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This paper deals with the problem of regional observability of hyperbolic systems in the case where the subregion of interest
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1. Introduction

The study of dynamical spatiotemporal systems has ge-
nerated wide literature with applications in fields such as
ecology, pollution control, population dynamics as well
as many others. A wide portion of the literature is devo-
ted to the problem of the analysis and control partial dif-
ferential equations, and many notions have been studied
and explored. Numerous works have been devoted to the
observation problem in the whole domain, see (Gilliam
and Martin, 1988; Kobayashi, 1980). But some delicate
problems need to be studied only in some subregion of
the system evolution domain. This is the subject of the
regional control theory of distributed parameter systems
(DPSs), which was pioneered by El Jai and his co-workers
since the 1990s and consists in studying notions related to
control and observation only on a subregion of the system
evolution domain. The reader may find interesting deve-
lopments of these topics for parabolic and hyperbolic sys-
tems, see (Amouroux et al., 1994), when the subregion is
interior to the system domain; one also finds examples for
a system which is not observable (controllable) within the

whole domain Ω but observable (controllable) in a subre-
gion ω ⊂ Ω. An extension of these results to a bounda-
ry subregion for parabolic systems was then discussed in
(Zerrik et al., 2002).

There are many applications of these notions and an
interesting one may be the problem of determining lami-
nar boundary flux conditions developed in a steady-state
by a vertical heated plate and consists of the study of the
thermal transfer by natural convection generated by a uni-
formly heated plate located in a small enclosure. Inside
that enclosure, differences in the wall surface produce na-
tural convection movements. The heat exchanger mainta-
ins a prescribed temperature on the back face of the plate
by means of hot water circulation. All the faces of this ac-
tive wall are insulated except for the front face. The objec-
tive is to find the unknown boundary convective condition
on a part of the front face of the active plate using measu-
rements given by internal thermocouples, see (Aparron,
1963) for more details.

There is an extensive literature on the exact and ap-
proximate regional observability problem for linear pa-
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rabolic systems, but very little has been done for hyper-
bolic ones. Recently, regional observability for hyperbo-
lic systems has been introduced in the internal case and
the developed theory leads to interesting results perfor-
med through numerical examples and simulations (Zerrik
et al., 2007).

Here we are interested in the regional observabili-
ty of hyperbolic systems where the subregion target is a
part of the boundary of the system evolution domain. We
establish results which are extensions of those given in
(Zerrik et al., 2002) to a class of hyperbolic systems. This
is the aim of this paper, which is organized as follows:
In Section 2 we introduce definitions and properties of
regional observability and show that regional observabi-
lity implies boundary one. In Section 3 we characterize
the sensor which ensures regional boundary observability.
In Section 4 we give two approaches for regional recon-
struction: the first one is direct and based on pseudoinver-
se techniques and the second one uses an extension of the
Hilbert uniqueness method. In the last section we give an
example of hyperbolic systems in a two-dimensional ca-
se which illustrates the obtained results through numerical
simulations.

2. Regional observability

Let Ω be an open bounded subset of R
n, with a boun-

dary ∂Ω which is regular enough. For T > 0, we set
Q = Ω×]0, T [, Σ = ∂Ω×]0, T [ and we consider a sys-
tem described by the equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2y

∂t2
(x, t) + Ay(x, t) = 0 in Q,

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x) in Ω,

∂y

∂νA
(ζ, t) = 0 on Σ,

(1)

where A is the elliptic differential operator of the second
order given by

A = −
n∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)

with domain

D(A) =
{

ϕ ∈ H2(Ω),
∂ϕ

∂νA
= 0 on ∂Ω

}

.

We assume that

aij = aji ∈ C1(Ω)

and there exists α > 0 such that

n∑

i,j=1

aijζiζj ≥ α

n∑

j=1

| ζj |2, ∀ζ = (ζ1, . . . , ζn) ∈ R
n,

where

∂y

∂νA
=

n∑

i,j=1

aij
∂y

∂xj
ηi

is the conormal derivative of the operator A, and ηi stands
for the i-th component of the conormal η to ∂Ω.

We consider the state space F = H2(Ω) × H1(Ω)
and O = L2(0, T ; Rq) as the observation space. The sys-
tem (1) is augmented with the output

z(t) = Cy(t), (2)

where C : H2(Ω) −→ R
q is the observation operator, q

indicates the number of the sensors considered, see (El Jai
and Pritchard, 1988).

Let the operator

A =
(

0 I
A 0

)

be defined by

A(z1, z2) = (z2,Az1),

for all

(z1, z2) ∈ D(A) = D(A) ×H1(Ω).

This operator generates a semigroup (S(t))t≥0.
Denoting ȳ = (y, ∂y/∂t), the system (1) may be

written in the following form:

{
∂ȳ

∂t
= Aȳ in Q,

ȳ(0) = ȳ0 in Ω,
(3)

where ȳ0 = (y0, y1) and the output function (2) takes the
form

z̄(t) = Cȳ(t), (4)

for C = (C, 0). Then the system (3) admits a unique solu-
tion given by

ȳ(t) = S(t)ȳ0. (5)

Using (4), we obtain

z̄(t) = (Kȳ0)(t), (6)

whereK : H2(Ω)×H1(Ω) −→ O = L2(0, T ; Rq) given
by Ky = CS(.)y.

Let wm be the basis of eigenfunctions of the operator
A and λm be the associated eigenvalues with multiplici-
ties rm. Then the semigroup (S(t))t≥0 generated by the
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operatorA is given by

S(t)(y1, y2)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞∑

m=1

rm∑

j=1

[ 〈
y1, wmj

〉
cos

√
−λmt

+
1√−λm

〈
y2, wmj

〉
sin

√
−λmt

]

× wmj(·)
∞∑

m=1

rm∑

j=1

[
−
√
−λm

〈
y1, wmj

〉
sin

√
−λmt

+
〈
y2, wmj

〉
cos

√
−λmt

]
wmj(·)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Consider a regular boundary portion Γ of ∂Ω with a
positive measure and let ω an open part of Ω with a regu-
lar boundary ∂ω such that Γ ⊂ ∂Ω ∩ ∂ω. Then one can
consider restriction operators defined by

χω : H2(Ω) ×H1(Ω) −→ H2(ω) ×H1(ω)
(y1, y2) −→ χω(y1, y2)

= (y1, y2) |ω,

χΓ : H3/2(∂Ω) ×H1/2(∂Ω) −→ H3/2(Γ) ×H1/2(Γ)
(y1, y2) −→ χΓ(y1, y2)

= (y1, y2) |Γ,
and the trace operator

γ0 : H2(Ω) ×H1(Ω) −→ H3/2(∂Ω) ×H1/2(∂Ω),

where γ∗
0
, χ∗

Γ
and χ∗

ω denote respectively the adjoints of
γ0 , χΓ and χω. We denote by K∗ the adjoint of K and
obtain what follows.

Definition 1.

1. The system (1) augmented with (2) is said to be exac-
tly (resp. weakly) observable in ω if ImχωK

∗ =
H2(ω) × H1(ω) (resp. ImχωK∗ = H2(ω) ×
H1(ω)).

2. The system (1) augmented with (2) is said to be exac-
tly (resp. weakly) observable on Γ if ImχΓγ0K

∗ =
H3/2(Γ)×H1/2(Γ) (resp ImχΓγ0K

∗ = H3/2(Γ)×
H1/2(Γ)).

Remark 1. If the system is exactly (resp. approximately)
observable in ω, then it is exactly (resp. approximately)
observable in every subset ω1 ⊂ ω.

Problem. Given the system (1) augmented with the out-
put (2), is it possible to reconstruct the initial state of the
system (1) on Γ?

From the above definitions we have the following.

Proposition 1. If the system (1) augmented with (2) is
exactly (resp. weakly) observable in ω, then it is exactly
(resp. weakly) observable on Γ.

Proof. (Part 1) Let us show that if the system (1) is exactly
observable in ω then it is exactly observable on Γ. For this
purpose, it is sufficient to show that

H3/2(Γ) ×H1/2(Γ) ⊂ ImχΓγ0K
∗.

Let (y1, y2) ∈ H3/2(Γ) ×H1/2(Γ) and let (ỹ1, ỹ2)
be its extension to H3/2(∂Ω) ×H1/2(∂Ω).

Applying the trace theorem, there exists a continuous
harmonic operator

R : H3/2(∂Ω) ×H1/2(∂Ω) −→ H2(Ω) ×H1(Ω)

such that
γ0R(ỹ1, ỹ2) = (ỹ1, ỹ2),

which yields

χωR(ỹ1, ỹ2) ∈ H2(ω) ×H1(ω).

Since the system (1) is exactly observable in ω, there
exists z1 ∈ O such that

χωK
∗z1 = χωR(ỹ1, ỹ2)

and then

γ0(χ
∗
ωχωK

∗z1) = γ0(χ
∗
ωχωR(ỹ1, ỹ2)).

Thus

χΓ(γ0(χ
∗
ωχωK

∗z1)) = χΓ(γ0(χ
∗
ωχωR(ỹ1, ỹ2))

= (y1, y2).

Using the fact that

χΓ( γ0(χ
∗
ωχωK

∗z1)) = χΓ(γ0(K
∗z1)),

we have
χΓ( γ0(K

∗z1)) = (y1, y2)

which means that the system (1)–(2) is exactly observable
on Γ.
(Part 2) We must now show that

∀ε > 0, ∀(y1, y2) ∈ H3/2(Γ) ×H1/2(Γ), ∃z1 ∈ O,
‖χΓ( γ0(K

∗z1)) − (y1, y2)‖ < ε.

Let (y1, y2) ∈ H3/2(Γ) × H1/2(Γ) and (ỹ1, ỹ2)
be its extension to H3/2(∂Ω) ×H1/2(∂Ω). By the trace
theorem, there exists R(ỹ1, ỹ2) ∈ H2(Ω) ×H1(Ω) such
that

γ0(R(ỹ1, ỹ2)) = (ỹ1, ỹ2).

Since
χω(R(ỹ1, ỹ2)) ∈ H2(ω) ×H1(ω)
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and the system (1)–(2) is weakly observable in ω, we have

∀ε > 0, ∃z1 ∈ O,
‖χω(K∗z1)) − χω(R(ỹ1, ỹ2))‖ < ε. (7)

By the continuity of the trace map γ we have

‖γ0(χ
∗
ωχω(K∗z1) − χ∗

ωχω(R(ỹ1, ỹ2)))‖
≤ ‖χ∗

ωχω(K∗z1) − χ∗
ωχω(R(ỹ1, ỹ2))‖H2(Ω)×H1(Ω)

= ‖χω(K∗z1) − χω(R(ỹ1, ỹ2))‖H2(ω)×H1(ω)

and

‖χΓγ0(χ
∗
ωχω(K∗z1) − χ∗

ωχω
R(ỹ1, ỹ2))‖

≤ ‖γ0(χ
∗
ωχω(K∗z1) − χ∗

ωχω(R(ỹ1, ỹ2)))‖,

but

χΓγ0(χ
∗
ωχΓK

∗z1 − χ∗
ωχωR(ỹ1, ỹ2))

= χΓγ0(K
∗z1 −R(ỹ1, ỹ2))

= χΓγ0K
∗z1 − (y1, y2),

which gives

∥
∥χΓγ0K

∗z1 − (y1, y2)
∥
∥ � ε.

Then the system (1) is weakly observable on Γ.
�

Proposition 2. We have the equivalence between the fol-
lowing statements:

1. The system (1)–(2) is exactly observable on Γ.
2. There exists c > 0 such that

||y||
H

3
2 (Γ)×H

1
2 (Γ)

≤ c||H∗y||O,
∀y = (y1, y2) ∈ H

3
2 (Γ) ×H

1
2 (Γ), (8)

where H = χΓγ0K
∗.

Proof. The proof uses the following general results (see
(Avdonin and Ivanov, 1978)). Let E,F, and G, be reflexi-
ve Banach spaces and f ∈ L(E,G), g ∈ L(F,G). Then
we have the equivalence between the statements below:

1. Im(f) ⊂ Im(g).

2. There exists c > 0 such that ||f∗y||E∗ ≤ ||g∗y||F∗ .

We set E = G = H
3
2 (Γ) × H

1
2 (Γ), F = O, f =

Id
H

3
2 (Γ)×H

1
2 (Γ)

and g = H , and obtain the inequality (8).
�

3. Characterization of Γ-strategic sensors

In this section, we shall characterize sensors which ensure
approximate regional boundary observability in a portion
Γ of the boundary ∂Ω. Let us reconsider the system (1)
with measurements given by

z(t) = (z1(t), . . . , zq(t)), t ∈]0, T [, (9)

where

zi(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(bi, t), bi ∈ Ω̄ in the pointwise
case,

∫

Di

y(x, t)f(x)dx,Di ⊂ Ω̄ in the zonal case.

Definition 2. A sequence of sensors (Di, fi)1≤i≤q is said
to be Γ-strategic if the observed system is weakly obse-
rvable on Γ, which is equivalent to Ker(Kγ∗

0
χ∗

Γ
) = {0}.

We define the restriction operators

χ1
Γ

: H
1
2 (∂Ω) −→ H

1
2 (Γ)

and
χ2

Γ
: H

3
2 (∂Ω) −→ H

3
2 (Γ),

while χ1∗
Γ

and χ2∗
Γ

denote respectively the adjoints of χ1
Γ

and χ2
Γ

. Let the trace function be given by

γ1
0

: H1(Ω) −→ H
1
2 (∂Ω)

and
γ2

0
: H2(Ω) −→ H

3
2 (∂Ω),

where γ1∗
0

and γ2∗
0

denote respectively the adjoints of γ1
0

and γ2
0

.
Assume that (χ1

Γ
γ1

0
wmj )1≤j≤rm;1≤m form a com-

plete set inH
1
2 (Γ) and that (χ2

Γ
γ2

0
wmj )1≤j≤rm;1≤m form

a complete set in H
3
2 (Γ). Suppose that r = sup rm <∞.

Then we have the following result.

Proposition 3. If the observation time T is large enough,
the sequence of sensors (Di, fi)1≤i≤q is Γ-strategic if and
only if

(i) q ≥ r,

(ii) rank Gm = rm, ∀m ≥ 1,

where

(Gm)i,j

=

{〈wmj , fi〉L2(Ωi) for the zonal case,

wmj (bi) for the pointwise case,

for 1 ≤ i ≤ q and 1 ≤ j ≤ rm.
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Proof. (Sufficiency) Let us show that if rank Gm =
rm, ∀m ≥ 1, then the system (1)–(9) is weakly observable
on Γ.

We suppose that Ker(Kγ∗
0
χ∗

Γ
) �= {0}. Then the-

re exists z∗ = (z∗1 , z
∗
2) ∈ H

3
2 (Γ) × H

1
2 (Γ) such that

(z∗1 , z∗2) �= 0 and Kγ∗
0
χ∗

Γz
∗ = 0. Therefore

Kγ∗
0
χ∗

Γ
z∗

=
∞∑

m=1

rm∑

j=1

[ 〈
γ2∗

0
χ2∗

Γ z
∗
1 , wmj

〉
cos

√
−λmt

+
1√−λm

〈
γ1∗

0
χ1∗

Γ z
∗
2 , wmj

〉
sin

√
−λmt

]

× 〈wmj , fi〉 = 0, ∀i = 1, q,

where ψ1
mj

= χ1
Γ
γ1

0
wmj and ψ2

mj
= χ2

Γ
γ2

0
wmj .

For T large enough, the set

{cos(
√
−λm·), sin(

√
−λm·)}m≥1

forms a complete set in L2(0, T ), which gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rm∑

j=1

〈
γ2∗

0
χ2∗

Γ z
∗
1 , wmj

〉 〈wmj , fi〉 = 0,

∀m ≥ 1, ∀i = 1, . . . , q.

rm∑

j=1

〈
γ1∗

0
χ1∗

Γ z
∗
2 , wmj

〉 〈wmj , fi〉 = 0,

∀m ≥ 1, ∀i = 1, . . . , q,

i.e.,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rm∑

j=1

〈
z∗1 , χ

2
Γ
γ2

0
wmj

〉 〈wmj , fi〉 = 0,

∀m ≥ 1, ∀i = 1, . . . , q.

rm∑

j=1

〈
z∗2 , χ1

Γ
γ1

0
wmj

〉 〈wmj , fi〉 = 0,

∀m ≥ 1, ∀i = 1, . . . , q.

(10)

Since z∗2 ∈ H
1
2 (Γ), we obtain

z∗2 =
∞∑

m=1

rm∑

j=1

〈
z∗2 , χ

1
Γ
γ1

0
wmj

〉

H
1
2 (Γ)

χ1
Γ
γ1

0
wmj .

If z∗2 �= 0, there exists m0 ≥ 1 and 1 ≤ j0 ≤ rm0

such that 〈
z∗2 , χ

1
Γ
γ1

0
wm0j0

〉

H
1
2 (Γ)

�= 0.

Consider

z2
m0

=
[ 〈
z∗2 , χ

1
Γ
γ1

0
wm01

〉

H
1
2 (Γ)

, . . . ,

〈
z∗2 , χ

1
Γ
γ1

0
wm0rm0

〉

H
1
2 (Γ)

]T

.

Using (10), we obtain

Gm0
z2

m0
= 0,

which shows that rank Gm0 �= rm0 . Similar results can
be obtained if we take z∗1 �= 0.
(Necessity) Conversely, we show that if the system (1)–(9)
is weakly observable on Γ, then

rankGm = rm, ∀m ≥ 1.

Suppose that there exists m0 ≥ 1 such that rank Gm0 �=
rm0 , that is, there exists

zm0 = (zm01 , . . . , zm0rm0
)T �= 0

and
Gm0

zm0 = 0.

Let z∗2 ∈ H
1
2 (Γ) and z∗1 ∈ H

3
2 (Γ) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

〈
z∗2 , χ

1
Γ
γ1

0
wm0j

〉
= zm0j , ∀j = 1, . . . , rm0 ,

〈
z∗2 , χ

1
Γ
γ1

0
wmj

〉
= 0, ∀m �= m0 and

∀j = 1, . . . , rm,
(11)

and
⎧
⎪⎪⎨

⎪⎪⎩

〈
z∗1 , χ

2
Γ
γ2

0
wm0j

〉
= zm0j , ∀j = 1, . . . , rm0 ,

〈
z∗1 , χ

2
Γ
γ2

0
wmj

〉
= 0, ∀m �= m0 and

∀j = 1, . . . , rm.
(12)

Since Gm0
zm0 = 0 and using (10)–(12), the system

is not weakly observable on Γ which contradicts the above
assumption. �

Remark 2. The choice of q = 1 can be sufficient to ensu-
re the system observability. Indeed, we can show that by
means of a weak perturbation of the boundary of the sys-
tem domain Ω, the multiplicity of the eigenvalues may be
reduced to one.

In the following, we shall give two approaches which
enable the reconstruction of the initial conditions on the
boundary part Γ of ∂Ω.

4. Boundary state reconstruction

4.1. Direct approach. Let us consider the decomposi-
tion of the initial state ȳ0 in the form

ȳ0 =

⎧
⎪⎪⎨

⎪⎪⎩

ȳ0
1 on Γ,

ȳ0
2 on ∂Ω \ Γ,

ȳ0
3 in Ω,

with ȳ0
1 = (y0

1 , y
1
1), ȳ0

2 = (y0
2 , y

1
2), ȳ0

3 = (y0
3 , y

1
3). Our

objective is the reconstruction of ȳ0, the initial state on Γ.
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Let ε be the observation error between the output
function z̄ and the observation model given by

ε(ȳ0
1 , ȳ

0
2 , ȳ

0
3) = ||z̄ −Kȳ0||2O,

where ε is to be meant as a function of the initial state and
its components.

Consider the following optimization problem:
{

min ε(ȳ0
1 , ȳ

0
2 , ȳ

0
3)

ȳ0
1 ∈ H

3
2 (Γ) ×H

1
2 (Γ).

(13)

Theorem 1. If the system (1) is observable in Ω̄, then
the problem (13) admits a unique solution given by
ȳ0
1 = D†Ψ, which coincides with the regional ini-

tial state to be observed on the boundary part Γ, where
D† denotes the pseudoinverse ofD,D and Ψ are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = Bγ∗
0
χ∗

Γ
(χΓγ0B

∗Bγ∗
0
χ∗

Γ
)−1χΓγ0B

∗B,
Ψ = (I −B(B∗B)−1 +Bγ∗

0
χ∗

Γ
(χΓγ0B

∗Bγ∗
0
χ∗

Γ
)−1

×χΓγ0B
∗ν,

R = γ0K
∗,

M = (RR∗)−1,
ν = (I +R∗MR−K(K∗K)−1K∗),
B = R∗MRK.

(14)

Proof. We have

RR∗ ∈ L(H
3
2 (∂Ω) ×H

1
2 (∂Ω), H

3
2 (∂Ω) ×H

1
2 (∂Ω))

and

〈RR∗z∗, z∗〉 = ||Kγ∗
0
z∗||2 ≤ c||z∗||2

H
3
2 (∂Ω)×H

1
2 (∂Ω)

,

∀z∗ ∈ H
3
2 (∂Ω) ×H

1
2 (∂Ω),

which shows that the operator RR∗ is invertible. �

Solution of the problem (13) can be implemented
using the followings steps:

Step 1: We minimize ε(ȳ0
1 , ȳ

0
2, ȳ

0
3) with respect to ȳ0

3 . By
developing ε and using the fact that ȳ0 = ȳ0∗

1 + ȳ0∗
2 + ȳ0∗

3 ,
where

ȳ0∗
1 =

{
ȳ0
1 in Γ,

0 on Ω̄ \ Γ,

ȳ0∗
2 =

{
ȳ0
2 in ∂Ω \ Γ,

0 on Ω̄ ∪ Γ,

ȳ0∗
3 =

{
ȳ0
3 in Ω,

0 on ∂Ω,

we obtain the following problem:
{

min Ψ1(ȳ0∗
3 ),

γ0K
∗(Kȳ0∗

3 ) = 0, (15)

where

Ψ1(ȳ0∗
3 ) = 〈Kȳ0∗

3 ,Kȳ0∗
3 〉O

+ 2〈Kȳ0∗
3 ,K(ȳ0∗

1 + ȳ0∗
2 ) − z̄〉O.

Consider the Lagrangian operator defined by

Λ(ȳ0∗
3 , λ1)

= 〈Kȳ0∗
3 ,Kȳ0∗

3 〉O + 2〈Kȳ0∗
3 ,K(ȳ0∗

1 + ȳ0∗
2 ) − z̄〉O

+ 〈λ1, γ0K
∗Kȳ0∗

3 〉
H

3
2 (∂Ω)×H

1
2 (∂Ω)

.

Then the condition

∂Λ(ȳ0∗
3 , λ1)

∂ȳ0∗
3

= 0

is equivalent to

2K∗Kȳ0∗
3 + 2K∗K(ȳ0∗

1 + ȳ0∗
2 )

− 2K∗z̄ +K∗Kγ∗
0
λ1 = 0

Since the system (1) is observable in Ω, (K∗K)−1

exists (Amouroux et al., 1994), which allows us to write

ȳ0∗
3 = −(ȳ0∗

1 + ȳ0∗
2 ) + (K∗K)−1K∗z̄ − 1

2
γ∗

0
λ1.

The constraint γ0K
∗Kȳ0∗

3 = 0 from the condition ȳ0∗
3 =

0 on ∂Ω gives

−γ0K
∗K(ȳ0∗

1 + ȳ0∗
2 ) + γ0K

∗z̄ − 1
2
γ∗

0
(K∗K)γ∗

0
λ1 = 0,

and then

λ1 = 2MR(z̄ −K(ȳ0∗
1 + ȳ0∗

2 )),

where M and R are given by (14).
Consequently,

ỹ0∗
3 = (γ∗

0
MRK − I)(ȳ0∗

1 + ȳ0∗
2 )

+ ((K∗K)−1K∗ − γ∗
0
MR)z̄.

Then the minimum is given by the following equiva-
lent problem:

ε(ȳ0∗
1 , ȳ0∗

2 , ỹ0∗
3 ) = ||νz̄ −B(ȳ0∗

1 + ȳ0∗
2 )||2O, (16)

where B and ν are given by (14).

Step 2: We minimize ε(ȳ0∗
1 , ȳ

0∗
2 , ỹ0∗

3 ) with respect to ȳ0∗
2 ,

as in the first step, by developing (16). We obtain the fol-
lowing problem:

{
min Ψ2(ȳ0∗

2 ),
χΓγ0B

∗B(ȳ0∗
2 ) = 0, (17)

where

Ψ2(ȳ0∗
2 ) = 〈Bȳ0∗

2 , Bȳ0∗
2 〉O + 2〈Bȳ0∗

2 , Bȳ
0∗
2 − νz̄〉O.
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The Lagrangian is given by

Λ2(ȳ0∗
2 , λ2) =〈Bȳ0∗

2 , Bȳ0∗
2 〉O + 2〈Bȳ0∗

2 , Bȳ0∗
2 − νz̄〉O

+ 〈λ2, χΓγ0B
∗Bȳ0∗

2 〉
H

3
2 (Γ)×H

1
2 (Γ)

.

Then the condition

∂Λ(ȳ0∗
2 , λ2)

∂ȳ0∗
2

= 0

is equivalent to

2B∗Bȳ0∗
2 + 2B∗Bȳ0∗

1 − 2B∗νz̄ +B∗Bγ∗
0
χ∗

Γ
λ2 = 0.

We obtain

ȳ0∗
2 = −ȳ0∗

1 + (B∗B)−1B∗νz̄ − 1
2
γ∗

0
χ∗

Γ
λ2.

The constraint χΓγ0B
∗B(ȳ0∗

2 ) = 0, which comes from
ȳ0∗
2 = 0 on Ω ∪ Γ, gives

−χΓγ0B
∗Bȳ0∗

1 +χΓγ0B
∗νz̄− 1

2
χΓγ0B

∗Bγ∗
0
χ∗

Γ
λ2 = 0.

We obtain

λ2 =2(χΓγ0B
∗Bγ∗

0
χ∗

Γ
)−1χΓγ0B

∗νz̄

− 2(χΓγ0B
∗Bγ∗

0
χ∗

Γ
)−1χΓγ0B

∗Bȳ0∗
1 .

Thus

ỹ0∗
2 = − ȳ0∗

1 +
[
(B∗B)−1

− γ∗
0
χ∗

Γ
(χΓγ0B

∗Bγ∗
0
χ∗

Γ
)−1χΓγ0

]
B∗νz̄

+ γ∗
0
χ∗

Γ
(χΓγ0B

∗Bγ∗
0
χ∗

Γ
)−1χΓγ0B

∗Bȳ0∗
1 .

The minimum is then given by the equivalent problem

ε(ȳ0∗
1 , ỹ0∗

2 , ỹ0∗
3 ) = ||Ψz̄ −Dȳ0∗

1 ||2O, (18)

where Ψ and D are given by (14).

Step 3: The solution of the problem (13) turns out to solve
the problem ε(ȳ0∗

1 , ỹ0∗
2 , ỹ0∗

3 ) given by (18) with respect to
ȳ0∗
1 . We have

ε(ȳ0∗
1 , ỹ0∗

2 , ỹ0∗
3 )

= 〈Dȳ0∗
1 , Dȳ0∗

1 〉O − 2〈Dȳ0∗
1 ,Ψz̄〉O + 〈Ψz̄,Ψz̄〉O.

The condition

ε(ȳ0∗
1 , ỹ0∗

2 , ỹ0∗
3 )

∂ȳ0∗
1

= 0

gives
2D∗Dȳ0∗

1 − 2D∗Ψz̄ = 0.

Thus
ỹ0∗
1 = (D∗D)−1DΨz̄ = D†Ψz̄.

Since the operator (18) is strictly convex, then ỹ0∗
1 is uni-

que.

4.2. Hilbert uniqueness method approach. The sub-
ject of this section is to update the Hilbert uniqueness me-
thod developed by Lions (1988) to the case of regional
observability of following hyperbolic system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2y(x, t)
∂t2

= Δy(x, t), Q,

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = y1(x), Ω,

∂y(ζ, t)
∂η

= 0, Σ,

(19)
where Δ is the Laplacian operator and we assume that
(19) is augmented with the output function

z(t) = 〈y(t), f〉L2(D), (20)

where f ∈ L2(D).
We consider the following decomposition:

y0 =
{
y0
1 in ω,
y0
2 in Ω \ ω,

y1 =
{
y1
1 in ω,
y1
2 in Ω�ω.

In the sequel, without loss of generality, we assume that
the eigenfunctions (wm)m≥1 of the operator Δ associated
with the eigenvalues are simple.

Consider the set

G = {χ∗
ω
χ

ω
(ϕ0, ϕ1) | (ϕ0, ϕ1) ∈ D(A) ×H1(Ω)

with ϕ0 = ϕ1 = 0 in Ω \ ω}.
For (ϕ0, ϕ1) ∈ G, the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2ϕ(x, t)
∂t

− Δϕ(x, t) = 0, Q,

ϕ(x, 0) = ϕ0(x),
∂ϕ(x, 0)
∂t

= ϕ1(x), Ω,
∂ϕ(ζ, t)
∂η

= 0, Σ,

(21)

admits a unique solution

ϕ ∈ C(0, T ;H2(Ω))∩C1(0, T ;H1(Ω))∩C2(0, T ;L2(Ω))

(see (Lions and Magenes, 1968)).
We define a semi-norm on G by

‖ (ϕ0, ϕ1) ‖G=

[∫ T

0

〈ϕ(t), f〉2L2(D) dt

] 1
2

, (22)

and we consider the retrograde system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2ψ(x, t)
∂t

= Δψ(x, t)+〈ϕ(t), f〉L2(D) χD
f(x), Q,

ψ(x, T ) = 0,
∂ψ(x, T )

∂t
= 0, Ω,

∂ψ(ζ, t)
∂η

= 0 Σ,

(23)
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which admits a unique solution

ψ ∈ C(0, T ;H2(Ω))∩C1(0, T ;H1(Ω))∩C2(0, T ;L2(Ω))

(see (Lions and Magenes, 1968)).
Let the operator Λ be defined by

Λ(ϕ0, ϕ1) = P(−ψ́(0), ψ(0)),

where P = χ∗
ωχω and χ∗

ω is the adjoint operator of χω.

Consider the system
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2z̄(x, t)
∂t

= Δz̄(x, t) + z(t)χD (x)f(x), Q,

z̄(x, T ) = 0,
∂z̄(x, T )

∂t
= 0, Ω,

∂Z̄(ζ, t)
∂η

= 0, Σ.

(24)
We have z̄(0) = z̄0, z̄

′
(0) = z̄1 , ψ(0) = ψ0 and ψ

′
(0) =

ψ1.
If ϕ0, ϕ1 are convenably chosen on G, i.e., such that

z̄0 = ψ0 and z̄1 = ψ1 in ω, then the observability pro-
blem for the system (19) in the subregion ω amounts to
solving the equation

Λ(ϕ0, ϕ1) = P(−z̄1, z̄0). (25)

Theorem 2. If the system (19) augmented with the output
function (20) is weakly observable in ω, then the equation
(25) admits a unique solution (ϕ0, ϕ1) ∈ G, which coinci-
des with the initial conditions (y0

1 , y
1
1) in the subregion ω,

and the initial conditions to be observed in the subregion
Γ of ∂Ω are given by

(y0
Γ, y

1
Γ) = χΓγ0(ϕ

0, ϕ1). (26)

Proof. (Part 1) We show that if the sensor (D, f) is ω-
strategic, then the formula (22) defines a seminorm on G.
Indeed,

∥
∥(ϕ0, ϕ1)

∥
∥

G
= 0 ⇔ 〈ϕ(t), f〉L2(D) = 0

⇔ CS(t)(ϕ0, ϕ1) = 0,

where (S(t))t≥0 is the semigroup generated by(
0 I
Δ 0

)

. Then we have

K(t)χ∗
ω
χω(ϕ̃0, ϕ̃1) = 0

with
(ϕ0, ϕ1) = χ∗

ω
χ

ω
(ϕ̃0, ϕ̃1).

Since the system (1) is weaklyω-observable, we have

χ
ω
(ϕ̃0, ϕ̃1) = 0

and then
(ϕ̃0, ϕ̃1) = 0.

Consequently, ϕ0 = ϕ1 = 0. Thus (22) is a norm.

(Part 2) Let Ĝ be the completion set of G with respect to
the norm (22) equipped with the associated inner product
〈·, ·〉Ĝ and Ĝ∗ be its dual. We show that Λ is an isomor-
phism from Ĝ onto Ĝ∗.

Indeed,
〈
Λ(ϕ0, ϕ1), (ϕ0, ϕ1)

〉
=

〈
(−ψ1, ψ0), (ϕ0, ϕ1)

〉
.

On the other hand, multiplying (23) by ϕ (the solution to
(21)) and integrating the result by part, we obtain

∫ T

0

〈
ψ

′′
(t), ϕ(t)

〉
dt

=
〈
ψ

′
(T ), ϕ(T )

〉
−
〈
ψ

′
(0), ϕ0

〉

−
〈
ψ(T ), ϕ

′
(T )

〉
+
〈
ψ(0), ϕ1

〉

+
∫ T

0

〈
ψ(t), ϕ

′′
(t)
〉

dt

=
∫ T

0

〈
ψ(t), ϕ

′′
(t)
〉

dt

+
〈
(−ψ′

(0), ψ(0)), (ϕ0, ϕ1)
〉

(27)

Using Green formulae, we have
∫ T

0

〈Δψ(t), ϕ(t)〉 dt

=
∫ T

0

〈ψ(t),Δϕ(t)〉 dt+
∫

∑

∂ψ

∂η
ϕdσ

−
∫

∑
ψ
∂ϕ

∂η
dσ

=
∫ T

0

〈ψ(t),Δϕ(t)〉 dt.

(28)

Thus

∫ T

0

[〈
ψ

′′
(t), ϕ(t)

〉
− 〈Δψ(t), ϕ(t)〉

]
dt

=
〈
(−ψ′

(0), ψ(0)), (ϕ0, ϕ1)
〉
.

On the other hand, we have
∫ T

0

〈ϕ(t), f〉L2(D) 〈χD
f, ϕ(t)〉 dt

=
∫ T

0

〈ϕ(t), f〉2L2(D) dt =
∥
∥(ϕ0, ϕ1)

∥
∥2
.

(29)

Thus
〈
Λ(ϕ0, ϕ1), (ϕ0, ϕ1)

〉
=
∥
∥(ϕ0, ϕ1)

∥
∥2
. (30)

Let us consider (ϕ̂0, ϕ̂1) ∈ G and ϕ̂(t) the associa-
ted solution to (21).
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Integrating by part and using Green formulae, we ob-
tain

〈
Λ(ϕ0, ϕ1), (ϕ̂0, ϕ̂1)

〉

=
∫ T

0

〈ϕ(t), f〉L2(D) 〈ϕ̂(t), f〉L2(D) dt,
(31)

which gives

| 〈Λ(ϕ0, ϕ1), (ϕ̂0, ϕ̂1)
〉 |

≤
[∫ T

0

〈ϕ(t), f〉2L2(D) dt

]1/2

[∫

〈ϕ̂(t), f〉2L2(D) dt
]1/2

≤ ∥
∥(ϕ0, ϕ1)

∥
∥

Ĝ

∥
∥(ϕ̂0, ϕ̂1)

∥
∥

Ĝ
,

∀(ϕ0, ϕ1), (ϕ̂0, ϕ̂1) ∈ G,

(32)

which ensures a unique extension of Λ to a bounded li-
near operator. From (31) and (32) it follows that Λ is an
isomorphism from Ĝ onto Ĝ∗. �

Remark 3. If the system (19) is observable by one inter-
nal pointwise sensor, we show by the same techniques as
in the zonal case that the operator Λ is an isomorphism.

5. Numerical approach

Here we consider the system (19) and assume that the in-
itial conditions y0 and y1 are sufficiently regular so that
(19) has a regular state (Lions, 1968), and that measure-
ments may be obtained by a pointwise sensor (b, δb) given
by

z(t) = y(b, t), t ∈]0, T [. (33)

The objective is to reconstruct the initial conditions y0
1 and

y1
1 in the subregion ω from measurements given by (33)

along the time interval ]0, T [. We apply the trace restric-
tion on a part Γ ⊂ ∂Ω ∩ ∂ω.

5.1. Approximation formulae.

Proposition 4. If the sensor (b, δb) is ω-strategic, then,
for T large enough, the initial conditions y0

1 and y1
1 may

be approached by (34) and (35).

Proof. The solution to (25) solves the following minimi-
zation problem:

Φ(ϕ0, ϕ1)

= 1
2

〈
Λ(ϕ0, ϕ1), (ϕ0, ϕ1)

〉− 〈P(−z̄1, z̄0), (ϕ0, ϕ1)
〉

=
1
2

∫ T

0

ϕ2(b, t) dt− 〈−z̄1, ϕ0
〉− 〈

z̄0, ϕ1
〉
.

(36)

We have
∫ T

0

ϕ2(b, t) dt

=
∫ T

0

[
∑

j≥1

[ 〈
ϕ0, wj

〉
cos

√−λjt+
1

√−λj

〈
ϕ1, wj

〉

sin
√−λjt

]
wj(b)

]2

dt.

Expanding the integrand and letting T −→ +∞, we
obtain

lim
T−→+∞

1
2T

∫ T

0

ϕ2(b, t) dt

=
1
4

∑

j≥1

[
〈
ϕ0, wj

〉2 − 1
λj

〈
ϕ1, wj

〉2
]

w2
j (b).

Thus, for T large enough, we obtain

1
2

∫ T

0

ϕ2(b, t) dt

� T

4

∑

j≥1

[
〈
ϕ0, wj

〉2 − 1
λj

〈
ϕ1, wj

〉2
]

w2
j (b).

On the other hand,

ϕ0(x) =
∑

j≥1

〈
ϕ0, wj

〉

L2(ω)
wj(x)

and
ϕ1(x) =

∑

j≥1

〈
ϕ1, wj

〉

L2(ω)
wj(x).

Then
〈−z̄1, ϕ0

〉

L2(ω)
=
∑

j≥1

〈
ϕ0, wj

〉

L2(ω)

〈−z̄1, wj

〉

L2(ω)

and
〈
z̄0, ϕ1

〉

L2(ω)
=
∑

j≥1

〈
ϕ1, wj

〉

L2(ω)

〈
z̄0, wj

〉

L2(ω)
.

The minimization of (36) is equivalent to finding

inf
(ϕ0,ϕ1)

∑

j≥1

{
T

4

[
〈
ϕ0, wj

〉2 − 1
λj

〈
ϕ1, wj

〉2
]

w2
j (b)

− [〈
ϕ0, wj

〉 〈−z̄1, wj

〉
+
〈
ϕ1, wj

〉 〈
z̄0, wj

〉]
}

,

which is equivalent, by separating variables, to solving the
problems

inf
ϕ0

∑

j≥1

{
T

4
〈
ϕ0, wj

〉2
L2(ω)

w2
j (b)

− 〈
ϕ0, wj

〉

L2(ω)

〈−z̄1, wj

〉

L2(ω)

} (37)
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ỹ0
1 =

⎧
⎪⎨

⎪⎩

2
T

∑

j≥1

[
1

w2
j (b)

∑

k≥1

wk(b)
∫ T

0

y(b, t) cos(
√
−λkt) dt〈wk, wj〉L2(ω)

]

wj(x), ∀x ∈ ω,

0, ∀x ∈ Ω \ ω,
(34)

ỹ1
1 =

⎧
⎪⎪⎨

⎪⎪⎩

−2
T

∑

j≥1

⎡

⎣
λj

w2
j (b)

∑

k≥1

wk(b)√−λk

∫ T

0

y(b, t) sin(
√

−λkt) dt〈wk, wj〉L2(ω)

⎤

⎦wj(x), ∀x ∈ ω,

0, ∀x ∈ Ω \ ω.
(35)

and

inf
ϕ1

∑

j≥1

{
T

4λj

〈
ϕ1, wj

〉2
L2(ω)

w2
j (b)

− 〈
ϕ1, wj

〉

L2(ω)

〈
z̄0, wj

〉

L2(ω)

}

,

(38)

whose solutions are

〈
ϕ0, wj

〉

L2(ω)
=

2
T

〈−z̄1, wj

〉

L2(ω)

w2
j (b)

, ∀j ≥ 1 (39)

and

〈
ϕ1, wj

〉

L2(ω)
=

2λj

T

〈−z̄0, wj

〉

L2(ω)

w2
j (b)

, ∀j ≥ 1.

(40)
If we set

z̄(x, t) =
∑

k≥1

z̄k(t)wk(x)

with

z̄k(t) =
wk(b)√−λk

∫ T

0

z(s) sin
√
−λk(s− t) ds

and
z(s) = y(b, s),

then
z̄(x, 0) = z̄0(x) =

∑

k≥1

z̄k(0)wk(x)

with

z̄k(0) =
wk(b)√−λk

∫ T

0

z(s) sin
√
−λks ds.

But

z̄0(x) =
∑

k≥1

〈
z̄0, wk

〉

L2(Ω)
wk(x)

and
z̄1(x) =

∑

k≥1

〈
z̄1, wk

〉

L2(Ω)
wk(x),

and then

〈
z̄0, wk

〉

L2(Ω)

=
wk(b)√−λk

∫ T

0

z(s) sin
√
−λks ds, ∀k ≥ 1,

and

〈
z̄1, wk

〉

L2(Ω)

= −wk(b)
∫ T

0

z(s) cos
√
−λks ds, ∀k ≥ 1.

We obtain
〈
z̄0, wj

〉

L2(ω)

=
∑

k≥1

wk(b)√−λk

∫ T

0

z(s) sin
√
−λks ds〈wk, wj〉L2(ω)

and
〈
z̄1, wj

〉

L2(ω)

=
∑

k≥1

wk(b)
∫ T

0

z(s) cos
√
−λksds〈wk, wj〉L2(ω).

Substituting this, we obtain (34) and (35). �

5.2. Simulation results. Here we consider the two-
dimensional system evolving in Ω =]0, 1[×]0, 1[:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y(x1, x2, t)
∂t2

− Δy(x1, x2, t) = 0, Ω×]0, T [,

y(x1, x2, 0) = y0(x1, x2), Ω,

∂y(x1, x2, 0)
∂t

= y1(x1, x2), Ω,

∂y(ζ1, ζ2, t)
∂η

= 0, Σ.

(41)
Measurements are made by one pointwise sensor:

z(t) = y((b1, b2), t),

where
b1, b2 ∈ Ω, t ∈]0, T [. (42)
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Let
{
y0
Γ(ζ) = A cos(πζ), ∀ζ ∈ [0, 1],

y1
Γ(ζ) = (1 +B) cos(πζ), ∀ζ ∈ [0, 1]

(43)

be the initial conditions to be reconstructed on Γ = {0}×
[0, 1].

Let ω =]0, 0.24[×]0, 1[ and
{

y0(x1, x2) = A cos(πx1) cos(πx2),

y1(x1,x2) = (1 +B) cos(πx1) cos(πx2)
(44)

be the extensions of y0
Γ, y

1
Γ to ω, where B1 and B2 are

selected to satisfy some numerical requirements (in order
to obtain reasonable amplitudes for y0

1 and y1
1).

Consider the following data:

T = 7, A = 0.02, B = −0.01,

(b1, b2) = (0.74, 0.98).

Applying (34) and (35) truncated to M = 4, we ob-
tain the results of Figs. 1 and 2.

Fig. 1. Initial (dashed line) and estimated (continuous line) state
on Γ.

Fig. 2. Initial speed (dashed line) and estimated speed (continu-
ous line) on Γ.

The reconstruction is obtained with the error

E2 = ||y0 − y0
e ||2L2(Ω) + ||y1 − y1

e ||2L2(Ω) = 2.12× 10−4.

6. Conclusion

In this paper the question of how to reconstruct the sys-
tem state and speed on a part of the boundary of the evo-
lution domain has been considered. We explored two ap-
proaches: the first using optimization techniques and the
second employing a link between the internal and boun-
dary approaches to reconstruct the boundary state on Γ.
The obtained results were verified via a numerical exam-
ple and simulations. The extension to semilinear systems
is of great interest and this problem is currently studied.
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