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The paper investigates the possibility of decomposing vibration signals into deterministic and nondeterministic parts, based
on the Wold theorem. A short description of the theory of adaptive filters is presented. When an adaptive filter uses the
delayed version of the input signal as the reference signal, it is possible to divide the signal into a deterministic (gear
and shaft related) part and a nondeterministic (noise and rolling bearings) part. The idea of the self-adaptive filter (in the
literature referred to as SANC or ALE) is presented and its most important features are discussed. The flowchart of the
Matlab-based SANC algorithm is also presented. In practice, bearing fault signals are in fact nondeterministic components,
due to a little jitter in their fundamental period. This phenomenon is illustrated using a simple example. The paper proposes
a simulation of a signal containing deterministic and nondeterministic components. The self-adaptive filter is then applied—
first to the simulated data. Next, the filter is applied to a real vibration signal from a wind turbine with an outer race fault.
The necessity of resampling the real signal is discussed. The signal from an actual source has a more complex structure and
contains a significant noise component, which requires additional demodulation of the decomposed signal. For both types
of signals the proposed SANC filter shows a very good ability to decompose the signal.
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1. Introduction

According to the Wold theorem, it is possible to decom-
pose each signal into a deterministic and a nondetermin-
istic part. This idea is well developed by statisticians
(Widrow et al., 1975) and was successfully applied in
telecommunications under the name Adaptive Line En-
hancer (Zeidler et al., 1978). The decomposition is based
on the autocorrelation features of the signal, because the
correlation time of the deterministic (i.e., periodic) part is
much longer than that of the nondeterministic part. This
theory led to the development of adaptive filters, which
were a practical application of the method.

The idea of signal decomposition was proposed for
machinery diagnostics, as it can be used for the separa-
tion of signals emitted from different machinery elements.
Such separation can greatly enhance the quality of further
signal processing and, finally, improve the ability to de-
tect and identify a fault. In machinery diagnostics, there
is a difference in the correlation times of different signals.
Longer correlation times exist in devices which maintain

constant frequency, e.g., gears which are phase locked. On
the other hand, rolling bearings will always show some de-
gree of slip, even though it may be very small. Therefore,
the method could be used to separate the vibration signal
into parts generated by gears and by rolling bearings. The
method has also great practical importance, as a major-
ity of rotating machinery (except large output machines
on sliding bearings) is composed of several shafts cou-
pled by gears, and shafts are almost always also mounted
on rolling bearings. What is more, the most common
and most important faults are those that occur in shafts,
gears and rolling bearings. Classical methods of vibrodi-
agnostics are based on the investigation of spectral lines,
which are generated by a faulty element. When machines
are complex and contain several shafts of different rota-
tional speeds, the generated spectra become increasingly
complex. Thus, a method to distinguish between spec-
trum components coming from gears and bearings would
be of considerable value. This concept was presented by
Chaturvedi and Thomas (1981). It was further developed
by Randall and Ho (2000). The main problem was the ref-
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erence signal, which is necessary for adaptive filters. Ran-
dall proposed to use the original signal with a time delay
which would be greater than the autocorrelation time of
the nondeterministic part of the signal. The concept was
called Self Adaptive Noise Cancellation (SANC).

The paper starts with the simulation of a signal sim-
ilar to that generated by a rotating machine with a faulty
rolling bearing. Next, it presents the theoretical basis for
SANC-based vibration signal decomposition. First, the
Wold theorem is discussed, and then the adaptive filter ar-
chitecture and theory are presented. The paper then in-
vestigates the ability of self-adaptive signal separation to
detect rolling bearing faults. An algorithm prepared in
Matlab is proposed and described. The performance of
the algorithm is verified on the simulated signal. Follow-
ing this, the algorithm is applied to a real vibration signal
from a wind turbine with a faulty outer race rolling bear-
ing. In both cases the algorithm shows a very good ability
of signal separation.

2. Simulation

Rolling bearings, unlike gears, are not phase locked to
the rotational speed of the machine. Formulas describing
characteristic frequencies are well known. For example,
the outer ring ball pass frequency is

BPFO = S
Nr

2

(
1 − Rd cosφ

Pd

)
, (1)

where S is the rotational speed of the shaft, Nr is the
number of rolling elements, Rd is the diameter of the
roller, Pd is the pitch diameter, and Φ is the angle. A full
list of rolling bearing induced frequencies can be found,
e.g., in (Żółtowski and Cempel, 2004). Frequencies gen-
erated by the rolling bearing are never exactly equal to the
presented formula, because the load angle may vary and
a slip between rolling elements and races is unavoidable.
Therefore, if there is a fault on an element, it generates an
impulse which is transmitted through the casing structure
and measured by a vibration sensor. We can observe a
series of decaying components. The carrier frequency de-
pends on the structure, not the fault. The fault determines
the period of decaying impulses. Due to small changes in
rolling bearing operation, those impulses will be excited
at a slightly varying frequency, close to, e.g., BPFO.

Randall in 2004 proposed frequency-based simula-
tion of such a signal. Here, time-based simulation was
performed. The signal was simulated in the Matlab envi-
ronment. The periodic component was a single sine func-
tion at a frequency of 100 Hz, simulating a gear mesh fre-
quency. Bearing induced impulses were simulated as ex-
ponentially decaying signals having a carrier frequency of
4 kHz and a period of 11.6 Hz, which is a reasonable value
for a BPFO of a bearing on a shaft rotating at 180 rpm (the
slow shaft of a gearbox generating the mentioned 100 Hz

component). Figure 1 presents the simulated signal of
both components (on the left) and of decaying compo-
nents only (on the right). Plot noise was set to zero for
picture clarity. Note that the zero-peak amplitude of im-
pulses was 10 times smaller than that of the sine signal.
Three small decaying impulses can be seen in the left part
of Fig. 1.

The signal was simulated with and without the jit-
ter of the BPFO frequency. Visually, there was no differ-
ence in both signals, but their spectra showed great differ-
ences (see Fig. 2). For clarity, only the part of the spectra
around the carrier frequency were zoomed. The left panel
presents the spectrum of the signal without the jitter in the
period of bearing fault components and the right panel—
with 2% jitter.

It can be clearly seen that the slight variation in the
period of impulses causes the smearing of the spectrum
and changes its nature from a set of sharp lines to a contin-
uous one. In the next section, theoretical issues concern-
ing signal decomposition will be discussed. The following
section will then present the results of the separation of the
signal from Fig. 1 back to its source components.

3. Decomposition of signals based on
statistical parameters

Vibration signals can be analyzed with methods developed
for stochastic signals as they share a large part of their
features. Based on the Wold theorem, we can present
each random process X(n)—also a vibration signal—as
a unique sum of two parts: deterministic p(n) and non-
deterministic r(n)

X(n) = p(n) + r(n), (2)

where r(n) can be presented as

r(n) =
∞∑

k=1

bkεn−k + εn, (3)

ε being a Gaussian random process and b a vector of pre-
diction coefficients. The component p(n) can then be ide-
ally (i.e., with a zero error) presented as

p(n) =
∞∑

k=1

akp(n − k), (4)

where a is a vector of prediction coefficients.
In (2), p(n) is a deterministic process and r(n) is a

stationary random process with zero mean. The process
p(n) can be exactly predicted if its previous values are
known. The prediction error of p(n) is theoretically zero
and does not depend on time. The process r(n) has always
a prediction error which will grow with the prediction dis-
tance. This feature is the basis for separation, as when two
samples of a signal taken with sufficient distance in time
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Fig. 1. Simulated signal containing a 100 Hz sine wave with decaying components (left) and a plot of decaying components only,
simulating impacts from the rolling bearing fault (right). Note different scales on both plots.

Fig. 2. Fragment of the spectrum of the signal from Fig. 1 without the jitter in the period of bearing fault components (left) and with
2% jitter (right).

will be correlated, the correlation of the nondeterministic
part r(n) will be zero and will return the deterministic part
p(n). When this idea is applied to machinery vibration,
we could decompose each vibration signal into the deter-
ministic and random parts. It has very important practi-
cal implications, as we can expect that the deterministic
part would be predominantly strictly harmonic excitations
(i.e., shafts fundamental frequencies and signals excited
by gears). The nondeterministic part would then be noise
and excitations from bearings, as they have a significant
random factor, as shown in the previous section.

Solving the problem is actually very close to the es-
timation of adaptive filter parameters. Such a filter is pre-
sented in Fig. 3. The goal of the filter is to modify coeffi-
cients of the filter H(z), so that the estimated signal x(n)
is as close to the reference signal d(n) as possible. The
most common goal function is the least mean square.

Adaptive filters need to be stable over as large a span
of coefficients as possible. This condition leads to the
choice of FIR structures. For the FIR filter, the transfer

Fig. 3. Architecture of the adaptive filter.

function of the filter (given in the z domain) is

Hn(z) =
N−1∑
k=0

hk(n)z−k, (5)

where Hn(z) is the transfer function H(z) at the moment
n, hk(n) are filter coefficients at the moment n. Note that
Hn(z) contains only the denominator. Thus, the FIR filter
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output y(n) can be presented as

y(n) =
N−1∑
k=0

hk(n)x(n − k). (6)

The least square goal function will then be

J
(
h(n)

)
= E

[(
d(n) −

N−1∑
k=0

hk(n)x(n − k)
)2

]
. (7)

After calculations, which can be found in (Zieliński,
2007), we obtain the classical Wiener filter equation:

hopt =
[
R(n)

xx

]−1

r
(n)
dx , (8)

where R
(n)
xx is the autocorrelation matrix of the signal

x(n), and r
(n)
dx is the cross correlation vector of the sig-

nals d(n) and x(n − i). In practice, the required order of
the filter is very high and Eqn. (8) is not solved directly.
Instead, recursive methods are used. The modification of
h(n) should be proportional to the gradient of the mul-
tidimensional cost function, but with a reversed sign. In
general, this formula can be presented as

h(n + 1) = h(n) + Δh(n) = h(n) − μ∇n, (9)

where μ is a coefficient deciding about the speed of it-
eration. If μ is sufficiently small (see (Ho and Ran-
dall, 2000)), then Eqn. (8) gives the optimal solution for
h(n).

The theory presented above is the basis for the so-
lution of the problem given in (2). In our case we do
not have the reference signal. We will rely instead on the
length of correlation, as described in the beginning of this
section. Such an approach will also modify the architec-
ture of the filter, which will become a self-adaptive filter,
as presented in Fig. 4. Now, we will use the signal x(n) as

Fig. 4. Architecture of a self-adaptive filter.

the reference signal, but with a delay, which will cause the
autocorrelation of r(n) to be close to zero. Introduction to
the theory is presented below. More details can be found
in (Antoni and Randall, 2004).

As for (2), we are looking for the predictor of X(n),
which can be formulated as the conditional expectation:

X̂(n)
= E{X(n)|X(n− Δ), . . . , X(n − Δ − N + 1)}, (10)

where X(n) is predicted from Δ last samples. The pa-
rameter Δ should be such that r(n) is not autocorrelated
with this distance, i.e.,

Rrr(m) = 0. (11)

Equation (10) should hold for all |m| > Δ. With such
preconditions, we can state that

p̂(n) = X̂(n), (12)

r̂(n) = X(n) − X̂(n), (13)

which are the best estimators (related to the mean square
error). We know that X(n) is periodic, so it can be for-
mulated as a sum

X(n) =
N−1∑
k=0

hkX(n − Δ − k). (14)

Thus, we are interested in coefficients hk which will
minimize the mean square prediction error. The solution
is again given by the Wiener filter as the solution of the
Wiener-Hopf equation:

N−1∑
k=0

hkRxx(m − Δ − k) = Rxx(m). (15)

In practice, the filter order is very high, up to several thou-
sands, which makes the set of equations (14) difficult to
solve. Recursive solutions are used for the determination
of hi. The method is very similar to (8) and can be pre-
sented as

hn+1
k = hn

k + μe(n)X(n − Δ − k). (16)

The optimal choice of algorithm parameters is very impor-
tant for the self-adaptive filter. Those parameters include

• filter length: N ,

• time delay: Δ,

• forgetting factor: μ.

The filter length N must be sufficient to extract all
important periodic factors from the original signal. In the-
ory, when there is no noise, an order of 2k is required to
extract k sinusoidal components. When noise is present,
higher orders are required for its rejection. This issue is
discussed in detail in (Antoni and Randall, 2004) and, as
a conclusion, the following statement can be cited: “So
in general, the choice of N faces a compromise between
sufficient selectivity of the frequency response on the one
hand, and convergence and small estimation bias on the
other hand”.

The time delay Δ should theoretically be as long as
possible. In practice, sampled signals have finite length
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and there may be some deviations from the ideal period of
deterministic components, due to speed variations (which
will be addressed later in the paper) and measurement er-
rors. So, Δ should be slightly larger than the correlation
length of the nonperiodic component.

The setting of the forgetting factor μ is theoreti-
cally analyzed in (Haykin, 1996). The following formula
should be used:

0 < μ <
2

λmax
, (17)

where λmax < trace
(
R

(n)
xx

)
In the next sections, a self-adaptive algorithm will be

applied first to simulated and then to real data from a wind
turbine.

4. Decomposition of simulated data

The described self-adaptive signal decomposition algo-
rithm was developed in Matlab using the Filter Design
Toolbox. The algorithm is illustrated in Fig. 5.

Fig. 5. Flowchart of the self-adaptive filter with Matlab com-
mands.

First, the algorithm prepares vectors for the signals
x and d (delayed x). It is required that both signals have
an equal number of samples, which are afterwards pro-
cessed simultaneously. Next, the filter object is created.
At this point, the object receives the basic parameters,
i.e., the block length, the filter length and the forgetting
factor. To check the convergence of the filter, the step-
max method is executed. The forgetting factor should
be at least two times smaller than the returned parame-
ter mumax (Matlab, 2006). Finally, the filter is applied to
the data and results are passed to the Matlab workspace.
The FD Toolbox contains more filters, some of which are
much faster than LMS. If possible, Block LMS or FFT-
based block LMS should be used (Shynk, 1992).

The presented algorithm was applied to simulated
data, which were described in Section 2 (see Fig. 1). Al-

gorithm parameters were chosen according to the section
above and are presented in Table 1.

Table 1. Filter parameters chosen for simulated data and real
data.

Filter Value for Value for
parameter simulated data real data
Filter length 64 512
Time delay 12000 12000

Forgetting factor 0.001 0.0005

The filter length was set to 64, as only one sinusoid
was to be tracked but sufficient noise rejection was re-
quired. The time delay is given in samples (for a signal
sampled at 25 kHz), which is more than the distance be-
tween exponential components which were added with a
random jitter (see Figs. 1 and 2). Figure 6 presents filter
outputs. For clarity of the figure, the original signal con-
tained no noise. In the case with noise, the results were
very similar.

It can be clearly seen that the self-adaptive filter is
capable of decomposing the signal into its original com-
ponents. The setting time is very short and this does not
change with the addition of (relatively small of standard
deviation equal to 0.1) white noise.

5. Decomposition of real data

To test the algorithm, it was run on real data from a wind
turbine, which experienced an outer ring fault on the gen-
erator bearing. Figure 7 presents the setup of the turbine
with the location of vibration sensors.

Fig. 7. Mechanical structure of the wind turbine. The loca-
tion of vibration measurement sensors is shown by “An”
symbols.

The main rotor with three blades is supported by
the main bearing and transmits the torque to the plane-
tary gear. The planetary gear input is the plate to which
the main rotor is connected. The planetary gear has three
planets, with their shafts attached to the plate. The planets
roll over the stationary ring and transmit the torque to the
sun. The sun shaft is the output of the planetary gear. Fur-
ther, the sun drives the two-stage parallel gear. The paral-
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Fig. 6. Filter output and the error signal of the self-adaptive filter working on simulated data.

lel gear has three shafts: the slow shaft connected to the
sun shaft, the intermediate shaft and the fast shaft, which
drives the generator. The generator produces AC current
of slightly varying frequency. This current is converted
first into DC power and then into AC power of frequency
equal to that of the grid. Electric transformations are per-
formed by the controller at the base of the tower.

The vibration data were acquired by an online vibra-
tion monitoring system at a 25 kHz sampling rate. One
single record was sampled for 10 s, i.e., contained 250e3
samples. Figure 8 presents an example of a vibration sig-
nal and its spectrum. The structure of the signal can be an-
alyzed on its spectrum. One can observe a complex struc-
ture, composed of several sharp lines and a few structural
resonances. The signal also contains a significant noise
component, which will make fault detection more diffi-
cult.

The bearing fault occurred in the bearing at the non-
driven end of the generator, i.e., data from sensor A6
were investigated. During the sampling session, the gen-
erator speed was 1346.5 rpm (22.44 Hz). According to
the bearing manufacturer, BPFO (Bearing Pass Frequency
Outer ring) is 5.10X, which at this rotational speed gives
114.4 Hz.

To ensure the autocorrelation of periodic compo-
nents, the vibration signal must be acquired when the ma-
chine has exactly equal rotational speed. Even small vari-
ations would smear spectral lines and cause the decorre-
lation of periodic components. Small variations in the ro-
tational speed are common in machinery and in the case
of wind turbines rpm changes in a great range (1000 to
1500 rpm in the case of the investigated wind turbine). To
make sure that the SANC algorithm can be applied in such
cases, the signal must be resampled to the order domain,
where there is always a constant number of samples per
one rotation of the shaft. An algorithm for such resam-
pling based on software was proposed in (Barszcz, 2004),
where its accuracy was also discussed and compared with

the hardware-based algorithm. Another possible method
for estimating rpm variation is time-frequency analysis,
e.g., STFT proposed by Lee and White in 1998.

In the investigated case, the data were tested against
the variability of rotational speed. It was found that the
variability was around 0.2%, which is much less than the
typical jitter in rolling bearing parameters (around 1%).
Thus, resampling was not performed in this case. Next,
the self-adaptive algorithm was applied to the data. The
algorithm parameters are presented in Table 1. To de-
crease computational complexity, the block LMS algo-
rithm was used. Figure 9 presents filter outputs.

In this case it is harder to evaluate the performance
of the filter, although it can be seen that some periodic
components were filtered. To gain a better insight, Fig. 10
presents a comparison of spectra of the original and fil-
tered signals. Only a part of the spectrum is presented to
keep the figure clear.

Fig. 10. Comparison of spectra of the original signal (grey) and
that filtered with the adaptive filter (black).

One can observe that the sharp lines, correspond-
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Fig. 8. Waveform and spectrum of the vibration signal from the faulty bearing. The vertical axis is in g. The complex structure of the
signal is visible.

Fig. 9. Filter output and the error signal of the self-adaptive filter working on real data.

ing to the periodic components, passed through the fil-
ter while the background noise was rejected up to 30 dB.
This proves the good performance of the filter. The abil-
ity of the filter to extract all the periodic components was
not checked, as it was not the goal of the present re-
search. Instead, the error signal should be investigated to
see whether it contains impact type components.

Visual inspection of the error signal presented in
Fig. 9 (left) does not show a clear pattern of impact type
impulses, as one could expect. Such a situation was
caused by a large noise component, as mentioned earlier.
The analysis of the error signal spectrum (Fig. 11) reveals
the presence of a spectral component at a frequency of
115 Hz, but the component is very small and accompanied
by several other lines. On the other hand, such behavior is
expected, as we investigate exponential impulses excited
at 115 Hz. In such a case, only a very small portion of sig-
nal energy is within its fundamental frequency. Another
method should be used to verify whether the error signal
contains the sought fault signature.

The investigation of the spectrum in its full range

showed a strong structural resonance of around 7800 Hz.
In such cases, the most efficient method to extract bear-
ing fault induced signals is the demodulation of the signal
and the investigation of its envelope. Such a method is
described by Ho and Randall (2000). After this approach
was applied, envelope signal spectra were calculated for
both the filtered and error signals and presented in Fig. 12.

In Fig. 12, for the error signal, the BPFO frequency
(115 Hz) is very strong and its second harmonic can be
also seen, though it is much smaller. The filtered sig-
nal, shown on the left, does not contain any bearing fault
related components. Thus, it was shown that the non-
deterministic part of the signal, i.e., the error signal from
the adaptive filter contains the information about the outer
race fault.

6. Conclusion

The paper investigated the possibility of decomposing
vibration signals into deterministic and nondeterministic
parts, based on the Wold theorem. A short presentation
of the theory of adaptive filters was given. The idea of a
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Fig. 11. Spectra of the filter error zoomed to 500Hz (left) and in full range (right). A very small component can be seen at the BPFO.
Strong structural resonance is visible at around 7800 Hz.

Fig. 12. Comparison of spectra of the filtered signal (left) and the error signal (right), both demodulated around the resonance at
7800 Hz. In the error signal the BPFO (115 Hz) dominates the spectrum. Its second harmonic can be also seen, but is much
smaller.

self-adaptive filter (in the literature referred to as SANC or
ALE) was presented and its most important features were
discussed. The self-adaptive filter was first applied to sim-
ulated data and then to a real vibration signal from a wind
turbine with an outer race fault. In both cases, the filter
showed a very good ability to decompose the signal.

The method should be used on signals resampled to
the period of the shaft. If the original vibration signals
were to be analyzed, natural variations of rotational speed
would in most cases cause the method to be useless. The
important contributions of the work include

• implementation of the SANC filter in Matlab,

• proposal of the simulation of a faulty signal,

• application of the method to wind turbine vibration,

• discussion of a real case with a high noise level.

In the future, more research will be aimed at the
optimization of the method. This will be based on the

optimization of filter parameters and the algorithm it-
self. Eventually, it should be investigated whether and
how the method can be implemented in commercial mon-
itoring and diagnostic systems. It seems that it could
yield promising results for systems monitoring machines,
where there are several spectral components masking
characteristic frequencies of rolling bearings. Due to long
filter lengths, the system should have enough CPU time.
Thus, it is unlikely to be used in continuous protection
systems, e.g., for large turbosets. On the other hand, sys-
tems designed, e.g., for wind turbines sample vibration
signals periodically, not spending the majority of time on
signal processing, but leaving sufficient CPU time for the
proposed advanced analysis.
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