posed as soon as a exceeds a critical value, ac
say. This critical value depends, among other things, on
the size |ω|. As already explained at the beginning of Sec-
tion 5.1.1, these points (related to the over-damping phe-
nomenon) may be observed from the topological deriva-
tive. Let us consider the initial data (63), L = |ω| = 1/10
and T = 1. According to Section 5.1.1 and (36), if a
is small enough, then the optimal position is the centered
discD(x0, ρ) ⊂ Ω for any ρwith x0 = (1/2, 1/2). Simi-
larly, from the relation (34), if |ω| (equivalently ρ) is small
enough, the disc D(x0, ρ) is optimal for any value of a,
so that ac is a decreasing function of |ω|. This bifurca-
tion of the shape with respect to a may be detected from
the computation of the topological derivative. Figure 17
displays the function x → ∫ T

0 y′ω,a(x, t)pω,a(x, t) dt for
ω = D(x0, L/4) and two values of a = 10 (left), a = 25

(right). For a = 10, the derivative enforces the disc ω to
increase smoothly (as expected), while for a = 25, the
centered disc degenerates into a ring. For a large enough,
ω is composed of an arbitrarily large number of disjoints
components. Such a structure may be obtained from a re-
laxation procedure (we refer to (Münch et al., 2006)).

5.2. Irregular initial conditions. So far, we have con-
sidered a regular initial condition (y0, y1) for which (at
the numerical level) the use of viscosity terms is unneces-
sary. In order to highlight the importance of the high fre-
quency component on the mechanism of dissipation, let us
consider the most singular situation with a discontinuous
initial condition y0. We give only one example and refer
to (Hébrard and Henrot, 2003) in 1-D. On the unit square
Ω = (0, 1)2, we define

y0(x) =

⎧
⎨

⎩

40 (x1, x2) ∈ (1/3, 2/3)2,

0 elsewhere,
(66)

y1(x) = 0 and a(x) = 10Xω(x) and then optimize
with respect to ω. Figure 18 displays the limit in k of
the boundary of ωk obtained respectively with the usual
schemes without viscosity terms and with the modified
viscous schemes (55)–(57). The limit is different and
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Fig. 8. (y0, y1) = (100 sin(2πx1) sin(πx2), 0), T = 1, a = 10. Evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} with respect
to k.



Optimal internal dissipation of a damped wave equation using a topological approach 31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
iteration=1300

Fig. 9. (y0, y1) = (100 sin(2πx1) sin(πx2), 0), T = 1, a = 10. Evolution of the zero-level set {x ∈ Ω, ψk(x) = 0} with respect
to k.
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Fig. 10. (y0, y1) = (300x1x2(x1−1)(x2−1) cos(5πx1(x2−1)) sin(2πx1x2), 0), a = 10. The “limit” of the sequence the zero-level
set {x ∈ Ω, ψk(x) = 0} for different initial predictions of ω0, T = 1 (left) and T = 2 (right).
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Fig. 11. Case of (y0, y1) = (300x1x2(x1 − 1)(x2 − 1) cos(5πx1(x2 − 1)) sin(2πx1x2), 0). Topological derivative x →
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√
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Fig. 14. Case of (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1, a = 25. The “limit” in k of the zero-level set sequence {x ∈
Ω, ψk(x) = 0} for different initial predictions ω0. Top left: E(ω, a, T ) = 101.08, top right: E(ω, a, T ) = 93.47, bottom
left: E(ω, a, T ) = 34.82, bottom right: E(ω, a, T ) = 50.35.
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Fig. 15. Case of (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1. Optimization with respect to a and ω—The “limit” of the sequence
of the zero-level sets {x ∈ Ω, ψk(x) = 0} for four initial predictions ω0.
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x1

x2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−18000

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

x1

x2

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Fig. 17. (y0, y1) = (100 sin(πx1) sin(πx2), 0), T = 1.
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Fig. 18. Singular case: T = 1, a = 10, the “limit” in k of the zero-level set sequence {x ∈ Ω, ψk(x) = 0} without viscosity terms
E(ω, a, T ) ≈ 2768.70 (left) and with viscosity terms E(ω, a, T ) = 1487.23 (right).
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we observe that the modified scheme leads to a signifi-
cantly lower energy (see Fig.19). Without viscosity terms,
we obtain E(ω, a, T ) ≈ 2768.70, whereas with vis-
cosity terms, we obtain E(ω, a, T ) ≈ 1487.23. Once
again, in spite of the symmetry of y0, the centered disc
ω(1/2) of area L is not the optimal domain: we compute
E(ω(1/2), a, T ) ≈ 1984.72.

6. Concluding remarks

We have numerically solved the shape design problem,
which consists in optimizing the support of a damped term
for the linear wave equation. This work completes the pre-
vious theoretical study performed in (Münch et al., 2006),
where a well-posed relaxation for (Pω) is derived. In
agreement with (Münch et al., 2006), the numerical ex-
periments highlights the crucial influence of the over-
damping phenomenon on the optimal position. On the
one hand, when the damping coefficient is small enough
(this depends on the data of the problem), Problem (Pω)
is well posed: the topological derivative then provides a
good approximation of the design, improved iteratively by
the level set method. On the other hand, when the damp-
ing coefficient is large, the problem is ill posed and the
algorithm yields local optima. First, this illustrates the
complexity and richness of the problem in contrast to the
apparent simplicity of the linear system. Secondly, it also
emphasizes the efficiency of this descent method coupled
with a level set approach to detect or not local minima.
Moreover, when the support is fixed, the dissipation is op-
timized with a high gradient and a locally negative damp-
ing function. Once again, this result, in agreement with
the literature, is due to the over-damping phenomenon.

The case of boundary dissipation may be numeri-
cally analyzed in a similar way as others models such as
piezo-elastic systems (Degryse and Mottelet, 2005). For
exact controllability of the wave equation, we refer to
(Münch, 2008), where the optimal shape of the control
is analyzed. Finally, adapting (Maestre et al., 2007) and

(Zolésio and Truchi, 1988), it seems interesting and chal-
lenging to analyze the non-cylindrical situation where the
support ω may depend on time.
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