
Int. J. Appl. Math. Comput. Sci., 2009 , Vol. 19 , No. 2 , 337 –348
DOI: 10.2478/v10006-009-0029-z

ADAPTIVE PREDICTION OF STOCK EXCHANGE INDICES BY STATE SPACE
WAVELET NETWORKS
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The paper considers the forecasting of the Warsaw Stock Exchange price index WIG20 by applying a state space wavelet
network model of the index price. The approach can be applied to the development of tools for predicting changes of other
economic indicators, especially stock exchange indices. The paper presents a general state space wavelet network model
and the underlying principles. The model is applied to produce one session ahead and five sessions ahead adaptive predictors
of the WIG20 index prices. The predictors are validated based on real data records to produce promising results. The state
space wavelet network model may also be used as a forecasting tool for a wide range of economic and non-economic
indicators, such as goods and row materials prices, electricity/fuel consumption or currency exchange rates.
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1. Introduction

Nowadays the world is global market and one may say
that all worldwide markets become parts of the general fi-
nancial system. Moreover, the perpetual pursuit of money
is an unquestionable fact. Stock markets offer quick profit
opportunities. Therefore, they are key parts of financial
systems. On the other hand, the stock market is the biggest
gambling area where all investors speculate about share
prices. The Polish stock market in Warsaw is not an ex-
ception. The key Warsaw Stock Exchange (WSE) index
is WIG20. It is the index of twenty leading companies
on the WSE. Contracts between investors regarding the
future price of the WIG20 index constitute a very popu-
lar financial instrument on the WSE. Therefore, investors
are greatly interested in having a reliable tool for WIG20
forecasting. Forecasting stock prices has been widely in-
vestigated nearly since the beginning of stock market his-

tory. There is a number of ’classical’ forecasting methods
such as technical analysis, fundamental analysis, Efficient
Markets Hypothesis (EMH), or various time series meth-
ods like ARMA based methods (Mun, 2006; Tsang et al.,
2007). Also, artificial intelligence models based on neural
networks and/or fuzzy systems are of wide interest (Zhang
et al., 1998; Kuo et al., 2001; Tsang et al., 2007).

In this paper, a recently developed artificial dynamic
neural network with wavelet processing nodes and in-
ternal states called the State Space Wavelet Network
(SSWN) is proposed for forecasting the stock market in-
dex value. The SSWN was initially proposed for mod-
elling nonlinear and nonstationary processes with multi-
ple time scales in internal dynamic and hardly measured
states under uncertainty in the inputs and dynamic mod-
els. It was successfully applied to the input–output mod-
elling in a state-space form of a wastewater treatment
plant (Borowa et al., 2007). The wastewater treatment
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Fig. 1. General structure of the SSWN.

process is commonly recognised as complex (Brdyś et
al., 2008). In addition, it is also a large scale system
due to its geographical distribution. The stock market
has already been recognised as a large scale and com-
plex system. Therefore, the SSWN considered is seen as
a suitable candidate for a modelling base for developing
a tool for reliable and accurate stock market forecasting.
The structure of the SSWN is illustrated in Fig 1, where
yi, i = 1, . . . , N ; xi, i = 1, . . . ,M and ui, i = 1, . . . ,K
denote network outputs, internal states and inputs, respec-
tively. All the variables are discrete time, and the time
variable is denoted by k.

Network internal states do not have to be related to
states of the modelled system. In the case of unknown or
unmeasurable system states, this is a great advantage of
the network model. Identifying state variables of a com-
plex system is in most cases impossible. However, al-
though artificial neural model states can still correctly de-
scribe the impact of system state variable dynamics on the
system output (Zamarreno and Pastora, 1998; Kulawski
and Brdyś, 2000). This vastly improves the ability of the
model to approximate unknown system input-output dy-
namics. The SSWN input-output relationship can be writ-
ten as

xi(k + 1) =
L∑

j=1

wN+i,jΨj(x(k), u(k)),

i = 1, . . . ,M, (1)

yi(k) =
L∑

j=1

wi,jΨj(x(k), u(k)), i = 1, . . . , N, (2)

where wi,j , i = 1, . . . , N +M , j = 1, . . . , L are network
weights to be determined and u(k), x(k) are network in-
put and state vectors at the time instant k, respectively.

Network nodes that process the input information
at time instants k are Multidimensional Radial Wavelons
(MRWs) (Zhang, 1992). MRW processing mappings are
denoted by Ψj , j = 1, . . . , L. Feedforward networks
with wavelet based processing nodes were introduced in
(Zhang and Beneveniste, 1992). The MRW input infor-
mation processing structure is illustrated in Fig. 2. The
mapping R in the Fig. 2 is defined as

z(k) = [x(k), u(k)], (3)

dj = [d1,j , . . . , dK+M,j], (4)

tj = [t1,j , . . . , tK+M,j ], (5)

A(z(k), dj , tj) = diag(dj)(z(k) − tj)T , (6)

R(z(k), dj , tj) = aj(k)

= [AT (z(k), dj , tj)A(z(k), dj , tj)]1/2,
(7)

where the vectors dj , tj , j = 1, . . . , L are composed of
the j-th MRW parameters. Solving Eqns. (3)–(7) yields

aj(k) = [(d1,j(x1 − t1,j))2 + · · · + (dM,j(xM − tM,j))2

+ (dM+1,j(u1 − tM+1,j))2 + · · ·
+ (dM+K,j(uK − tM+K,j))2]1/2.

(8)

From (8) it can now be seen that the components of
the parameter vector dj are scaling coefficients for the
network inputs, while the components of the parameter
vector tj perform translations of the inputs. Finally, the



Adaptive prediction of stock exchange indices by state space wavelet networks 339

Ψ 

u(k) 

x(k) 

R 

u(k) 

x(k) 

ψ aj

Fig. 2. Multidimensional radial wavelon.

mapping ψ in Fig. 2 is a one-dimensional Morlet wavelet
function (Grossmann and Morlet, 1984):

ψ(aj) = exp(−a2
j/2) cos(5aj). (9)

Equations (1)–(9) define an input-output model in a
state space form with the weights wi,j , scaling and trans-
lation factors di,j , ti,j , respectively, that are continuously
varying model parameters to be determined.

In order to design the Stock Exchange Index predic-
tor based on the described SSWN, not only suitable pa-
rameter values must be determined. The SSWN structure
depends on the number of wavelons and states L and M ,
respectively. These are structure parameters to be deter-
mined. Finally, it is very important to identify a vector
of all essential input variables u. In this application, the
latter is difficult and requires at least qualitative knowl-
edge regarding functioning mechanisms of the modelled
Stock Exchange. Unfortunately, such knowledge is still
limited. However, the SSWN applied is supposed to be
built based on principles of artificial intelligence. There-
fore, it is expected that with a properly chosen structure,
which implies the SSWN sufficient approximation capa-
bility to get it accurately trained based on available knowl-
edge, the trained SSWN will manage to properly respond
also under different data than used during its training.

The paper is organised as follows: The Warsaw Stock
Exchange and the key WIG20 index are presented in Sec-
tion 2. The input and output structures of SSWN based
models of the index for the short term and longer term
index prediction are developed in Section 3. Section 4

presents principles of the SSWN off–line training and for-
mulates the training data structure and performance func-
tion. An optimisation solver is described in Section 5,
and it is applied to determine off-line predictor parame-
ters based on historical data records. A mechanism for
on-line network parameter update is introduced in Sec-
tion 6 to produce adaptive index predictors. The adaptive
predictors are validated in Section 7. Section 8 concludes
the paper.

2. Presentation of the Warsaw Stock
Exchange and the WIG20 index

The tradition of capital market in Warsaw goes back to
the 19-th century, when the first mercantile exchange was
founded in 1817. The Warsaw Stock Exchange (WSE)
in the current form was established in 1991 after the
fall of the communism in Poland. At the beginning,
there were only five companies on the market. Com-
paring with today’s three hundred companies, the WSE
has rapidly grown over last 16 years and is at present
the most important stock market in Central and Eastern
Europe, and it is still growing. The capitalisation at the
end of August 2007 was more than 300 billion US dollars
(http://www.gpw.pl, 20-th October 2007).

At present, the following instruments are traded:
shares, bonds, subscription rights, allotment certificates,
investment certificates, and derivative instruments such as
futures, options and index participation units.

There are two main markets within the WSE: main
and parallel. The capitalisation and stability of companies
operating on the main market is rather high. An average
capitalisation and stability of companies operating on the
parallel market is smaller, but an average investment rate
of shares of small companies is rather high. WSE devel-
opment in time is illustrated in Figs. 3 and 4.

There are more than ten indices on the WSE, but the
major indices on the market are WIG, WIG20, mWIG40,
sWIG80. The WIG index includes prices of all shares
on the market, while the WIG20 index includes shares of
twenty leading companies. The mWIG40 index includes
shares of forty medium-size companies, and the sWIG80
index includes shares of the smallest companies. There is
also the New Connect index, established in August 2007,
which includes shares of small and innovative businesses
but comparing with other indices is not regulated.

The Warsaw Stock Exchange Price Index (WIG20)
numerical value is an aggregated price change of twenty,
mostly domestic, stocks, which are best ranked. The for-
mula for determining the WIG20 index score draws upon
both the turnover and market capitalisation during the
month preceding the quarterly revision of the index sam-
ple in a proportion of 60:40. In addition, in order to be
qualified as a new stock in the index sample, a stock must
have ranged among the twenty leaders in at least two of

http://www.gpw.pl
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Fig. 3. Number of companies on the WSE (* forecast made after
nine months).
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Fig. 4. Market value (* forecast made after nine months).

the last three months in terms of the turnover. The WIG20
index is also used as the base instrument in calculating
and valuating terminal contracts. Its value is announced
at the beginning and the end of the trading session to pro-
duce the opening and the closing prices, respectively. In
addition, the index value is calculated on-line during the
session every thirty seconds. The index has been calcu-
lated since the 16-th of April 1994 and all records ever
are available. The value of the WIG20 index is strongly
correlated with trading results of worldwide stocks and, in
particular, the stocks in Europe and North America.

3. Model structure for WIG20 index
forecasting

The SSWN model well captures such features of stock
exchange trading dynamics as nonlinearities, uncertainty
in inputs and structure, and different time scales. How-
ever, significant structure changes of the stock exchange
due to bankruptcy and/or the emerging of new major in-
vestors, for example, requires on-line adaptation of the
model structure (Qi and Brdyś, 2005; 2008).

Correct selection of essential inputs to the WIG20 in-
dex system is a mile stone in designing its SSWN model.
As relations between economic indicators on stock ex-
change markets are extremely complex and almost im-
possible to be measured or estimated, it is impossible to

Table 1. Results of correlation analysis.
Indicator Correlation Description
symbol coefficient of indicator

Value of WIG20
WIG20cl 1,00 index at the

end of session
WIG20vol 0,60 Session volume

of WIG20 index
Value of WIG

WIGcl 1,00 index at the
end of session

Value of sWIG80
sWIG80cl 0,86 index at the

end of session
EUROcl -0,78 Exchange rate

EURO/PLN
USDcl -0,74 Exchange rate

USD/PLN
Value of FTSE100

FTSE100cl 0,97 index at the
end of session

Value of S&P500
S&P500cl 0,92 index at the

end of session
Value of DAX

DAXcl 0,97 index at the
end of session
Value of DJIA

DJIAcl 0,81 index at the
end of session

Value of CAC40
CAC40cl 0,97 index at the

end of session

choose all the factors that influence the index considered.
Therefore, it is attempted to choose only the most impor-
tant factors that influence the predicted index values. Un-
known, complex and nonlinear relations between inputs
and outputs of the SSWN model are estimated during the
process of training, which is discussed in the sequel.

A common approach to selecting input variables is to
build, based on qualitative knowledge, a list of potential
measurable inputs and to apply a standard data correlation
analysis to calculate correlation coefficients between the
input and the output considered. The final input selection
is then based on correlation coefficient values. The larger
the coefficient, the higher selection priority to the corre-
sponding input is assigned.

The results of correlation analysis based on prese-
lected input variables and future values of the WIG20 in-
dex are shown in Table 1. Correlation analysis is strictly
valid only for linear relationships between the predicted
index and economic indicators that are the inputs. In re-
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ality, these relationships are typically heavily nonlinear.
Hence, the analysis should be seen as qualitative. The fi-
nal selection of inputs needs to be done within an iterative
process where different inputs are tried, the predictor is
validated and, based on the validation results, new inputs
are produced. The process stops when the required pre-
diction accuracy is reached.

About 20 input variables were preliminarily selected
when designing the SSWN for one day prediction. Those
included the Polish stock indices, the key American and
European stock indices, terminal contracts, currency ex-
change rates, changes of WIG20 index over one session.

Apart from the above input-output correlation anal-
ysis, mutual input correlation analysis was performed in
order to reduce the number of inputs. Namely, two in-
puts with a high mutual correlation coefficient such as cur-
rency exchange rates, for example, were replaced by one
of them.

Let us consider trading sessions during the day k− 1
and k. Let k − 1 be a discrete time instant located be-
tween the session k − 1 closing time and the session k
opening time. For the k-th session, let WIG20cl (k) and
WIG20op (k) denote the closing and opening index values,
respectively. The following seven inputs are selected for
the SSWN to produce the k-th session (daily) prediction
WIG20cl (k|k − 1) of WIG20cl (k) performed at instant
k − 1, that is, after closing the session k − 1 and at the
same time before opening the session k:

u1(k) � WIG20cl(k − 1) is the index value at the
end of the previous trading session;

u2(k) � WIG20cl(k−1)−WIG20cl(k−2)
WIG20cl(k−2) is the daily rel-

ative change of the index WIG20 value over the previous
day, that is, the day k − 1;

u3 � WIG20cl(k − 1) − WIGop(k − 1) is the ses-
sion index change over the previous trading session that
is, the session k− 1; let us notice that WIG20cl(k− 2) �=
WIG20op(k − 1);

u4 is the difference between the overall gain and
overall loss on the WSE;

u5(k) � FTSE100cl(k−1)−FTSE100cl(k−2)
FTSE100cl(k−2) is the daily

relative change of the British index FTSE100 value over
the previous day, that is, the day k − 1;

u6(k) � S&P500cl(k−1)−S&P500cl(k−2)
S&P500cl(k−2) is the daily

relative change of the American index S&P500 value over
the previous day, that is, the day k − 1;

u7(k) is an integrated PLN exchange rate with regard
to EUR and USD calculated as an unweighted average of
the two based on their daily average exchange rates over
the days k − 1 and k − 2, measured in the GMT+1 time.

Due to SSWN training properties, the input variable
values are scaled to the intervals [−1, 1] for the variables
u2, . . . , u7 that can take both positive and negative val-
ues and [0, 1] for u1, which is positively valued. At the
instant k − 1, the SSWN network operates as follows:

first the new state at k is calculated from (1) as xi(k) =∑L
j=1 wN+i,jΨj(x(k − 1), u(k − 1)), i = 1, . . . ,M ,

and then the network output is calculated according to
(2) as y(k) � y1(k) =

∑L
j=1 w1,jΨj(x(k), u(k)), i =

1, . . . , N . Let us notice that both the inputs u(k − 1) and
u(k) are well defined from the past measurement (obser-
vation) data.

Let us consider now the input structure for the five
sessions (days) ahead prediction of the index WIG20
value, that is, the prediction WIG20cl(k + 4|k − 1) of
WIG20cl(k+4), which is performed after closing the ses-
sion k−1 and at the same time before opening the session
k, that is, at the time instant k − 1. The one session ahead
predictor would be taken as the basis for designing the five
days ahead predictor. Indeed, a standard approach would
be to consecutively apply, starting from k−1, the one ses-
sion ahead predictor. However, only the inputs at k − 1
could be used exactly as required. For k, k+1, . . . , k+4,
the required inputs would have to be replaced by their pre-
dictions available at k− 1. It has been verified that the ac-
curacy of these predictions is not sufficient to obtain in this
manner a desired prediction accuracy of the index value at
k + 4. Hence, the one session prediction approach to pro-
duce the five session ahead prediction must be discarded
and suitable inputs must be selected again. The following
inputs are finally selected as the result of extensive analy-
sis performed as described before:

u1(k) � WIG20cl(k − 1) − WIG20cl(k − 6)
WIG20cl(k − 6)

,

u2(k) �

1
5

5∑

i=1

WIG20cl(k − i) − 1
5

10∑

i=6

WIG20cl(k − i)

1
5

10∑

i=6

WIG20cl(k − i)

=

5∑

i=1

WIG20cl(k − i) −
10∑

i=6

WIG20cl(k − i)

10∑

i=6

WIG20cl(k − i)

,

relative average change of the index value over the five-
day period, and

u3(k) � WIGcl(k − 1) − WIGcl(k − 6)
WIGcl(k − 6)

,

u4(k) � FTSE100cl(k − 1) − FTSE100cl(k − 6)
FTSE100cl(k − 6)

,

u5(k) � S&P500cl(k − 1) − S&P500cl(k − 6)
S&P500cl(k − 6)

.

As previously, the inputs are appropriately scaled so
that their values belong to the intervals [−1, 1] and [0, 1].

There are other qualitative factors having significant
impact on the predicted index values such as political cli-
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mate or investor moods, which are not on the input vari-
able list as they are not numerically quantifiable. In order
to incorporate them into a set of inputs, the SSWN would
have to be augmented by introducing fuzzy logic compo-
nents, for example. However, this is still under research.

Let us notice that most of the inputs are of an incre-
mental type. Therefore, the same structure of the SSWN
output is assumed. Hence,

y(k) � ΔWIG20(k|k − 1)

� WIG20cl(k|k − 1) − WIG20cl(k − 1|k − 1)
WIG20cl(k − 1|k − 1)

=
WIG20cl(k ‖ k − 1) − WIG20cl(k − 1)

WIG20cl(k − 1)
,

for one session ahead prediction, and

y(k) � ΔWIG20(k + 4|k − 1)

� WIG20cl(k + 4|k − 1) − WIG20cl(k − 1|k − 1)
WIG20cl(k − 1|k − 1)

=
WIG20cl(k + 4|k − 1) − WIG20cl(k − 1)

WIG20cl(k − 1)
,

for prediction five sessions ahead.

4. Training of the SSWN

Having defined SSWN inputs and outputs, it remains to
determine suitable values of network parameters, which
are wi,j , i = 1, . . . ,M + 1, j = 1, . . . , L (see (1) and
(2)), dj , tj , j = 1, . . . , L (see (4) and (5)). This is done
by using historical data and searching for parameters val-
ues such that the corresponding prediction error is mini-
mal. The procedure is called network training (Zhang et
al., 2007; Borowa et al., 2007). The SSWN structure and
its optimised parameters for one session ahead prediction
are illustrated in Fig. 5. The resulting SSWN is then vali-
dated by using different data sets in order to asses its gen-
eralisation properties. The parameter search is performed
by solving an appropriately formulated optimisation prob-
lem. As the parameters are mixed-integer and the SSWN
is described by a nonlinear mapping, solving the optimi-
sation problem is a very challenging task for any known
optimisation solver. Hence, we shall separate determining
the number of states M and the number of wavelons L,
which are the integer valued SSWN structure parameters,
from determining the continuously valued parameters of
the SSWN, which are W, d and t. The former will be pre-
sented later, and for the time being M and L are assumed
known. The latter will be determined by applying a global
stochastic optimiser being a further development of an al-
gorithm presented in (Borowa et al., 2007).

When preparing the training data, special attention
needs to be paid to the impact of the network initial state
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Fig. 6. Training data structure.

on its output. The SSWN state is artificial and there is
no physical counterpart of it. It is used entirely to im-
prove network approximation properties. Hence, the net-
work output can be considered valid for prediction pur-
poses only after a period time needed to get the initial
state discharged so that its impact on the output can be
neglected. This requires that the SSWN be input to state
stable (Khalil, 2002). Stability conditions expressed in
terms of network parameters were derived for neural net-
works in, e.g., (Sanchez and Perez, 1999; Kulawski and
Brdyś, 2000; Nguyen and Brdyś, 2006). This is still under
research for our SSWN, for which stability was demon-
strated by simulation for a wide range of the parameter
values in (Borowa et al., 2007). Let us denote the initial
state discharge time by J . It is determined by simulation
performed for representative network parameter sets. The
training data series is then composed of historical trading
sessions used to calculate the prediction errors and initial
sessions during which the initial network state discharges,
as illustrated in Fig. 6.

Let us now consider the training of the SSWN per-
forming one session ahead prediction. Given the network
parameters w, t, d, the prediction performance is evalu-
ated overN consecutive sessions according to the follow-
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ing performance function:

E(w, t, d) =
N+J∑

i=J+1

e2i (w, t, d), (10)

ei = y(i) − WIG20cl(i) − WIG20cl(i− 1)
WIG20cl(i− 1)

,

(11)

where i is a session number, ei stands for the prediction
error for session i, andE denotes the total prediction error
over N sessions.

Optimising the performance functionE(w, t, d) with
respect to the parameters is performed by a simulated an-
nealing solver, presented in the following section. The
solver turned out to be efficient in training SSWN for
modelling a wastewater treatment plant (Borowa et al.,
2007). Each iteration of the solver starts from discharging
the network state initial condition for the actual parameter
values. This is done by running the network over the first
J sessions to discharge the initial condition applied at the
beginning of Session 1 and determine the initial state cor-
responding to the actual parameters with which the predic-
tion error over the next N session is evaluated. The same
approach is applied to the training of the SSWN, which
performs five sessions ahead prediction.

5. Application of simulated annealing to
SSWN training

5.1. Presentation of the simulated annealing solver.
Simulated Annealing (SA) was inspired by thermodynam-
ics (statistical mechanics). The algorithm was motivated
by the growing mechanism of a single crystal from a melt
(Kirkpatrick et al., 1983). It was found that slow cool-
ing (annealing) of melted metal goes to a low energy state
while fast cooling does not. The main part of the SA
algorithm is the Metropolis Monte Carlo search, which
was proposed in (Metropolis et al., 1953). The anneal-
ing schedule was added in (Kirkpatrick et al., 1983) in
order to formalise the SA algorithm. In the process of op-
timisation, only one chain of atoms is used because SA
convergence is not initial conditions dependent due to the
exploring nature of the method.

5.1.1. Metropolis Monte Carlo. As opposed to many
nonlinear programming algorithms, the Metropolis Monte
Carlo (MMC) algorithm, as well as genetic algorithms,
allows incorporating a worse solution in the search for a
better solution. This algorithm works on a chain of atoms
(S), which is a chromosome equivalent in genetic algo-
rithms. The chain of atoms is illustrated as

S = [s1, s2, . . . , sq], (12)

where si is a single atom and q is the number of atoms.

The MMC method is a modified Monte Carlo
scheme. Whilst in th latter scheme a new solution is cho-
sen fully randomly, in the former the new solution (new
chain of atoms) is chosen randomly but from a bounded
area and is compared with the old solution (Metropolis
et al., 1953). In each step only one, randomly chosen from
the chain, atom (si) is disturbed. Disturbing the single
atom is performed according to

si → si + αξ, (13)

where α is the maximum magnitude of the allowed distur-
bance and ξ is random number from the interval [−1, 1].

After the new chain (S′) has been chosen, its energy
(cost function) E(S′) is calculated. A difference ΔE be-
tween the primary chain S and disturbed chain S′ energies
is calculated according to

ΔE = E(S′) − E(S). (14)

If ΔE < 0, then the new chain S′ is accepted. Otherwise,
the new chain is conditionally accepted with a probability
given by the Boltzmann probability factor

P (ΔE) = exp

(
−ΔE
kBT

)
, (15)

where kB is a Boltzman constant and T is a temperature
factor.

Whilst T is not real temperature and kB is a constant,
the product kBT may be replaced for practical implemen-
tation with a single factor TP (ΔE), which is now com-
pared against a randomly chosen number from the interval
[0, 1]. If it is less than P (ΔE), then the configuration is
retained. Otherwise the original chain is restored to start a
new step.

5.1.2. Simulated annealing algorithm. MMC is an
integral part of the simulated annealing algorithm. It fol-
lows from (15) that the probability of worse solution ac-
ceptance is a function of ΔE as well as T . The factor T
is called temperature. Kirkpatrick et al. (1983) proposed
to first melt the system at a high temperature and then to
optimise it at a given temperature. The temperature ought
to be lowered slowly as long as the system is not frozen.
A dedicated annealing schedule is used for lowering the
temperature. The SA algorithm illustrated in Fig. 7 works
iteratively as follows: for a given temperature (T0), the
Metropolis Monte Carlo (MMC) method is applied. If the
chain of atoms is said to be stable (optimised at a given
temperature) then new T is computed and MMC is ap-
plied again; this procedure goes on until the temperature
reaches zero or the energy of the system reaches an op-
timum. The temperature is updated according to the an-
nealing schedule,
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YES 

- initialisation of a chain 
of atoms 

- determination of the 
initial temperature T0 

START 

N iterations of MMC for a 
fixed temperature T

Stop 
conditions? 

STOP 

NO 

Compute 
new 
temperature 

Fig. 7. General information structure of simulated annealing.

T (n) = f(T0, n), (16)

T (n+ 1) < T (n) (17)

is satisfied, where the condition. Here T0 is the initial
temperature and n is the SA iteration counter (Kirkpatrick
et al., 1983).

Kirkpatrick (1983) proposed a cooling schedule
given by

T (n) =

(
T1

T2

)n

·T0, (18)

where T0 and T1 are cooling parameters. In (Hajek, 1988),
a logarithmic cooling schedule was proposed as in

T (n) =
T0

log(1 + n)
, (19)

and convergence conditions were derived for the SA al-
gorithm. Few of the commonly used are also the cooling
schedules

T (n+ 1) = γ·T (n), T (1) = T0, (20)

T (n) = T0· exp(−γn), (21)

where γ is a cooling factor, and

T (n) =
T0

1 + ln(n)
, (22)

cf. (Jacobson et al., 2005; Karafyllidis, 1999). The cool-
ing parameters (T0, T1 or γ) must be selected appropri-
ately to ensure the convergence conditions (Hajek, 1988;
Locatelli, 2000).

Practically, the stability of a chain of atoms is verified
by checking if the MMC iteration counter has reached a
number specified in advance.

5.1.3. Implementation of the simulated annealing
solver. The chain of atoms is composed of all network
optimised parameters, that is

S = [w1, . . . , wNw , d1, . . . , dNd
, t1, . . . , tNt ], (23)

where di, i = 1, . . . , Nd are scaling parameters, ti,
i = 1, . . . , Nt are translation parameters, and wi, i =
1, . . . , Nw are network output weights.

During training, a single atom is randomly selected
at each step of the MMC algorithm with regard to con-
straints. The cooling is implemented according to

T (n) =
T0

1 + ln(n)
. (24)

The initial temperature T0 was chosen to be equal
to 0.005. MMC performs only one iteration between two
temperature updates.

5.2. Determining SSWN parameters. Structure pa-
rameters are determined by directly searching over their
value spaces. Giving the structure parameter value, the
SA algorithm is applied to calculate optimised weights
and wavelon parameters for selected training data. The
graph in Fig. 8 illustrates the optimised training error in
terms of the number of wavelons L under a fixed number
of state variables M .

Training weights and wavelon processing parameters
is long, and this needs to be considered by the predictor
designer as parameter updates need to be performed in
order to quickly respond to significant structural changes
on the stock exchange. Therefore, the SSWN structure
should not be too large and the training data time series
length should not be too long. For example, an increase
in the wavelon number implies an exponential increase in
the training time. Comprehensive simulation trials have
shown that a satisfactory trade-off between the training
time and the resulting SSWN accuracy is achieved for the
wavelon number between seven and twelve. A further in-
crease in the number of wavelons does not improve the
network accuracy but only increase the training time. Ap-
plying the same methodology, the number of states was
determined. A good compromise between the training
time and the network accuracy is achieved with the struc-
ture parameters as in Table 2. With these parameters, the
SA solver finds a solution under the prescribed network
accuracy for the one session ahead predictor in 70,000 it-
erations. This takes 120 minutes of computing time on an
AMD Athlon 1900 Mhz processor. For five sessions ahead
predictor, the training time is shorter due to a smaller
structure of the predictor. The final structures of the one
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Fig. 8. Optimised training error vs. the number of wavelons un-
der a fixed number of SSWN states.
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Fig. 9. Structure of the SSWN for one session ahead prediction
of the WIG20 index.
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Fig. 10. Structure of the SSWN for five sessions ahead predic-
tion of the WIG20 index.

Table 2. Selected structure parameters of the SSWN.
SSWN parameters WSE-WIG forecast

Number of inputs
Number of wavelons

Number of states

1-session 5-sessions
ahead ahead

7 5
10 6
10 4

step ahead predictor and five step ahead predictor are il-
lustrated in Figs. 9 and 10, respectively.

6. Adaptive prediction

Preliminary validation of predictors on data different than
those used for training have shown not entirely satisfac-
tory results. This is mainly due to not including certain
variables as the inputs, which have influence on the pre-
dicted index value. Some of them are not included as
they are not measurable; the others have not been iden-
tified. The predictor trained on a selected data set accom-
modates these uncertainties in parameter values. If the
uncertain inputs remain constant or they slowly vary, the
predictor still performs well on different data sets. Oth-
erwise, the parameters need to be updated on-line during
the predictor operation. This leads to an adaptive predic-
tor where initially the SSWN is trained off-line based on
longer data sets as described earlier. The same training
scheme is then applied on-line to update network param-
eters to actual values of the uncertain variables. However,
the training performance function onEk(w, t, d) at the in-
stant k is now modified by introducing the weights with
which the prediction errors during the previous sessions
k, k = 1, . . . , k − N contribute to an overall prediction
error over the last N trading sessions. Namely,

Ek = (w, t, d) =
k∑

i=k−N

ω(i)e2i (w, t, d), (25)

where

ω(i) =
2i
N
, (26)

and the i-th session ei is defined as in (11)
The weights ω(i) are linearly growing in time reach-

ing the highest value for the last prediction error. Hence,
the actual uncertainty input values are best accommodated
into the resulting network parameter values w(k), t(k),
d(k) obtained at the instant k. The optimisation solver
starts from the parameters w(k − 1), t(k − 1), d(k − 1)
determined at the last time instant k − 1. Hence, the on-
line training time reduces. For the structure parameters as
in Table 2, the number of iterations decreases from 70,000
to 15,000 and the computing time from 120 minutes to 25
minutes, for the one session ahead predictor. Hence, on-
line parameter update is perfectly feasible to be performed
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Fig. 11. Results of the validation of the one session ahead predictor in an incremental scale: circle—forecast; cross (x)—real value.
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Fig. 12. Results of the validation of the one session ahead predictor in an absolute scale: solid line—real value; dashed line—forecast.
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Fig. 13. Results of the validation of the five session ahead predictor in an incremental scale: circle—forecast; cross (x)—real value.
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Fig. 14. Results of the validation of the five session ahead predictor in an absolute scale: solid line—real value; dashed line—forecast.

during the time periods remained between two trading ses-
sions. Similar results were obtained for the five sessions
ahead predictor.

7. Validation results

The designed SSWN based predictors were validated
based on real data records from the Warsaw Stock Ex-
change.

The one session ahead predictor was validated based
on data records composed of 20 subsequent sessions and
gathered over the period of 15 September to 20 Octo-
ber 2005. The results obtained are illustrated in Figs. 11
and 12 by applying the incremental and absolute index
value scales, respectively, and are summarised in Table 3.

The validation results show that the predictor can be
effectively used to perform on-line one session ahead pre-
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Table 3. Validation results of the accuracy of the one session
ahead predictor.

Prediction accuracy measure Units

Average prediction error
Maximal prediction error

Real average volatility
of the index WIG20

over a session

[stock points] [%]

2.2 0.13
7.8 0.36

23.3 1.04

Table 4. Validation results of the accuracy of the five session
ahead predictor.

Prediction accuracy measure Units

Average prediction error
Maximal prediction error

Real average volatility
of the index WIG20

over 5 session

[stock points] [%]

38.6 1.30
108.6 3.38

109.6 3.35

diction of the WIG20 index value. Notice that the average
prediction error is one order smaller than the predicted in-
dex average change over one session.

The five sessions ahead predictor was validated based
on data records gathered over the period of 24 July 2005
to 9 September 2006. The results obtained are illustrated
in Figs. 13 and 14 in the incremental and absolute index
value scales, respectively, and are summarised in Table 4.

Comparing the one session ahead and five session
ahead prediction results, it can be seen that the average
prediction error is greater for the latter. This is not sur-
prising as the prediction horizon is longer in that case.
However, the average prediction error is about three times
smaller than the predicted index average change over five
sessions. Hence, the predictor is still useful in performing
on-line five sessions ahead prediction of the WIG20 index
value. It seems that, first of all, introducing new inputs
into the SSWN but not augmenting the network structure
by new states and wavelons would certainly improve the
prediction accuracy. However, identifying such inputs that
are long term informative from the predicted index point
of view and at the same time measurable (quantifiable) is
much more difficult than in the one step ahead prediction
case.

8. Conclusions

The paper has considered the prediction of the Warsaw
Stock Exchange Price Index WIG20 price by using a
newly developed artificial dynamic state space wavelet
network model of the index price. The approach can be
applied to developing tools for predicting changes of other
economic indicators, especially stock exchange indices.
Short and longer term predictors were designed for one

trading sessions ahead and five trading sessions ahead pre-
diction. An adaptive mechanism was introduced into the
off-line designed predictor in order to better incorporate
into network parameters the uncertainty in market vari-
ables not included in the set of predictor inputs. The com-
puting time due to parameter adaptation is not excessive
so that on-line operation of predictors is perfectly feasi-
ble. Incorporating heterogonous knowledge into predictor
inputs by using a fuzzy logic interface is under research.
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Marcin T. Brdyś received a B.Sc. degree in
economics and an MBA degree from the Uni-
versity of Wales Cardiff Business School in
1997 and 1999, respectively. Since 2000 he
has gained extensive experience working at Eu-
ropean financial hubs, notably in the City of
London, Frankfurt and Warsaw. The experi-
ence gained was working for some of the indus-
try most revived financial institutions, includ-
ing Schroder Salomon Smith Barney, European

Central Bank, Fimat Societe Generale International Banque SA and DZ
Bank Polska SA. His specialising is in risk management as well as pric-
ing the interest rate and equity derivatives. At the beginning of 2008 he
received the internationally recognized Financial Risk Manager Certified
qualification.

Received: 9 May 2008
Revised: 14 September 2008


	Introduction
	Presentation of the Warsaw Stock Exchange and the WIG20 index
	Model structure for WIG20 index  forecasting
	Training of the SSWN
	Application of simulated annealing to SSWN training
	Presentation of the simulated annealing solver
	Metropolis Monte Carlo
	Simulated annealing algorithm
	Implementation of the simulated annealing solver

	Determining SSWN parameters

	Adaptive prediction
	Validation results
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


