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In this paper, the time-optimal control problem for infinite order hyperbolic systems in which time delays appear in the
integral form both in state equations and in boundary conditions is considered. Optimal controls are characterized in terms
of an adjoint system and shown to be unique and bang-bang. These results extend to certain cases of nonlinear control
problems. The particular properties of optimal control are discussed.
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1. Introduction

Various optimization problems associated with opti-
mal control of second order distributed parameter sys-
tems with time delays appearing in boundary condi-
tions were studied in (Wang, 1975; Knowles, 1978;
Kowalewski, 1993a; 1993b; 1995; 1998; 2000; 2003).

In (Knowles, 1978), time optimal control problems
of linear parabolic systems with Neumann boundary con-
ditions involving constant time delays were considered.

These equations constitute, in a linear approxima-
tion, a universal mathematical model for many diffusion
processes in which time-delayed feedback signals are in-
troduced at the boundary of a system’s spatial domain. For
example, in the area of plasma control (Wang, 1975), it is
of interest to confine a plasma in a given bounded spatial
domain Ω by introducing a finite electric potential barrier
or a “magnetic mirror” surrounding Ω. For a collision-
dominated plasma, its particle density is describable by a
parabolic equation. Due to particle inertia and the finite-
ness of the electrical potential barrier or the magnetic-
mirror field strength, the particle reflection at the domain
boundary is not instantaneous. Consequently, the parti-
cle flux at the boundary of Ω at any time depends on the
flux of particles which escaped earlier and reflected back
into Ω at a later time. This leads to boundary conditions
involving time delays.

Using the results of (Wang, 1975), the existence of a
unique solution of such parabolic systems was discussed.
A characterization of optimal control in terms of the ad-

joint system was given. Consequently, this characteriza-
tion was used to derive specific properties of optimal con-
trol (bang-bangness, uniqueness, etc.). These results were
also extended to certain cases of nonlinear control without
convexity and to certain fixed-time problems.

Consequently, in (Kowalewski, 1993a; 1993b; 1995;
1998; 2000), linear quadratic problems for hyperbolic sys-
tems with time delays given in various forms (constant
time delays, time-varying delays, integral time delays,
etc.) were presented.

In particular, in (Kowalewski, 2003), time-optimal
control problems for second order hyperbolic systems
with deviating arguments appearing in the integral form
both in state equations and in Neumann boundary con-
ditions were considered. The presented minimum time
problem can be generalized onto the case of time-delay
infinite order hyperbolic systems. For this reason, in the
present paper we consider the time-optimal control prob-
lem for linear infinite order hyperbolic systems in which
time delays appear in the integral form both in state equa-
tions and in Neumann boundary conditions.

Such hyperbolic systems constitute in a linear
approximation mathematical models of representative
convection-reaction processes, e.g., fixed-bed reactors,
pressure swing absorbtion processes, etc.

We consider a different type of equations, namely,
infinite order partial differential equations of hyperbolic
type and a new type of time delays given in the integral
form.
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The existence and uniqueness of solutions for such
hyperbolic equations were proved—Lemma 1 and The-
orem 1. Optimal control is characterized by the adjoint
problem—Lemma 2 and Theorem 2. By using this char-
acterization, particular properties of optimal control are
proved, i.e., uniqueness and the bang-bang property—
Theorem 3 and 4.

Moreover, the time-optimal control problems pre-
sented in this paper are extended to certain cases of non-
linear control without the assumption about convexity—
Theorem 5. Examples of application are also presented.

2. Preliminaries

Let Ω be a bounded open set of R
n with smooth bound-

ary Γ. We define the infinite order Sobolev space
H∞{aα, 2}(Ω) of functions Φ(x) defined on Ω (Dubin-
skij, 1975; 1976) as follows:

H∞{aα, 2}(Ω)

=

⎧
⎨

⎩
Φ(x) ∈ C∞(Ω) :

∞∑

|α|=0

aα ‖ DαΦ ‖2
2< ∞

⎫
⎬

⎭
,

(1)

where C∞(Ω) is the space of infinitely differentiable
functions, aα ≥ 0 is a numerical sequence and ‖ · ‖2

is the norm in the space L2(Ω), and

Dα =
∂|α|

(∂x1)α1 . . . (∂xn)αn
, (2)

α = (α1, . . . , αn) being a multi-index for differentiation,
|α| =

∑n
i=1 αi.

The space H−∞{aα, 2}(Ω) (Dubinskij, 1975; 1976)
is defined as the formal conjugate space to the space
H∞{aα, 2}(Ω), namely,

H−∞{aα, 2}(Ω)

=

⎧
⎨

⎩
Ψ(x) : Ψ(x) =

∞∑

|α|=0

(−1)|α|aαDαΨα(x)

⎫
⎬

⎭
,

(3)

where Ψα ∈ L2(Ω) and

∞∑

|α|=0

aα ‖ Ψα ‖2
2 < ∞.

The duality pairing of the spaces H∞{aα, 2}(Ω) and
H−∞{aα, 2}(Ω) is postulated by the formula

〈Φ, Ψ〉 =
∞∑

|α|=0

aα

∫

Ω

Ψα(x)DαΦ(x) dx, (4)

where Φ ∈ H∞{aα, 2}(Ω), Ψ ∈ H−∞{aα, 2}(Ω).

From the above, H∞{aα, 2}(Ω) is everywhere
dense in L2(Ω) with topological inclusions and
H−∞{aα, 2}(Ω) denotes the topological dual space
with respect to L2(Ω), so we have the following chain:

H∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆ H−∞{aα, 2}(Ω) . (5)

3. Existence and uniqueness of solutions

Consider now the distributed-parameter system described
by the following hyperbolic delay equation:

∂2y

∂t2
+ Ay+

b∫

a

c(x, t)y(x, t − h) dh = u,

x ∈ Ω, t ∈ (0, T ),

(6)

y(x, t′) = Φ0(x, t′), x ∈ Ω, t′ ∈ [−b, 0), (7)

y(x, 0) = yp(x), x ∈ Ω, (8)

y′(x, 0) = yI(x), x ∈ Ω, (9)

∂y

∂ηA
=

b∫

a

d(x, t)y(x, t − h) dh + v,

x ∈ Γ, t ∈ (0, T ),

(10)

y(x, t′) = Ψ0(x, t′), x ∈ Γ, t′ ∈ [−b, 0), (11)

where Ω has the same properties as in Section 2,

y ≡ y(x, t; u), u ≡ u(x, t), v ≡ v(x, t),

Q ≡ Ω× (0, T ), Q̄ = Ω̄× [0, T ], Q0 = Ω× [−b, 0),

Σ = Γ × (0, T ), Σ0 = Γ × [−b, 0),

• y is a function defined on Q such that Ω × (0, T ) 

(x, t) �→ y(x, t) ∈ R,

• u, v are functions defined on Q and Σ such that

Ω × (0, T ) 
 (x, t) �→ u(x, t) ∈ R and

Γ × (0, T ) 
 (x, t) �→ v(x, t) ∈ R, respectively,

• c is a given real C∞ function defined on Q̄,

• d is a given real C∞ function defined on Σ,

• h is a time delay such that h ∈ (a, b) and a > 0,

• Φ0, Ψ0 are initial functions defined on Q0 and Σ0

such that

Ω × [−b, 0) 
 (x, t′) �→ Φ0(x, t′) ∈ R, and

Γ × [−b, 0) 
 (x, t′) �→ Ψ0(x, t′) ∈ R, respectively.
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The operator ∂2

∂t2 + A in the state equation (6) is an
infinite order hyperbolic operator and A (Dubinskij, 1986;
El-Saify and Bahaa, 2002) is given by

Ay =

⎛

⎝
∞∑

|α|=0

(−1)|α|aαD2α + 1

⎞

⎠ y, (12)

and

∞∑

|α|=0

(−1)|α|aαD2α (13)

is an infinite order elliptic partial differential operator.

The operator A is a mapping of H∞{aα, 2} onto
H−∞{aα, 2}. For this operator, the bilinear form
Π(t; y, ϕ) = (Ay, ϕ)L2(Ω) is coercive on H∞{aα, 2},
i.e., there exists λ > 0, λ ∈ R such that Π(t; y, ϕ) ≥
λ‖y‖2

H∞{aα,2}. We assume that for any y, ϕ ∈
H∞{aα, 2} the function t → Π(t; y, ϕ) is continuously
differentiable in [0, T ] and Π(t; y, ϕ) = Π(t; ϕ, y).

Equations (6)–(11) constitute a Neumann problem.
Define the right-hand side of (10) by

q(x, t) :=

b∫

a

d(x, t)y(x, t − h) dh + v(x, t). (14)

Then (10) can be written as

∂y

∂ηA
=

∞∑

|w|=0

(Dwy(v)) cos(n, xi) = q(x, t)

x ∈ Γ, t ∈ (0, T ),

(15)

where ∂y/∂ηA is the normal derivative at Γ, directed to-
wards the exterior of Ω, cos(n, xi) is the i-th direction
cosine of n, with n being the normal at Γ exterior to Ω.

Remark 1. We shall apply the indication q(x, t) appear-
ing in (14) to prove the existence of a unique solution for
(6)–(11).

We shall formulate sufficient conditions for the exis-
tence of a unique solution of the mixed initial-boundary
value problem (6)–(11) for the cases where the func-
tion u is a element of the space H0,1(Q) (i.e., u ∈
L2(0, T ; H0(Ω)) = L2(Q) and u′ = ∂u/∂t ∈
L2(0, T ; H0(Ω))).

We consider the Sobolev space H∞,2(Q) (Lions and
Magenes, 1972) defined by

H∞,2(Q) = H0(0, T ; H∞{aα, 2}(Ω))

∩H2(0, T ; H0(Ω))

which is a Hilbert space normed by

⎛

⎝

T∫

0

‖y(t)‖2
H∞{aα,2}(Ω)dt +‖y‖2

H2(0,T ;H0(Ω)))

⎞

⎠

1/2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(16)

where H2(0, T ; H0(Ω)) denotes the Sobolev space of
second order consisting of functions defined on (0, T ) and
taking values in H0(Ω).

For simplicity, we introduce the following notation:

Ej
∧= ((j − 1)a, ja), Qj = Ω × Ej ,

Σj = Γ × Ej for j = 1, . . . , K, where K = T/a.

The existence of a unique solution for the mixed
initial-boundary value problem (6)–(11) on the cylinder
Q can be proved using a constructive method, i.e., solving
at first Eqns. (6)–(11) on the subcylinder Q1 and in turn on
Q2, etc., until the procedure covers the whole cylinder Q.
In this way, the solution in the previous step determines
the next one.

Consequently, using Theorem 3.1 of (Lions and Ma-
genes, 1972), one may prove the following lemma.

Lemma 1. Let
u ∈ H0,1(Q), (17)

fj ∈ H0,1(Qj), (18)

where

fj(x, t) = u(x, t) −
b∫

a

c(x, t)yj−1(x, t − h) dh,

qj ∈ H∞,3(Σj), (19)

with

qj(x, t) =

b∫

a

d(x, t)yj−1(x, t − h) dh + v(x, t),

wj−1(·, (j − 1)a)
= yj−1(·, (j − 1)a) ∈ H∞{aα, 2}(Ω),

(20)

w′
j−1(·, (j − 1)a)

= y′
j−1(·, (j − 1)a) ∈ H∞{aα, 2}(Ω),

(21)

and the following compatibility relations are fulfilled:

∂yj−1

∂ηA
(x, (j − 1)a) = qj(x, (j − 1)a) on Γ, (22)
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∂y′
j−1

∂ηA
(x, (j − 1)a)

+
(

∂

∂t

(
∂

∂η A

))

yj−1(x, (j − 1)a)

=
∂

∂t
qj(x, (j − 1)a) on Γ.

(23)

Then, there exists a unique solution yj ∈ H∞,2(Qj) for
the mixed initial-boundary value problem (6), (10), (20),
(21).

Proof. For j = 1, y0|Q0
(x, t − h) = Φ0(x, t − h) and

y0|Σ0
(x, t − h) = Ψ0(x, t − h), respectively. Then

the assumptions (18)–(21) are fulfilled if Φ0 ∈
H∞,2(Q0), v ∈ H∞,3(Σ) and Ψ0 ∈ H∞,3(Σ0).
These assumptions are sufficient to ensure the exis-
tence of a unique solution y1 ∈ H∞,2(Q1) if yp ∈
H∞{aα, 2}(Ω), yI ∈ H∞{aα, 2}(Ω) and the following
compatibility conditions are satisfied:

∂yp

∂ηA
(x, 0) = q1(x, 0) on Γ, (24)

∂yI

∂ηA
(x, 0)+

(
∂

∂t

(
∂

∂η A

))

yp(x, 0) =
∂

∂t
q1(x, 0) on Γ.

(25)
In order to extend the result to Q2, it is necessary to

impose the compatibility relations

∂y1

∂ηA
(x, a) = q2(x, a) on Γ, (26)

∂y′
1

∂ηA
(x, a)+

(
∂

∂t

(
∂

∂η A

))

y1(x, a) =
∂

∂t
q2(x, a) on Γ,

(27)
and it is sufficient to verify that

f2 ∈ H0,1(Q2), (28)

w1(·, a) = y1(·, a) ∈ H∞{aα, 2}(Ω), (29)

w′
1(·, a) = y′

1(·, a) ∈ H∞{aα, 2}(Ω), (30)

q2 ∈ H∞,3(Σ2). (31)

First, using the solution in the previous step and the con-
dition (17), we can immediately prove the condition (28).

To verify (29) and (30), we use the fact (by Proposi-
tion 3.1 of (Lions and Magenes, 1972)) that the function
w1 has the following properties:

w1 ∈ L2(E1; H∞{aα, 2}(Ω)),

w′
1 ∈ L2(E1; H∞{aα, 2}(Ω)),

w
′′′
1 ∈ L2(E1; H0(Ω)).

Then from Theorem 3.1 of (Lions and Ma-
genes, 1972) it follows that the mappings

t → w1(·, t) and t → w′
1(·, t) are continuous from

[0, a] → H∞{aα, 2}(Ω) and [0, a] → H∞{aα, 2}(Ω),
respectively. Hence w1(·, a) ∈ H∞{aα, 2}(Ω) and
w′

1(·, a) ∈ H∞{aα, 2}(Ω). But from Section 3 of (Lions
and Magenes, 1972) it follows that w1(·, a) = y1(·, a)
and w′

1(·, a) = y′
1(·, a). From the proceding results

we can deduce that y1(·, a) ∈ H∞{aα, 2}(Ω) and
y′
1(·, a) ∈ H∞{aα, 2}(Ω). Again, from the trace the-

orem of (Lions and Magenes, 1972), y1 ∈ H∞,2(Q1)
implies that y1 → y1|Σ1

is a linear continuous mapping
of H∞,2(Q1) → H∞,2(

∑
1) ⊂ H∞,3(

∑
1). Thus

y1|∑
1
∈ H∞,3(Σ1). Assuming that c is a C∞ function

and v ∈ H∞,3(Σ), the condition (31) is fulfilled. Then,
there exists a unique solution y2 ∈ H∞,2(Q2). We shall
now extend our result to any Qj , 2 < j ≤ K. �

Theorem 1. Let yp, yI , Φ0, Ψ0, v and u be given
with yp ∈ H∞{aα, 2}(Ω), yI ∈ H∞{aα, 2}(Ω),
Φ0 ∈ H∞,2(Q0), Ψ0 ∈ H∞,3(Σ0), v ∈ H∞,3(

∑
),

u ∈ H0,1(Q) and the compatibility relations (24), (25)
be fulfilled. Then there exists a unique solution y ∈
H∞,2(Q) for the mixed initial-boundary value problem
(6)–(11) with y(·, a) ∈ H∞{aα, 2}(Ω) and y′(·, a) ∈
H∞{aα, 2}(Ω) for j = 1, . . . , K .

4. Problem formulation. Optimization theo-
rems

Now, we shall formulate the minimum-time problem for
(6)–(11) in the context of Theorem 1, that is,

u ∈ UQad =
{
u ∈ H0,1(Q) : | u(x, t) |≤ 1

}
. (32)

We shall define the target set W such that

W =
{
y ∈ L2(Ω) : ‖ y − zd ‖L2(Ω)≤ ε

}
, (33)

where zd, ε are given with zd ∈ L2(Ω) and ε > 0.
The solving of the formulated minimum-time prob-

lem is equivalent to hitting the target set W in minimum
time.

Moreover, we assume that

there exists a T > 0 and u ∈ UQad

with

(

y(T ; u),
∂y(T ; u)

∂t

)

∈ W.
(34)

Theorem 2. If the assumption (34) holds, then the set W
is reached in minimum time t∗ by an admissible control
u∗ ∈ UQad . Moreover,

−
∫

Ω

(zd − y(t∗; u∗))(y(t∗; u) − y(t∗; u∗)) dx ≤ 0,

∀u ∈ UQad ,

(35)
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Proof. Let us define the following set:

t∗
df
= inf

{

t :
(

y(t; u),
∂y(t; u)

∂t

)

∈ W

for some u ∈ UQad

}

. (36)

The infimum is well defined, as (34) quarantees that this
set is nonempty. By definition, we can choose tn ↓ t∗ and
admissible controls {un} such that
(

y(tn; un),
∂y(tn; un)

∂t

)

∈ W, n = 1, 2, 3, . . . . (37)

Each un is defined on Ω × (0, tn) ⊃ Ω × (0, t∗). To sim-
plify the notation, we denote the restriction of un to Ω ×
(0, t∗) again by un. The set of admissible controls then
forms a weakly compact, convex set in H0,1(Ω× (0, t∗)),
and so we can extract a weakly convergent subset {um},
which converges weakly to some admissible control u∗.

Consequently, Theorem 1 implies that
y(t; u) ∈ H∞{aα, 2}(Ω) ⊂ L2(Ω) and ∂y(t; u)/∂t
∈ H∞{aα, 2}(Ω) ⊂ L2(Ω) for each u ∈ H0,1(Q)
and t > 0. Then, using Theorem 1.1 of (Lions, 1971)
and Theorem 1, we can prove that the mapping
H0,1(Ω × (0, t∗)) → L2(Ω) × L2(Ω), defined by

u �→
(

y(t∗; u),
∂y(t∗; u)

∂t

)

,

is continuous. Since any continuous linear mapping be-
tween Banach spaces is also weakly continuous (Dunford
and Schwartz, 1958, Theorem V. 3.15), the affine mapping

u �→
(

y(t∗; u),
∂y(t∗; u)

∂t

)

must also be weakly continuous. Hence
{

y(t∗; um) → y(t∗; u∗) weakly in L2(Ω),

ẏ(t∗; um) → ẏ(t∗; u∗) weakly in L2(Ω).
(38)

Further,
∂y(u)

∂t
∈ L2([0, t∗], H0(Ω)),

∂2y(u)
∂t2

∈ L2([0, t∗], H0(Ω)),

for each u ∈ U , by definition of H∞,2(Ω × (0, t∗)), and

‖ y(tm; um) − y(t∗; um) ‖L2(Ω)

=
∥
∥

tm∫

t∗

ẏ(σ; um) dσ
∥
∥

L2(Ω)

≤ √
tm − t∗

⎛

⎝

tm∫

t∗

‖ ẏ(σ; um) ‖2
L2(Ω) dσ

⎞

⎠

1/2

,

(39)

‖ ẏ(tm; um) − ẏ(t∗; um) ‖L2(Ω)

=
∥
∥

tm∫

t∗

ÿ(σ; um) dσ
∥
∥

L2(Ω)

≤ √
tm − t∗

⎛

⎝

tm∫

t∗

‖ ÿ(σ; um) ‖2
L2(Ω) dσ

⎞

⎠

1/2

.

(40)

Applying Theorem 1.1 of (Lions, 1971) and The-
orem 1 again, the sets {ẏ(um)} and {ÿ(um)} must be
bounded in L2(0, t∗; H0(Ω)), and so
{ ‖ y(tm; um) − y(t∗; um) ‖L2(Ω)≤ M

√
tm − t∗,

‖ ẏ(tm; um) − ẏ(t∗; um) ‖L2(Ω)≤ M1

√
tm − t∗.

(41)
Combining (38) and (41) shows that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y(tm; um) − y(t∗; u∗)
= (y(tm; um) − y(t∗; um))

+(y(t∗; um) − y(t∗; u∗))
ẏ(tm; um) − ẏ(t∗; u∗)
= (ẏ(tm; um) − ẏ(t∗; um))

+(ẏ(t∗; um) − ẏ(t∗; u∗))

(42)

converges weakly to zero in L2(Ω), and so
(

y(t∗; u∗),
∂y(t∗; u∗)

∂t

)

∈ W

as W is closed and convex, hence weakly closed. This
shows that W is reached in time t∗ by an admissible con-
trol accordingly, t∗ must be the minimum time and u∗ an
optimal control.

We shall now prove the second part of our theorem.
Indeed, from Theorem 3.1 of (Lions and Magenes, 1972),
y(u) ∈ H∞,2(Q) implies that the mappings t → y(t; u)
and t → y′(t; u) from [0, T ] → H∞{aα, 2}(Ω) ⊂ L2(Ω)
and [0, T ] → H∞{aα, 2}(Ω) ⊂ L2(Ω) are continuous
for each fixed u, and so

(

y(t∗; u);
∂y(t∗; u)

∂t

)

∈/ int W,

for any u ∈ UQad , by the minimality of t∗.
From our earlier remarks, the set

A(t∗) = {y(t∗; ux) : ux ∈ UQad} (43)

is a continuous affine image of the weakly compact and
convex in L2(Ω). Applying Theorem 21.11 of (Choquet,
1969) to the sets A(t∗) and W shows that there exists a
nontrivial hyperplane z′ ∈ L2(Ω) separating these sets,
that is,

−
∫

Ω

z′y(t∗; u) dx ≤ −
∫

Ω

z′y(t∗; u∗) dx ≤ −
∫

Ω

z′y dx

(44)
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for all u ∈ UQad
and y ∈ L2(Ω) with

‖y − zd‖L2(Ω) ≤ ε. (45)

From the second inequality in (44), z′ must support
the set W at

(

y(t∗; u∗),
∂y(t∗; u∗)

∂t

)

and, since L2(Ω) is a Hilbert space, z′ must be of the form

z′ = λ(zd − y(t∗; u∗)) for some λ > 0. (46)

Subsequently, dividing (44) by λ gives the desired re-
sult (35). �

We shall apply Theorem 2 to the control problem of
(6)–(11).

To simplify (35), we introduce the adjoint equation
and for every u ∈ UQad

we define the adjoint variable
p = p(u) = p(x, t; u) as the solution of the equation

∂2p(u)
∂t2

+ Ap(u)

+

b∫

a

c(x, t + h)p(x, t + h; u) dh = 0,

x ∈ Ω, t ∈ (0, t∗ − b),
(47)

∂2p(u)
∂t2

+ Ap(u)

+

t∗−t∫

a

c(x, t + h)p(x, t + h; u) dh = 0,

x ∈ Ω, t ∈ (t∗ − b, t∗ − a),

(48)

∂2p(u)
∂t2

+Ap(u) = 0, x ∈ Ω, t ∈ (t∗−a, t∗), (49)

p(x, t∗; u) = 0, x ∈ Ω, (50)

p′(x, t∗; u) = zd(x) − y(x, t∗; u), x ∈ Ω, (51)

∂p(u)
∂ηA

(x, t) =

b∫

a

d(x, t + h)p(x, t + h; u) dh,

x ∈ Γ, t ∈ (0, t∗ − b),

(52)

∂p(u)
∂ηA

(x, t) =

t∗−t∫

a

d(x, t + h)p(x, t + h; u) dh,

x ∈ Γ, t ∈ (t∗ − b, t∗ − a),
(53)

∂p(u)
∂ηA

(x, t) = 0, x ∈ Γ, t ∈ (t∗ − a, t∗), (54)

where

∂p(u)
∂ηA

(x, t) =
∞∑

|w|=0

(Dwp(u)) cos(n, xi)

Ap =

⎛

⎝
∞∑

|α|=0

(−1)|α|aαD2α + 1

⎞

⎠ p

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (55)

Remark 2. If t∗ < b, then we consider (48), (53) on
Ω × (0, t∗ − a) and Γ × (0, t∗ − a), respectively.

The existence of a unique solution for the problem
(47)–(54) on the cylinder Ω × (0, t∗) can be proved using
a constructive method. It is easy to notice that, for given
zd and u, the problem (47)–(54) can be solved backwards
in time starting from t = t∗, i.e., first, solving (47)–(54)
on the subcylinder QK and in turn on QK−1, etc., until
the procedure covers the whole cylinder Ω × (0, t∗). For
this purpose, we may apply Theorem 1 (with an obvious
change of variables).

Hence, using Theorem 1, one can prove the following
result.

Lemma 2. Let the hypothesis of Theorem 1 be satisfied.
Given zd ∈ L2(Ω) and any u ∈ H0,1(Q), there exists a
unique solution p(u) ∈ H∞,2(Ω× (0, t∗)) for the adjoint
problem (47)–(54).

We simplify (35) using the adjoint equations (47)–
(54). For this purpose, setting u = u∗ in (47)–(54), multi-
plying both sides of (47), (48) and (49) by y(u) − y(u∗),
then integrating over Ω× (0, t∗ − b), Ω× (t∗ − b, t∗ − a)
and Ω × (t∗ − a, t∗), respectively, and then adding both
sides of (47), (48) and (49), we get

t∗∫

0

∫

Ω

(
∂2p(u∗)

∂t2
+ Ap(u∗)

)

(y(u) − y(u∗)) dxdt

+

t∗−b∫

0

∫

Ω

⎛

⎝

b∫

a

c(x, t + h)p(x, t + h; u∗) dh

⎞

⎠

× [y(x, t; u) − y(x, t; u∗)] dxdt

+

t∗−a∫

t∗−b

∫

Ω

⎛

⎝

t∗−t∫

a

c(x, t + h)p(x, t + h; u∗) dh

⎞

⎠

× [y(x, t; u) − y(x, t; u∗)] dxdt

=
∫

Ω

p′(x, t∗; u∗)(y(x, t∗; u) − y(x, t∗; u∗)) dx

+

t∗∫

0

∫

Ω

p(u∗)
∂2

∂t2
(y(u) − y(u∗)) dxdt

+

t∗∫

0

∫

Ω

A∗p(u∗)(y(u) − y(u∗)) dxdt

+

t∗−b∫

0

∫

Ω

b∫

a

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dh dxdt
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+

t∗−a∫

t∗−b

∫

Ω

t∗−t∫

a

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dh dxdt = 0.

(56)

Then applying (51), the formula (56) can be ex-
pressed as

−
∫

Ω

(zd − y(t∗; u∗))(y(t∗; u) − y(t∗; u∗)) dx

=

t∗∫

0

∫

Ω

p(u∗)
∂2

∂t2
(y(u) − y(u∗)) dxdt

+

t∗∫

0

∫

Ω

Ap(u∗) (y(u) − y(u∗)) dxdt

+

b∫

a

∫

Ω

t∗−b∫

0

c (x, t + h) p (x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh

+

t∗−t∫

a

∫

Ω

t∗−a∫

t∗−b

c (x, t + h) p (x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh.

(57)

Using Eqn. (6), the first integral on the right-hand
side of (57) can be rewritten as

t∗∫

0

∫

Ω

p(u∗)
∂

∂t
(y(u) − y(u∗)) dxdt

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt

−
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt,

−
t∗∫

0

∫

Ω

p(x, t; u∗)

( b∫

a

c(x, t)

× (y(x, t − h; u) − y(x, t − h; u∗)) dh

)

dxdt

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt

−
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

−
t∗∫

0

∫

Ω

b∫

a

p(x, t; u∗)c(x, t)

× (y(x, t − h; u) − y(x, t − h; u∗)) dh dxdt

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt

−
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt,

−
b∫

a

∫

Ω

t∗∫

0

p(x, t; u∗)c(x, t)

× (y(x, t − h; u) − y(x, t − h; u∗)) dt dxdh

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt

−
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

−
b∫

a

∫

Ω

t∗−h∫

−h

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt

−
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

−
b∫

a

∫

Ω

0∫

−h

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh

−
b∫

a

∫

Ω

t∗−b∫

0

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh

−
b∫

a

∫

Ω

t∗−h∫

t∗−b

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt
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−
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

−
b∫

a

∫

Ω

0∫

−h

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh

−
b∫

a

∫

Ω

t∗−b∫

0

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh

−
t∗−t∫

a

∫

Ω

t∗−a∫

t∗−b

p(x, t′ + h; u∗)c(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dxdh.

(58)

The second integral on the right-hand side of (57), in
view of Green’s formula, can be expressed as

t∗∫

0

∫

Ω

Ap(u∗)(y(u) − y(u∗)) dxdt

=

t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

+

t∗∫

0

∫

Γ

p(u∗)
(

∂y(u)
∂ηA

− ∂y(u∗)
∂ηA

)

dΓ dt

−
t∗∫

0

∫

Γ

∂p(u∗)
∂ηA∗

(y(u) − y(u∗)) dΓ dt.

(59)

Using the boundary condition (10), the second component
on the right-hand side of (59) can be written as

t∗∫

0

∫

Γ

p(u∗)
[
∂y(u)
∂ηA

− ∂y(u∗)
∂ηA

]

dΓ dt

=

t∗∫

0

∫

Γ

p(x, t; u∗)

( b∫

a

d(x, t)

× (y(x, t − h; u) − y(x, t − h; u∗)) dh

)

dΓ dt

=

t∗∫

0

∫

Γ

b∫

a

p(x, t; u∗)d(x, t)

× (y(x, t − h; u) − y(x, t − h; u∗)) dh dΓ dt

=

b∫

a

∫

Γ

t∗∫

0

p(x, t; u∗) d(x, t)

× (y(x, t − h; u) − y(x, t − h; u∗)) dt dΓ dh

=

b∫

a

∫

Γ

t∗−h∫

−h

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh

=

b∫

a

∫

Γ

0∫

−h

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh

+

b∫

a

∫

Γ

t∗−b∫

0

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh

+

b∫

a

∫

Γ

t∗−h∫

t∗−b

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh

=

b∫

a

∫

Γ

0∫

−h

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh

+

b∫

a

∫

Γ

t∗−b∫

0

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh

+

t∗−t∫

a

∫

Γ

t∗−a∫

t∗−b

p(x, t′ + h; u∗)d(x, t′ + h)

× (y(x, t′; u) − y(x, t′; u∗)) dt′ dΓ dh.

(60)

The last component in (59) can be rewritten as

t∗∫

0

∫

Γ

∂p(u∗)
∂ηA∗

(y(u) − y(u∗)) dΓ dt

=

t∗−b∫

0

∫

Γ

∂p(u∗)
∂ηA∗

(y(u) − y(u∗)) dΓ dt

+

t∗−a∫

t∗−b

∫

Γ

∂p(u∗)
∂ηA∗

(y(u) − y(u∗)) dΓ dt

+

t∗∫

t∗−a

∫

Γ

∂p(u∗)
∂ηA∗

(y(u) − y(u∗)) dΓ dt.

(61)
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Substituting (60), (61) into (59) and then (58), (59)
into (57), we obtain

−
∫

Ω

(zd − y(t∗; u∗))(y(t∗; u) − y(t∗; u∗)) dx

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt

= −
t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

−
b∫

a

∫

Ω

0∫

−h

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh

−
b∫

a

∫

Ω

t∗−b∫

0

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh

−
t∗−t∫

a

∫

Ω

t∗−a∫

t∗−b

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh

+

t∗∫

0

∫

Ω

p(u∗)A(y(u) − y(u∗)) dxdt

+

b∫

a

∫

Γ

0∫

−h

d(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dΓ dh

+

b∫

a

∫

Γ

t∗−b∫

0

d(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dΓ dh

+

t∗−t∫

a

∫

Γ

t∗−a∫

t∗−b

d(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dΓ dh

−
t∗−b∫

0

∫

Γ

∂p(u∗)
∂ηA∗

(y(x, t; u) − y(x, t; u∗)) dΓ dt

−
t∗−a∫

t∗−b

∫

Γ

∂p(u∗)
∂ηA∗

(y(x, t; u) − y(x, t; u∗)) dΓ dt

−
t∗∫

t∗−a

∫

Γ

∂p(u∗)
∂ηA∗

(y(x, t; u) − y(x, t; u∗)) dΓ dt

+

b∫

a

∫

Ω

t∗−b∫

0

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh

+

t∗−t∫

a

∫

Ω

t∗−a∫

t∗−b

c(x, t + h)p(x, t + h; u∗)

× (y(x, t; u) − y(x, t; u∗)) dt dxdh.

(62)

Afterwards, using the fact that y(x, t; u) =
y(x, t; u∗) = Φ0(x, t) for x ∈ Ω and t ∈ [−b, 0) and
y(x, t; u) = y(x, t; u∗) = Ψ0(x, t) for x ∈ Γ and
t ∈ [−b, 0), we obtain

−
∫

Ω

(zd − y(t∗; u∗))(y(t∗; u) − y(t∗; u∗)) dx

=

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt.

(63)

Substituting (63) into (35) gives

t∗∫

0

∫

Ω

p(u∗)(u − u∗) dxdt ≤ 0, ∀u ∈ UQad . (64)

The foregoing result is now summarized.

Theorem 3. The optimal control u∗ is characterized by
the condition (64). Moreover, in the particular case

u∗(x, t) = sign(p(x, t; u∗)), x ∈ Ω, t ∈ (0, t∗) (65)

whenever p(u∗) is nonzero.
This property leads to the following result.

Theorem 4. If the functions c(x, t) and d(x, t) are an-
alytic and Ω has analytic boundary Γ, then there exists
a unique optimal control for the mixed initial-boundary
value problem (6)–(11). Moreover, the optimal control is
bang-bang, that is, |u∗(x, t)| ≡ 1, almost everywhere and
it is the unique solution of (6)–(11), (47)–(54), (65).

The sketch of the proof of Theorem 4 is the same
as in the case of Theorem 2.3 in (Knowles, 1978). In-
deed, if we show that p(x, t) �= 0 for almost all (x, t) ∈
Ω × (0, t∗), then Theorem 4 follows from Theorem 3.
This condition can be proved using properties of analytic-
ity (Tanabe, 1965), continuity (Lions, 1971) and backward
uniqueness (Friedman, 1969) for p(u), respectively.

5. Generalizations

The time optimal control problems presented here can be
extended to certain cases of nonlinear control without con-
vexity. Such extension can be applied to solving many
nonlinear control problems in mechanical engineering.
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For this purpose, suppose that a Lebesgue measur-
able set-valued mapping F : Ω × [0, T ] → CR (compact
subset of R) is given, for which

max |F (x, t)| ≤ g(x, t), (x, t) ∈ Ω × [0, T ] (66)

and g ∈ H0,1(Q).
Let the set of admissible controls be

LF = {u : u is Lebesgue measurable,

u(x, t) ∈ F (x, t), (x, t) ∈ Q}. (67)

The assumption (66) implies that LF ⊂ H0,1(Q);
and so, by Theorem 1, y(u) ∈ H∞,2(Q), for each u ∈
LF . We shall also use the fact that the set-valued mapping

CO F : (x, t) → CO (F (x, t)) (68)

(where ‘CO’ denotes the convex hull) is also Lebesgue
measurable, with compact, convex values. Using the
results of (Casting, 1967), the following lemma can be
proved.

Lemma 3. LcoF is a weakly compact, convex subset
of H0,1(Q). In place of (34), we will now assume the
following:

There exists a T > 0 and u ∈ LcoF with
(

y(T ; u),
∂y(T ; u)

∂t

)

∈ W. (69)

Then, we have the following theorem.

Theorem 5. If (69) holds and the functions c(x, t) and
d(x, t) are analytic, and Ω has analytic boundary, then W
is hit in minimum time t∗ by a unique admissible control
u∗ ∈ LF and

t∗∫

0

∫

Ω

p(x, t; u∗)(u(x, t) − u∗(x, t)) dxdt ≤ 0 (70)

for all u ∈ LcoF . Further, u∗ is bang-bang, in the sense
that u∗(x, t) ∈ ex(F, (x, t)) for almost all (x, t), where
‘ex’ denotes extreme points.

Proof. Consider first the control problem of steering (6)–
(11) to the set W in minimum time, with controls u ∈
LcoF . For this problem, we can argue exactly as before,
using the weak compactness and convexity of LcoF and
the regularity of y(u) ∈ H∞,2(Q) to verify the existence
of an optimal control u∗ ∈ LcoF hitting W in minimum
time t∗, for which (70) holds. If we can verify that u∗ ∈
LF , then it must be optimal for the original problem. We
shall do this by showing that u∗ is bang-bang.

For this purpose, suppose that u∗ ∈/ ex(LcoF ).
Then, there exists a nonzero function f ∈ L2(Ω× (0, t∗))

for which u ± f ∈ LcoF . Let f(x, t) �= 0 for (x, t) ∈
E ⊂ Ω× (0, t∗), E being nonnull. For any measurable set
H ⊂ E,

u∗ ± fχH ∈ LcoF

and so, by (70),

t∗∫

0

∫

Ω

p(u∗)(u∗ − (u∗ ± f · χH)) dxdt ≤ 0, (71)

that is,
∫

H

p(u∗)f dxdt = 0 for any measurable set H ⊂ E.

(72)
The only way this can happen is for p(u∗) = 0

on E, but this contradicts the Theorem 4. Accordingly,
u∗ ∈ ex(LcoF ); and by the results of (Olech, 1996; The-
orem 7.1)

u∗(x, t) ∈ ex(COF (x, t)) for almost all (x, t). (73)

However,
ex(COF (x, t)) ⊂ exF (x, t), (74)

(Dunford and Schwartz, 1958), and so

u∗(x, t) ∈ exF (x, t) a.e. (75)

The uniqueness of u∗ now follows in the usual way. �

Theorem 5 constitutes one of the main results of the
paper. As one application of Theorem 5, we shall present
the following example.

Example 1. Consider now the following problem of non-
linear control, which is of interest in certain problems of
vibrating beam.

Suppose now that (6) is replaced by

∂2y

∂t2
+ Ay +

b∫

a

c(x, t)y(x, t − h) dh

= Φ(x, t; u(x, t)),

(76)

where Φ is continuous in the third variable, measurable in
the first two variables, and the controls u are measurable
and take values in a fixed compact set U ⊂ R.

Suppose also that

|Φ(x, t, f1)| ≤ g(x, t) for all (x, t) ∈ Q, all f1 ∈ U,
(77)

for some g ∈ H0,1(Q). Then, the set-valued function F :
(x, t) → Φ(x, t, U) is measurable, has compact values,
and

LF = {Φ(x, t, u(x, t)) : u is measurable

and u(x, t) ∈ U a.e.}
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(Casting, 1967).
Consequently, if the analyticity assumptions of The-

orem 5 are satisfied, the time optimal control problem
(76), (7)–(11) has a bang-bang solution. �

Finally, one may consider the following example.

Example 2. The condition (34) plays a fundamental role
in controllability problems for time-delay infinite order
hyperbolic systems. With regard to the condition (34),
we can show that (6)–(11) is approximately controllable
in L2(Ω) in any finite time T > 0, i.e.,

{(

y(T ; u),
∂y(T ; u)

∂t

)

: u ∈ H0,1(Q)

}

is dense in L2(Ω). By the Hahn-Banach theorem, this will
be the case if

∫

Ω

z1(x)y(x, T ; u) dx = 0, z1 ∈ L2(Ω), (78)

for all u ∈ H0,1(Q), implies that z1 = 0. Let p ∈
H∞,2(Q) be the unique solution of (47)–(54) with

p′(x, T ) = z1(x), x ∈ Ω. (79)

The proof of Theorem 2 showed that

∫

Ω

z1(y(u) − y(u1)) dx =

T∫

0

∫

Ω

p(u − u1) dxdt (80)

and so, if (78) holds for all u ∈ H0,1(Q), then

T∫

0

∫

Ω

pu dxdt = 0, (81)

u ∈ H0,1(Q), and p = 0 in Q.
By continuity,

p′(x, T ) = z1(x) = 0 (82)

for almost all x ∈ Ω.
Moreover, the hyperbolic nature of (6)–(11) with u =

Bu (where B = I) suggests exact controllability of (6)–
(11). �

6. Conclusions

In this paper we have investigated and solved the time-
optimal control problem for time-delay infinite order
hyperbolic systems with non-homogeneous Neumann
boundary conditions.

We can also consider the analogous minimum time
problem for such systems with non-homogeneous Dirich-
let boundary conditions.

Finally, we can consider the time-optimal boundary
control problem for infinite order hyperbolic systems with
time delays.

The ideas mentioned above will be developed in
forthcoming papers.
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