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1. Introduction

Starting with Rosenbrock’s seminal paper (Rosenbrock,
1974), the algebraic structure of generalized state space
(GSS) or singular systems and the associated problems
dealing with the realization theory of non-proper real ra-
tional matrices has been the subject of numerous and im-
portant investigations during the past 35 years (Bosgra and
Van Der Weiden, 1981; Verghese, 1978; Verghese et al.,
1981; Cobb, 1984; Lewis, 1986; Lewis et al., 1989; Conte
and Perdon, 1982; Misra and Patel, 1989; Christodoulou
and Mertzios, 1986; Vafiadis and Karcanias, 1995). In
this paper, motivated by the classical realization theory of
proper rational transfer function matrices of linear time
invariant multivariable systems by ordinary state space
system models, we examine some ideas related to the re-
alization theory of polynomial transfer function matrices
that correspond to linear, time invariant, “pure” general-

ized state space systems along with the associated con-
cepts of “decoupling zeros at infinity” and minimality and
irreducibility of such systems.

Although the concepts of reducibility or irreducibil-
ity “at infinity” and “decoupling zeros at infinity” of gen-
eralized state space realizations of polynomial matrices
are implicit in many papers, they have not been clearly de-
fined. In most cases (see, e.g., (Bosgra and Van Der Wei-
den, 1981; Varga, 1989; Misra and Patel, 1989; Vafiadis
and Karcanias, 1995)), the authors focus on the compu-
tational aspects of the reduction techniques introduced,
without going into details regarding the action of these
methods on the underlying algebraic structure of the ma-
trices involved. Similarly, the mechanism of the “cancel-
lations” of “decoupling zeros at infinity” during the for-
mation of the polynomial transfer function matrix from a
reducible-at-infinity generalized state space realization of
such a polynomial matrix has not been clearly explained
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in all of the above studies and is closely examined, we
believe for the first time, here.

Our approach focuses on the investigation of
the algebraic structure of the matrices describing
“pure”generalized state space systems. The difference
between the concepts of irreducibility at infinity and min-
imality of “pure” generalized state space realizations of
polynomial (transfer function) matrices is pointed out and
the relations of these concepts with the associated con-
cepts of dynamic and non-dynamic variables appearing
in such generalized state space realizations are also re-
viewed.

The paper is organized as follows: In Section 2, we
give a brief review of known results from the theory of
polynomial matrices which will be useful in the sequel. In
Section 3, we investigate the concept of irreducibility at
infinity, while in Section 4, we present the difference be-
tween the concepts of irreducibility “at infinity” and min-
imality which depends on the presence of non-dynamic
variables. Finally, in Section 5, we summarize our results
and give some conclusions.

2. Mathematical background

In what follows, the time variable t is considered to be
continuous, i.e., taking values in R. Correspondingly,
the variable s can be considered as denoting the Laplace
variable in the Laplace transform L{x(t)} = X (s) :=∫∞
0− x (t) e−stdt of a continuous time function x(t) : R →

R. By R (s)p×m ,Rpr (s)p×mand R[s]p×m we denote re-
spectively the sets of p ×m rational, proper rational and
polynomial matrices with real coefficients and indetermi-
nate s ∈ C. A polynomial matrix

A(s) = Aqs
q +Aq−1s

q−1 + · · · +A0, (1)

where Ak ∈ R
p×m, k = 0, 1, . . . , q ≥ 1, Aq �= 0, is

called regular iff p = m and detA(s) �= 0 for almost ev-
ery s ∈ C. In any other case, i.e., if p �= m or p = m
and detA(s) = 0, it is called singular. If q = 1, then
A(s) = A1s + A0 ∈ R[s]p×m is called a matrix pencil
(Gantmacher, 1959). The (finite) zeros ofA(s) are defined
as the roots of the equation detA(s) = 0. Equivalently,
λi ∈ C is a (finite) zero of A(s) iff rankCA(λi) < r.
δM [·] denotes the McMillan degree of a rational matrix,
i.e., the total number of its poles in C∪{∞}. Every ratio-
nal matrix A(s) ∈ R (s)p×m with rankR(s)A(s) = r ≤
min (p,m) is biproperly equivalent (Vardulakis, 1991) to
its Smith-McMillan form at s = ∞,

S∞
A(s) = diag

( v
︷ ︸︸ ︷
sq1 , . . . , sqk

︸ ︷︷ ︸
k

, Iv−k,

r−v
︷ ︸︸ ︷

1
sq̂v+1

, . . . ,
1
sq̂r

, 0p−r,m−r

)

,

(2)

where r ≥ v ≥ k ≥ 0 and q1 ≥ q2 ≥ · · · ≥ qk >
0 = qk+1 = · · · = qv, q̂r ≥ q̂r−1 ≥ · · · ≥ q̂v+1 > 0
are respectively the orders of the poles and the zeros of
A(s) at s = ∞. Finally, if A(s) is as in (1) with the
Smith-McMillan form at s = ∞ as in (2), then it turns out
(Vardulakis et al., 1982) that

q = q1. (3)

We also give a review of some known facts and ba-
sic results regarding the “realization theory” of polyno-
mial matrices. What follows can be seen as an extension
of the results regarding the realization theory of proper
rational matrices to the case of polynomial matrices .

Definition 1. Let A(s) ∈ R [s]p×m
, rankR(s) A (s) =

r ≤ min (p,m) . A quadruple of matrices C∞ ∈
R

p×μ, A∞ ∈ R
μ×μ, B∞ ∈ R

μ×m, D∞ ∈ R
p×m, μ ∈

Z
+ is called a generalized state space (GSS) realization

of A(s) iff the GSS system, denoted by Σg, is defined by

A∞ẋ∞(t) = x∞(t) −B∞u(t), (4)

y(t) = C∞x∞(t) +D∞u(t), (5)

and the transfer function matrix between Y (s) = L{y(t)}
and U(s) = L{u(t)} is the polynomial matrix A(s), i.e.,
if

A(s) = C∞ (Iμ − sA∞)−1B∞ +D∞. (6)

The vector x∞ (t) : R → R
μ in (4) is called the (fast)

generalized state vector of Σg and the positive integer μ
is called the dimension of Σg.

Remark 1. A GSS realization of A(s) ∈ R [s]p×m can
always be obtained from a state space realization of the
strictly proper rational matrix (Verghese, 1978),

A(s) :=
(

1
s

)

A

(
1
s

)

∈ R
p×m
pr (s)

because if C∞ ∈ R
p×μ, A∞ ∈ R

μ×μ, B∞ ∈ R
μ×m is a

state space realization of A(s), i.e., if
(

1
s

)

A

(
1
s

)

= C∞ (sIμ −A∞)−1
B∞, (7)

then (7), by the substitution 1/s 	→ s, gives (6) with
D∞ = 0p,m.

Let A(s) = A0 + A1s + · · · + Aq1s
q1 ∈ R [s]p×m ,

Ai ∈ R
p×m, i = 0, 1, 2, . . . , q1 ≥ 1, Aq1 �= 0 and let

C∞ ∈ R
p×μ, A∞ ∈ R

μ×μ, B∞ ∈ R
μ×m, D∞ ∈ R

p×m,
μ ∈ Z

+ be a GSS realization of A (s) . Let also J∞ =
QA∞Q−1 , Q ∈ R

μ×μ, |Q| �= 0, be the Jordan normal
form of A∞, and C∞ := C∞Q−1, B∞ := QB∞. From
(6) it follows that (Iμ − sA∞)−1 ∈ R [s]μ×μ

, so that
Iμ−sA∞ or, equivalently, Iμ−sJ∞ are R [s]-unimodular
matrices and J∞ has, in general, the form

J∞ = block diag [J∞1, J∞2, . . . , J∞η, 0τ,τ ] ∈ R
μ×μ,

(8)
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where

J∞i =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 . . . 0

0
. . .

. . .
...

...
. . .

. . . 1
0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎦
∈ R

(κi+1)×(κi+1) (9)

and κ1 ≥ κ2 ≥ · · · ≥ κη, κi ∈ Z
+, i = 1, 2, . . . , η.

From (8) and (9) it follows that J∞ (equivalently A∞)
is a nilpotent matrix with the index of nilpotency equal
to the size κ1 + 1 of its largest Jordan block J∞1, i.e.,
Jκ1∞ �= 0μ,μ, J

κ1+i
∞ = 0μ,μ, i = 1, 2, . . . , and it can be

easily verified that

(Iμ − sJ∞)−1 = Iμ + sJ∞ + · · ·+ sκ1Jκ1∞ ∈ R [s]μ×μ
.

(10)
From the fact that

A(s) = C∞ (Iμ − sJ∞)−1B∞ +D∞ (11)

and (10) it follows that κ1 ≥ q1 and

C∞J i
∞B∞ = Ai, i = 0, 1, 2, . . . , q1, (12)

C∞J i
∞B∞ = 0, i = q1 + 1, q1 + 2, . . . .

We give now a number of definitions and results re-
garding the structure of the GSS realization of a polyno-
mial matrix A (s) .

Definition 2. The GSS system poles at s = ∞ of the
GSS realization Σg = [C∞, A∞, B∞, D∞] of A (s) are
the zeros at s = ∞ of Iμ − sA∞. The generalized order
fg of Σg is the total number of the system poles at s = ∞
of Σg or, equivalently, the total number of zeros at s = ∞
of Iμ − sA∞. (The multiplicities and orders of the zeros
at s = ∞ of Iμ − sA∞ are accounted for.)

From (8) and (9) it can be easily seen that the orders of the
zeros at s = ∞ of Iμ − sJ∞ are the integers κi ≥ 1, i =
1, 2, . . . , η, i.e., that the Smith-McMillan form S∞

Iμ−sJ∞
at s = ∞ of the matrix pencil Iμ − sA∞ (Vardulakis and
Karcanias, 1983; Vardulakis, 1991) is given by

S∞
Iμ−sJ∞ = block diag

[

sIfg , Iτ ,
1
sκη

, . . . ,
1
sκ1

]

.

(13)
Now, since Iμ − sA∞ is a unimodular polynomial

matrix (in fact, a regular matrix pencil), it has no finite
zeros, i.e., the number of the finite zeros of Iμ − sA∞
is n := deg |Iμ − sA∞| = 0 and has no finite poles.
Now, from the known fact that in every square and non-
singular polynomial matrix A (s) the total number of ze-
ros of A (s) in C∪{∞} is equal to the total number of
poles of A (s) in C∪{∞} (Vardulakis, 1991), it simply
follows that the generalized order fg of Σg is given also
by the total number of poles at s = ∞ of Iμ−sA∞ which,

by definition, is its McMillan degree δM [Iμ − sA∞] .
Summarizing, we have that

fg := total number of zeros at s = ∞ of [Iμ − sA∞]

(13)
=

η∑

i=1

κi = rankRJ∞ = rankRA∞

= total # of poles at s = ∞ of [Iμ − sA∞]
=: δM [Iμ − sA∞] , (14)

where the symbol ‘#’ means the “total number” with mul-
tiplicities accounted for.

3. Irreducibility at infinity

We examine now the concept of irreducibility at s = ∞
of a GSS realization of a polynomial matrix. This concept
is analogous to that of irreducibility in C of a state space
realization of a proper rational matrix. To this end, we
introduce a number of auxiliary results.

Let A(s) ∈ R [s]p×m , and let C∞ ∈ R
p×μ, J∞ ∈

R
μ×μ, B∞ ∈ R

μ×m, D∞ ∈ R
p×m, μ ∈ Z

+ be a GSS
realization of A (s) with J∞ in Jordan normal form as in
(8) and (9), so that μ :=

∑η
i=1 (κi + 1) + τ . Let

C∞ = [C∞1 C∞2 . . . C∞η C∞η+1] ∈ R
p×μ, (15)

C∞i = [ci1 ci2 . . . ciκi ciκi+1] ∈ R
p×(κi+1), (16)

where cij ∈ R
p×1, i = 1, 2, ..., η, j = 1, 2, ..., κi + 1. Let

also

B∞ =

⎡

⎢
⎢
⎢
⎣

B∞1

...
B∞η

B∞η+1

⎤

⎥
⎥
⎥
⎦
∈ R

μ×m, (17)

B∞i =

⎡

⎢
⎢
⎢
⎣

b�i1
...
b�iκi

b�iκi+1

⎤

⎥
⎥
⎥
⎦
∈ R

(κi+1)×m, (18)

with b�ij ∈ R
1×m, i = 1, 2, . . . , η and j = 1, 2, . . . , κi+1.

Consider the singular matrix pencils

[
Iκi+1 − sJ∞i

C∞i

]

=
[
Iκi+1

C∞i

]

− s

[
J∞i

0

]

,

[
Iκi+1 − sJ∞i B∞i

]

=
[
Iκi+1 B∞i

]− s
[
J∞i 0

]
,

where i = 1, 2, . . . , η.
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Proposition 1.

(i) The singular matrix pencil
[
Iκi+1 − sJ∞i

C∞i

]

(19)

has no zeros at s = ∞ iff ci1 �= 0 or, equivalently,

rankR

[
J∞i

C∞i

]

= κi + 1. (20)

(ii) The singular matrix pencil
[
Iκi+1 − sJ∞i B∞i

]
(21)

has no zeros at s = ∞ iff b�iκi+1 �= 0 or, equivalently,

rankR [J∞i, B∞i] = κi + 1. (22)

Proof. We prove the first assertion. The second assertion
can be proved in a similar way. The singular matrix pencil
in (19) can be written as

[
Iκi+1 − sJ∞i

C∞i

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 . . . 0

0
1
s

−1 . . . 0

...
. . .

. . .
. . .

...

0 0
. . .

. . . −1

0 0 0 . . .
1
s

ci1
ci2
s

ci3
s

. . .
ciκi+1

s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0

0
1
s

. . . 0
...

...
. . .

...

0 0 . . .
1
s

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1

=:Ni (s)Di (s)−1

(23)

and, since

rankR

[
Ni (∞)
Di (∞)

]

= κi + 1,

(23) is a coprime-at-s = ∞ proper rational matrix frac-
tional representation of (19), see (Vardulakis, 1991). In
(Vardulakis, 1991) it is proved that the zeros at s = ∞
of (19) considered as an element of R (s)(κi+1+p)×(κi+1)

are given by the zeros at s = ∞ of the numerator
Ni (s) ∈ Rpr (s)(κi+1+p)×(κi+1) in (23) which has no
zeros at s = ∞ iff

rankRNi (∞) = κi + 1,

which is clearly equivalent to (20). �

Using arguments similar to those in the proof of Proposi-
tion 1, we can easily show the following result.

Corollary 1. Let

C∞i = [ci1, . . . , ciκi , ciκi+1] ∈ R
p×(κi+1)

such that

ci1 = · · · = ciσi−1 = 0, ciσi �= 0, 1 ≤ σi ≤ κi + 1.
(24)

Then
[
Iκi+1 − sJ∞i

C∞i

]

∈ R
(κi+1+p)×(κi+1)

has one zero at s= ∞ of order σi − 1. By analogy, a sim-
ilar result holds for the pencil

[
Iκi+1 − sJ∞i B∞i

]
.

Due to the Jordan block structure of J∞ ∈ R
μ×μ as

in (8) and the block structures of C∞ and B∞ as in (15)–
(17), the above corollary implies also the following result.

Corollary 2. Let A(s) ∈ R [s]p×m and C∞ ∈
R

p×μ, J∞ ∈ R
μ×μ, B∞ ∈ R

μ×m, D∞ ∈ R
p×m, μ ∈

Z+ be a GSS realization of A (s) with J∞ in the Jordan
normal form as in (8) and (9). Then

(i) The matrix [
Iμ − sJ∞i

C∞

]

has no zeros at s = ∞ iff

rankR

[
J∞
C∞

]

= μ.

(ii)
[
Iμ − sJ∞i B∞

]
has no zeros at s = ∞ iff

rankR

[
J∞ B∞

]
= μ.

A direct consequence of the above results is also the
following result.

Corollary 3. C∞iJ∞i = 0 ⇔ ci1 = ci2 = · · · = ciκi =
0 Cor. 1⇒ the matrix

[
Iκi+1 − sJ∞i

C∞i

]

has one zero at s = ∞ of order κi.

In order now to proceed with the concept of irre-
ducibility at infinity of a GSS realization of a polynomial
matrix, consider the following motivating example.

Example 1. Let C∞ ∈ R
p×μ, J∞ ∈ R

μ×μ, B∞ ∈
R

μ×m, D∞ ∈ R
p×m be a GSS realization of a polyno-

mial matrix A (s) ∈ R [s]p×m. For simplicity of notation,
set η = 3,

C∞ =
[
C∞1 C∞2 C∞3 C∞4

]
,
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where C∞i ∈ R
p×(κi+1), i = 1, 2, 3, C∞4 ∈ R

p×τ ,

J∞ = block diag [J∞1, J∞2, J∞3, 0τ,τ ] ∈ R
μ×μ,

B∞ =

⎡

⎢
⎢
⎣

B∞1

B∞2

B∞3

B∞4

⎤

⎥
⎥
⎦ ,

B∞i ∈ R
(κi+1)×m, i = 1, 2, 3, B∞4 ∈ R

τ×m so that
the generalized order of Σg =

[
C∞, J∞, B∞, D∞

]
is

fg = rankRJ∞ =
∑3

i=1 κi. Notice that A (s) can be
written as

A (s) = C∞ (Iμ − sJ∞)−1
B∞ +D∞

= C∞1 [Iκ1+1 − sJ∞1]
−1
B∞1

+ C∞2 [Iκ2+1 − sJ∞2]
−1
B∞2

+ C∞3 [Iκ3+1 − sJ∞3]
−1B∞3

+ C∞4B∞4 +D∞.

Assume now for notational simplicity that for some
i ∈ {1, 2, 3} we have that

C∞i = C∞i [Iκi+1 − sJ∞i] . (25)

Then by Corollary 3 this assumption implies that the poly-
nomial matrix [

Iκi+1 − sJ∞i

C∞i

]

has a zero of order κi at s = ∞ which is the zero at s = ∞
of Iκi+1−sJ∞i. For example, assume that (25) holds true
for i = 2. Then we will have
[
Iκ2+1 − sJ∞2

C∞2

]

=
[
Iκ2+1

C∞2

]

[Iκ2+1 − sJ∞2]

(26)
and from (25)

C∞2 [Iκ2+1 − sJ∞2]
−1B∞2 = C∞2B∞2, (27)

so that

A (s) =
[
C∞1 C∞3

]

×
[
Iκ1+1 − sJ∞1 0
0 Iκ3+1 − sJ∞3

]−1 [
B∞1

B∞3

]

+ C∞2B∞2 + C∞4B∞4 +D∞

= Ĉ∞
(
Iμ − sĴ∞

)−1

B̂∞ + D̂∞,

where

Ĉ∞ :=
[
C∞1 C∞3

] ∈ R
p×μ̂, (28)

Ĵ∞ := block diag [J∞1, J∞3] ∈ R
μ̂×μ̂,

B̂∞ :=
[
B∞1

B∞3

]

∈ R
μ̂×m,

D̂∞ := C∞2B∞2 + C∞4B∞4 +D∞, (29)

μ̂ = (κ1 + 1) + (κ3 + 1) .

From the above example it follows that if, for some
i = 1, 2, . . . , η, the matrix pencil

[
Iκi+1 − sJ∞i

C∞i

]

has zeros of order κi at s = ∞, then when
C∞ (Iμ − sJ∞)−1 is formed the system poles at s = ∞
of the GSS realization Σg =

[
C∞, J∞, B∞, D∞

]
that

correspond to the zero at s = ∞ of
[
Iκi+1 − sJ∞i

C∞i

]

of order κi “cancel out” and they do not appear as
poles at s = ∞ of the polynomial matrix A (s) =
C∞ (Iμ − sJ∞)−1

B∞ (see (25)). Thus a GSS realiza-
tion

Σ̂g =
[
Ĉ∞, Ĵ∞, B̂∞, D̂∞

]

of A (s) is obtained which has generalized order f̂g :=
κ1 + κ3 < fg . Similar remarks apply if for some i ∈
{1, 2, 3} the matrix pencil [Iκi+1 − sJ∞i, B∞i] has zeros
at s = ∞.

The analysis in the above example gives rise to the
concept of decoupling zeros at s = ∞ of a GSS realization
Σg = [C∞, A∞, B∞, D∞] of a polynomial matrix A (s) .

Definition 3. The input decoupling zeros (i.d.z.) (output
decoupling zeros (o.d.z.)) at s = ∞ of a GSS realiza-
tion Σg = [C∞, A∞, B∞, D∞] of a polynomial matrix
A (s) are the zeros at s = ∞ of the singular matrix pencil

[Iμ − sA∞, B∞] (
[

[c]cIμ−sA∞
C∞

]
) . The input-output de-

coupling zeros (i.o.d.z.) at s = ∞ of Σg are the common
zeros at s = ∞ of the singular matrix pencils

[Iμ − sA∞, B∞] ,
[
Iμ − sA∞

C∞

]

.

The decoupling zeros (d.z.) at s = ∞ of Σg are the ele-
ments of the set

{i.d.z. ats = ∞ofΣg}
+ {o.d.z.ats = ∞ofΣg}
− {i.o.d.zerosats = ∞ofΣg}.

Candidates for (i.d.z.) and (o.d.z) at s = ∞ of a GSS
realization of Σg = [C∞, A∞, B∞, D∞] of a polynomial
matrixA (s) are the zeros at s = ∞ of Iμ − sA∞, i.e., the
system poles of Σg at s = ∞.

Definition 4. A GSS realization

Σ̂g = [C∞, A∞, B∞, D∞]

of a polynomial matrix A(s) which has no input and no
output decoupling zeros at s = ∞ is called an irreducible
at s = ∞ GSS realization of A(s).
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From Corollary 2 we obtain the following result.

Proposition 2. A GSS realization

Σg = [C∞ ∈ R
p×μ, J∞ ∈ R

μ×μ, B∞ ∈ R
μ×m,

D∞ ∈ R
p×m]

of a polynomial matrix A(s) has no input and no output
decoupling zeros at s = ∞, i.e., it is irreducible at s = ∞
or, equivalently,

[
Iμ − sJ∞, B∞

]
and

[
Iμ − sJ∞
C∞

]

have no zeros at s = ∞ iff

rankR

[
J∞, B∞

]
= μ and rankR

[
J∞
C∞

]

= μ.

The next Proposition says that if the Smith-McMillan
form S∞

A(s) at s = ∞ of A(s) is given by (2) and
C∞, A∞, B∞, D∞ = 0 is a GSS realization of A(s)
which is obtained as in Remark 1, i.e., as a minimal
state space realization of the strictly proper rational ma-
trix A (s):= 1

sA
(

1
s

) ∈ Rpr (s)p×m
, then this realization

is an irreducible at s = ∞ GSS realization of A(s) and
the number η of the Jordan blocks J∞i in the Jordan form
J∞ in (8) satisfies

η = k,

while the indices κi of the sizes κi + 1, i = 1, 2, . . . , η of
the Jordan blocks J∞i of J∞ in (9) are given by

κi = qi,

where qi > 0, i = 1, 2, . . . , k are the non-zero orders of
the poles at s = ∞ appearing in the Smith-McMillan form
S∞

A(s) at s = ∞ of A (s) . This proposition also gives us
necessary tools for the investigation of what constitutes a
minimal GSS realization of a polynomial matrix A(s).

Proposition 3. Let A(s) ∈ R [s]p×m with

rankR(s)A(s) = r

and the Smith-McMillan form at s = ∞

S∞
A(s) = diag

( v
︷ ︸︸ ︷
sq1 , . . . , sqk , Iv−k,

1
sq̂v+1

, . . . ,
1
sq̂r

, 0p−r,m−r

)

,

(30)

where 0 ≤ k ≤ v ≤ r, and q1 ≥ q2 ≥ · · · ≥ qk > 0 =
qk+1 = · · · = qv, q̂r ≥ q̂r−1 ≥ · · · ≥ q̂v+1 > 0, are
respectively the orders of the poles and zeros at s = ∞
of A(s). Let also C∞ ∈ R

p×μ, A∞ ∈ R
μ×μ, B∞ ∈

R
μ×m be a minimal state space realization of A (s) ∈

Rpr (s)p×m, i.e.,

A (s) :=
1
s
A

(
1
s

)

= C∞ (sIμ −A∞)−1
B∞, (31)

and let J∞ := QA∞Q−1, |Q| �= 0 be the Jordan normal
form of A∞. Then

(i) the McMillan degree δM
(
A(s)

)
of the strictly proper

rational matrix A (s) is given by

δM
(
A(s)

)
=

k∑

i=1

qi + v; (32)

(ii) we have

J∞
= block diag [J∞1, . . . , J∞k, 0v−k,v−k] ∈ R

μ×μ,
(33)

where

J∞i =

⎡

⎢
⎢
⎢
⎣

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

⎤

⎥
⎥
⎥
⎦
∈ R

(qi+1)×(qi+1),

(34)
i = 1, 2, . . . , k;

(iii) (C∞, A∞, B∞) or, equivalently, (C∞, J∞, B∞)
constitute an irreducible at s = ∞ GSS realization
of A(s).

Proof. Consider the strictly proper rational matrix

A (s) :=
1
s
A

(
1
s

)

= A0
1
s

+A1
1
s2

+ · · · +Aq1

1
sq1+1

∈ Rpr (s)p×m
.

(35)

Since A(s) is a polynomial, all poles of A(s) are located
at s = ∞ and thus all poles ofA (s) are at s = 0. Further-
more, if S0

A(s)
∈ R (s)p×m is the (local) McMillan form

of A (s) at s = 0, then

S0
A(s)

(s) =
1
s
S∞

A(s)

(
1
s

)

= diag
(

k
︷ ︸︸ ︷

1
sq1+1

, . . . ,
1

sqk+1
,
1
s
Iv−k

︸ ︷︷ ︸
v

,

sq̂v+1−1, . . . , sq̂r−1, 0p−r,m−r

)

. (36)
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Thus, if

SC

A(s)
(s) = diag

[
ε1 (s)
ψ1 (s)

, . . . ,
εr (s)
ψr (s)

, 0p−r,m−r

]

is the McMillan form (in C) of A (s) , then from (36)
εi (s) = 1, i = 1, 2, . . . , v, εi (s) = sq̂i−1e (s) , e (s) ∈
R [s] , e (0) �= 0, i = v + 1, . . . , r and ψi (s) = sqi+1,
i = 1, 2, . . . , k, ψi (s) = s, i = k + 1, . . . , v, ψi (s) = 1,
i = v + 1, . . . , r. Now (i) follows from the fact that
μ = δM

(
A(s)

)
:=
∑v

i=1 degψi (s) =
∑k

i=1 (qi + 1) +
v − k =

∑k
i=1 qi + v. Furthermore, if C∞ ∈ R

p×μ,
A∞ ∈ R

μ×μ, B∞ ∈ R
μ×m is a minimal state space real-

ization ofA(s), then the Smith form (in C) of [sIμ −A∞]
is given by

SC

[sIμ−A∞] = diag [Iμ−v, ψv (s) , . . . , ψ1 (s)]

= diag
[
Iμ−v, sIv−k, s

qk+1, . . . , sq1+1
]

= SC

[sIμ−J∞]

(37)

and (ii) follows from the definition of the Jordan normal
form J∞ of A∞ via the non-trivial invariant polynomials
ψi (w) , i = 1, 2, . . . , v of sIμ−A∞ in (37). (iii) The fact
that C∞, A∞, B∞ constitutes a GSS realization of A(s)
follows from (31) which, by the substitution 1/s → s,
yields (6) with D∞ = 0.

Now since C∞, A∞, B∞ is a minimal state space re-
alization of A(s), it follows that

rankC [sIμ −A∞, B∞]

= rankC

[
sIμ −A∞

C∞

]

= μ, ∀s ∈ sp (A∞) ,

where μ = δM
(
A(s)

)
. Using the fact that A∞ has all

its eigenvalues at s = 0, it is easily seen that the above
condition reduces to

rankR [A∞, B∞] = rankR

[
A∞
C∞

]

= μ. (38)

The fact that C∞, A∞, B∞ or, equivalently,
C∞, J∞, B∞ are irreducible at s = ∞ GSS realizations
of A (s) follows from (38) and Proposition 2. �

Given a GSS realization Σg = [C∞ ∈ R
p×μ, A∞ ∈

R
μ×μ, B∞ ∈ R

μ×m, D∞ ∈ R
p×m], μ ∈ Z+ of a poly-

nomial matrix A(s) ∈ R [s]p×m , the above deliberations
give rise to the next corollary which provides a relation
between (i) the set of zeros at s = ∞ of the matrix pencil
Iμ − sA∞, (ii) the set of poles at s = ∞ ofA(s), and (iii)
the set of decoupling zeros at s = ∞ of Σg .

Corollary 4. There holds

{set of zeros at s = ∞ of [Iμ − sA∞]}
≡{set of poles at s = ∞ of A(s)}
∪ {set of decoupling zeros at s = ∞ of Σg } .

(39)

The above set relation gives rise to the equation

fg := {# of zeros at s = ∞ of [Iμ − sA∞]} (40)

= {# of poles at s = ∞ of A(s)}
+ {# decoupling zeros at s = ∞ of Σg}.

Remark 2. Using (14), (40) can be written as

fg = δM [Iμ − sA∞] (41)

= δM (A(s)) + {# decoupling zeros at s = ∞ of Σg}.
Equation (40) gives rise to the inequality

fg := {# of zeros at s = ∞ of [Iμ − sA∞]}
≥ {# of poles at s = ∞ of A(s)} (42)

=: δM (A(s)) .

If a GSS realization Σ̂g = [C∞, A∞, , B∞, , D∞] of
a polynomial matrix A (s) is irreducible at s = ∞, i.e.,
if Σ̂g has no i.d. and no o.d. zeros at s = ∞, then from
Definition 3 we get

[#decoupling zeros at s = ∞ of Σ̂g] = 0,

and from (42) the generalized order of Σ̂g takes its least
the value of

f̂g = δM [Iμ − sA∞] = rankRA∞ (43)

= rankRJ∞ =
k∑

i=1

qi =: δM (A(s)) ,

which, by definition, is the McMillan degree δM (A (s))
of A (s) . In such a case the irreducible at s = ∞ GSS
realization Σ̂g = [C∞, A∞, , B∞, , D∞] of A (s) has the
least generalized order f̂g among the generalized orders
of all GSS realizations which give rise to A (s). As in-
dicated by (43), the least generalized order f̂g of Σ̂g can
then be determined directly from the McMillan degree of
the polynomial matrix A (s) .

Definition 4, together with the above discussion and
(42), gives rise to the following result.

Theorem 1. A GSS realization

Σ̂g = [C∞, A∞, B∞, D∞]

of a polynomial matrix A(s) with the Smith-McMillan
form at s = ∞ as in (30) is irreducible at s = ∞ iff

f̂g := {# of zeros at s = ∞ of [Iμ − sA∞]} (44)

= δM [Iμ − sA∞] = rankRA∞

=
k∑

i=1

q1 = δM (A (s)) .
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The next theorem is an analogue of Theorem 2.56 in
(Vardulakis, 1991) for the case of irreducible at s = ∞
GSS realizations of a polynomial matrix A (s).

Theorem 2. Let A(s) ∈ R [s]p×m with rankR(s)A(s) =
r and the Smith-McMillan form at s = ∞ as in (30).

Let Σ̂g = [C∞ ∈ R
p×μ, A∞ ∈ R

μ×μ, B∞ ∈
R

μ×m, D∞ ∈ R
p×m], μ ∈ Z

+, be an irreducible at
s = ∞ GSS realization of A(s). Then the zero structure
at s = ∞ of Iμ − sA∞ is isomorphic to the pole structure
at s = ∞ of A(s), i.e., if S∞

A(s) is given by (30), then the
Smith-McMillan form at s = ∞ of Iμ − sA∞ is given by

S∞
[Iμ−sA∞] = diag

[

sIf̂g
, Iv−k,

1
sqk

, . . . ,
1
sq1

]

, (45)

where f̂g = rankRA∞ = rankRJ∞ =
∑k

i=1 qi = μ− v.

Proof. Let Σg = [C∞, A∞, B∞] be an irreducible at s =
∞ GSS realization of A (s) obtained as in Proposition 3
and let J∞ = QA∞Q−1 be the Jordan normal form of
A∞. Then the pole-zero structure at s = ∞ of Iμ − sA∞
coincides with that of Iμ − sJ∞. From Proposition 3, the
form of J∞ in (33) and (34), (37) and since all finite zeros
of wIμ − J∞ are at w = 0, we have

SC

[wIμ−J∞] = diag
[
Iμ−v, wIv−k, w

qk+1, . . . , wq1+1
]

≡ S0
[wIμ−J∞],

and therefore from Remark after Exercise 4.44 in Chap-
ter 4 in (Vardulakis, 1991) we have

S∞
[Iμ−sA∞] ≡ S∞

[Iμ−sJ∞] = sS0
[wIμ−J∞]

(
1
s

)

(46)

= diag
[

sIμ−ν , Iv−k,
1
sqk

, · · · , 1
sq1

]

.

�

4. Minimal GSS realizations of a polynomial
matrix

Now we discuss the concept of a minimal GSS realization
of a polynomial matrix. Although the concepts of irre-
ducibility (in C) and minimality of a state space realiza-
tion of a proper rational matrix coincide, i.e., irreducibil-
ity (in C) of a state space realization of a proper rational
matrix implies and is implied by minimality of the dimen-
sion of the state space realization, this is not in general
true for the analogous concepts of irreducibility at s = ∞
and minimality of a GSS realization of a polynomial ma-
trix. In the following, we first define what constitutes a
minimal GSS realization of a polynomial matrix and then
illustrate the above points by showing that minimality of
a GSS realization of a polynomial matrix implies its irre-
ducibility at s = ∞ (Theorem 3) but that in general the

reverse is not true. Through these results we give neces-
sary tools for obtaining (i) a minimal GSS realization of
a polynomial matrix A(s) ∈ R [s]p×m and (ii) the least
value of the dimension μ of the generalized state vector
x∞(t) ∈ R

μ appearing in a minimal GSS realization of
A(s).

Definition 5. A GSS realization Σ̃g = [C̃∞ ∈ R
p×μ̃,

J̃∞ ∈ R
μ̃×μ̃, B̃∞ ∈ R

μ̃×m, D̃∞ ∈ R
p×mof a polynomial

matrix A(s) ∈ R [s]p×m is called minimal if it has the
least number of generalized states or, equivalently, if its
dimension μ̃ is minimal, i.e., μ̃ ≤ μ for each dimension μ
of all other GSS realizations

Σg = [C∞ ∈ R
p×μ, A∞ ∈ R

μ×μ, B∞ ∈ R
μ×m,

D∞ ∈ R
p×m]

of A(s). The dimension μ̃ of a minimal GSS realization
of a polynomial matrix A(s) is called the least dimension
of A (s).

The next theorem gives a necessary and sufficient
condition for a GSS realization of a polynomial matrix
to be minimal.

Theorem 3. (Karampetakis, 1993) Let A(s) ∈ R [s]p×m

with rankR(s)A(s) = r and the Smith-McMillan form at
s = ∞ as in (2). Let also

Σ̃g = [C̃∞ ∈ R
p×μ̃, J̃∞ ∈ R

μ̃×μ̃, B̃∞ ∈ R
μ̃×m,

D̃∞ ∈ R
p×m]

be a GSS realization of A(s) with J̃∞ in the Jordan nor-
mal form and let A(s):= 1

sA
(

1
s

) ∈ Rpr (s)p×m. Then

Σ̃g = [C̃∞, J̃∞, B̃∞, D̃∞] is a minimal GSS realization
of A(s) iff

μ̃ = δM
[
A (s)

]− (v − k)

=
k∑

i=1

(qi + 1) = k +
k∑

i=1

qi. (47)

Proof. We present the proof of (Karampetakis, 1993),
which is constructive. As in Proposition 3, let C∞ ∈
R

p×μ, J∞ ∈ R
μ×μ, B∞ ∈ R

μ×m be a minimal state
space realization of the strictly proper rational matrix
A(s):= 1

sA
(

1
s

) ∈ Rpr (s)p×m with J∞ in the Jordan
normal form as in (33), (34), and partition the matrices
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C∞, J∞, B∞ as

J∞ = block diag
[
J̃∞, 0v−k,v−k

]
,

J̃∞ = block diag[J∞1,J∞2, . . . , J∞k] ∈ R
μ̃×μ̃,

J∞i ∈ R
(qi+1)×(qi+1), i = 1, 2, . . . , k,

B∞ =:

[
B̃∞
B̂∞

]

, B̃∞ ∈ R
μ̃×m,

B̂∞ ∈ R
(v−k)×m, C∞ =:

[
C̃∞ Ĉ∞

]
,

C̃∞ ∈ R
p×μ̃, Ĉ∞ ∈ R

p×(v−k),

where

μ̃ =
k∑

i=1

(qi + 1) = μ− (v − k) .

Using the above partitioning and Proposition 3(iii),
we get

[
J̃∞ 0μ̃,v−k

0v−k,μ̃ 0v−k,v−k

] [
ẋ1∞ (t)
ẋ2∞ (t)

]

=
[
x1∞ (t)
x2∞ (t)

]

−
[
B̃∞
B̂∞

]

u (t) , (48)

y (t) =
[
C̃∞ Ĉ∞

] [
x1∞ (t)
x2∞ (t)

]

(49)

is an irreducible at s = ∞ GSS realization of A(s). The
vector x2∞ (t) in (48) represents v − k “non-dynamic”
variables associated with the (v − k)×(v − k) zero block
in J∞ and is related to the input u(t) via x2∞ (t) =
B̂∞u(t). Thus (48) and (49) can be written as

J̃∞ẋ1∞(t) = x1∞ (t) − B̃∞u(t), (50)

y (t) = C̃∞x1∞ (t) + Ĉ∞x2∞ (t) (51)

= C̃∞x1∞ (t) + D̃∞u(t),

where D̃∞ := Ĉ∞B̂∞ ∈ R
p×m. Recall that from Theo-

rem 1 the condition rankRJ̃∞ =
∑k

i=1 q1 = δM (A (s))
implies that the GSS realization C̃∞ ∈ R

p×μ̃, J̃∞ ∈
R

μ̃×μ̃, B̃∞ ∈ R
μ̃×m, D̃∞ ∈ R

p×m of A(s) in (50), (51)
is also an irreducible at s = ∞ GSS realization of A(s).
We will now show that it is also minimal.

Suppose now that there exists another irreducible
at an s = ∞ GSS realization C∞ ∈ R

p×μ, J∞ ∈
R

μ×μ, B∞ ∈ R
μ×m, D∞ ∈ R

p×m of A(s) with no non-
dynamic variables with

S∞
[Iμ−sJ∞] = diag

[

sIg, Iv−k,
1
sqk

,
1

sqk−1
, . . . ,

1
sq1

]

,

where qi > 0, i = 1, 2, . . . , k are the orders of the zeros
at s = ∞ of [Iμ − sJ∞] and such that μ < μ̃, or equiva-
lently, such that

μ =
k∑

i=1

(qi + 1) <
k∑

i=1

(qi + 1) = μ̃. (52)

Combining (42) and (52), we obtain

k∑

i=1

(qi + 1) =
k∑

i=1

qi + k <

k∑

i=1

(qi + 1) ≤
k∑

i=1

qi + k,

(53)
which implies

k < k. (54)

But since the GSS realizations [C̃∞ ∈ R
p×μ̃, J̃∞ ∈

R
μ̃×μ̃, B̃∞ ∈ R

μ̃×m, D̃∞ ∈ R
p×m] and [C∞ ∈

R
p×μ, J∞ ∈ R

μ×μ, B∞ ∈ R
μ×m, D∞ ∈ R

p×m] of
A(s) are both irreducible at s = ∞, according to The-
orem 2 the pole structure at s = ∞ of A(s) is isomor-

phic to the zero structure at s = ∞ of
[
Iμ̃ − sJ̃∞

]
and

[Iμ − sJ∞] (42), and thus

k = 
 of zeros at s = ∞ of [Iμ − sJ∞] (55)

= 
 of poles at s = ∞ of A(s) = k,

where the symbol ‘
’ denotes the total number of zeros
at s = ∞ without counting orders. From (55) we can
see that (54) is not true, which contradicts our assumption
that there exists a GSS realization C∞ ∈ R

p×μ, J∞ ∈
R

μ×μ, B∞ ∈ R
μ×m, D∞ ∈ R

p×m of A(s) satisfying
μ < μ̃. �

Remark 3. Two important conclusions that result from
Theorem 3 are the following:

(i) A necessary condition for a GSS realization

Σ̃g = [C̃∞ ∈ R
p×μ̃, J̃∞ ∈ R

μ̃×μ̃, B̃∞ ∈ R
μ̃×m,

D̃∞ ∈ R
p×m]

of a polynomial matrixA(s) to be minimal is that the
realization must be irreducible at s = ∞ and that the
realization has no non-dynamic variables.

(ii) The least dimension that a GSS realization of A(s)
may have is μ̃ =

∑k
i=1 (qi + 1), where qi > 0, i =

1, 2, . . . , k are the nonzero orders of the poles at s =
∞ of A(s).

Notice that if v = k, i.e., if in (48) there are not “non-
dynamic variables” (equivalently if there is no Iv−k block
in (30)), then μ̃ ≡ μ and a minimal state space realiza-
tion C∞ ∈ R

p×μ, J∞ ∈ R
μ×μ, B∞ ∈ R

μ×m of A (s)
∈ Rpr (s)p×m coincides with a minimal GSS realization
C̃∞ ∈ R

p×μ̃, J̃∞ ∈ R
μ̃×μ̃, B̃∞ ∈ R

μ̃×m, D̃∞ ∈ R
p×m

of A(s) ∈ R [s]p×m.
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Corollary 5. A GSS realization of a polynomial matrix
A(s) is a minimal GSS realization if it is an irreducible
at s = ∞ GSS realization and has no non-dynamic vari-
ables.

For conventional state space realizations of a proper
rational matrix A (s), the least possible dimension of
a state space realization is known as the least order
ν (A (s)) of A (s) (Rosenbrock, 1970). The next remark
gives an algorithm for the computation of the least dimen-
sion μ̃ of a minimal GSS realization of a polynomial ma-
trix.

Remark 4. (Karampetakis, 1993) The least dimension
μ̃ =

∑k
i=1 (qi + 1) of a minimal GSS realization of a

polynomial matrix A(s) ∈ R
p×m[s] can be calculated

without computing the orders of the poles at s = ∞ in
the Smith-McMillan form at s = ∞ of A(s). Let

Xp =

⎡

⎢
⎢
⎢
⎢
⎣

Aq1 0 · · · 0
... Aq1

. . . 0

Ap+1
. . .

. . .
...

Ap Ap+1 · · · Aq1

⎤

⎥
⎥
⎥
⎥
⎦
,

p = 0, 1, . . . , q1. From Exercise 3.89 in (Vardulakis,
1991), we have

δM (A(s)) = rankX1 (56)

= δM
(
A1s+A2s

2 + · · · +Aq1s
q1
)
.

Applying the same result to X2, we get

rankRX2 = δM
(
A2s+A3s

2 + · · · +Aq1s
q1−1

)

= δM
(
A1 +A2s+ · · · +Aq1s

q1−1
)

= δM

(
A1s+A2s

2 + · · · +Aq1s
q1

s

)

= δM

(
1
s
A(s)

)

.

Since A(s) has only poles at s = ∞, it can be easily seen
that

δM

(
1
s
A(s)

)

=
k∑

i=1

(qi − 1) = δM (A(s)) − k. (57)

From (57) the number k of strictly positive orders qi > 0
of poles at s = ∞ of A(s) is given by

k = δM (A(s)) − δM

(
1
s
A(s)

)

, (58)

which, due to (56), gives

k = rankX1 − rankRX2

and, therefore,

μ̃ = 2rankX1 − rankRX2. (59)

If A(s) is a p × m column (row) proper polyno-
mial matrix with p ≥ m (p ≤ m), then an irreducible
at s = ∞ GSS realization of A(s) as well as the Smith-
McMillan form at s = ∞ of A(s) can be obtained by
inspection. This is stated in the following result.

Proposition 4. Let A(s) ∈ R [s]p×m
, p ≥ m, be column

proper and let vi = deg aj (s) , where aj (s) = aj0 +
aj1s + · · · + ajvjs

vj ∈ R [s]p×1
, j = 1, 2, . . . ,m are

the m columns of A(s). Then an irreducible at s = ∞
GSS realization C∞, J∞, B∞ of A(s) can be obtained by
inspection and is given by

C∞ = [a1v1 , · · · , a10 | · · · | amvm , · · · , am0] ∈ R
p×μ,

(60)
J∞ = block diag [J∞1, J∞2, · · · , J∞m] ∈ R

μ×μ, (61)

J∞j =

⎡

⎢
⎢
⎢
⎣

0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0

⎤

⎥
⎥
⎥
⎦
∈ R

(vi+1)×(vi+1), (62)

B∞ = block diag [b1, b2, . . . , bm] ∈ R
μ×m (63)

bj = [0, 0, . . . , 0, 1]� ∈ R
(vj+1)×1, (64)

where j = 1, 2, . . . ,m and μ =
∑m

j=1 (vj + 1) .

Proof. Write A(s) = [A(s)]hc diag (sv1 , . . . svm) +
A1S(s), where [A(s)]hc denotes the highest column de-
gree coefficient matrix of the matrix inside the brackets
and

S(s) = block diag

{
⎡

⎢
⎢
⎢
⎣

sv1−1

...
s
1

⎤

⎥
⎥
⎥
⎦
, · · · ,

⎡

⎢
⎢
⎢
⎣

svm−1

...
s
1

⎤

⎥
⎥
⎥
⎦

}

,

(65)
A1 ∈ R

p×μ. Then

1
w
A

(
1
w

)

= [A (s)]hc diag
(

1
wv1+1

, . . . ,
1

wvm+1

)

+
1
w
A1S

(
1
w

)

= [A (s)]hc +
1
w
A1S

(
1
w

)

diag
(
wv1+1, . . . , wvm+1

)

× [diag
(
wv1+1, . . . , wvm+1

)]−1

= N(w)D(w)−1, (66)

where N(w) ∈ R [w]p×m can also be written as

N(w) = C∞S(w) (67)

with

S(w) = block diag

{
⎡

⎢
⎢
⎢
⎣

1
w
...

wv1

⎤

⎥
⎥
⎥
⎦
, . . . ,

⎡

⎢
⎢
⎢
⎣

1
w
...

wvm

⎤

⎥
⎥
⎥
⎦

}

. (68)
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Now, since for w = 0,

rank
[
D(0)
N(0)

]

= rank
[

0m,m

[A(s)]hc

]

= m

and for 0 �= w ∈ C,

rankC

[
D(w)
N(w)

]

= m,

we have that the expression in (66) is a right coprime MFD
of 1

wA( 1
w ) ∈ Rpr (s)p×m with D(w) column proper.

Thus, C∞, J∞, B∞ is a minimal state space realization
of 1

wA( 1
w ). �

Remark 5. A dual result can be obtained for every
p × m (p ≤ m) row proper polynomial matrix A(s) by
transposing A(s) and applying Remark 3. Comparing the
dimensions of the Jordan blocks J∞i in (34) of Proposi-
tion 3 and those of the Jordan blocks in (62) of Proposi-
tion 4, we can easily conclude that ifA(s) is column (row)
proper, then its column (row) degrees vj , j = 1, 2, . . . ,m
(ri, i = 1, 2, . . . , p) are equal to the orders of its poles
at s = ∞, i.e., that vj ≡ qj , j = 1, 2, . . . ,m (ri ≡ qi,
i = 1, 2, . . . , p) and that A(s) has no zeros at s = ∞.

5. Conclusions

In this paper we have discussed the concepts of irre-
ducibility and minimality of “pure” generalized state space
realizations of polynomial transfer function matrices. Our
main focus was to point out the difference between these
two concepts. Irreducibility of “pure” generalized state
space systems was shown to be associated with the ab-
sence of decoupling zeros at infinity, and the cancella-
tion mechanism of zeros at infinity was clearly explained.
On the other hand, it turned out that a generalized state
space realization had minimal state dimension if it was ir-
reducible (at infinity) and had no non-dynamic variables.
Furthermore, we proposed both a method for the determi-
nation of the minimal state dimension and the construction
of a minimal “pure” generalized state space realization.
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