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In the paper, the problem of source function reconstruction in a differential equation of the parabolic type is investigated.
Using the semigroup representation of trajectories of dynamical systems, we build a finite-step iterative procedure for
solving this problem. The algorithm originates from the theory of closed-loop control (the method of extremal shift). At
every step of the algorithm, the sum of a quality criterion and a linear penalty term is minimized. This procedure is robust
to perturbations in problems data.
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1. Introduction and problem formulation

In the theory of differential equations, the following prob-
lem is well-known: it is required to determine parameters
of a differential equation provided a given function plays
the role of its solution. Unknown parameters (generally
speaking, not constant and depending on time) can be con-
trols, dynamical disturbances, coefficients, some system
characteristics and so on. As a rule, such problems are
ill-posed. First, a number of parameter values may corre-
spond to a given solution. This property rather often re-
sults in a new problem of choosing parameters. For exam-
ple, in the problem of control reconstruction, the interest
is usually in finding a control with an extremal (maximal
or minimal) energy resource. Second, the mapping “solu-
tion −→ parameter” is discontinuous in the general case.
Therefore, this mapping cannot be used to approximate a
desired parameter in the case when a disturbed solution is
given instead of an exact one. If some function, which is
not a solution, is given instead of a disturbed solution of
an equation, additional difficulties arise. Under such con-
ditions, the “approximative” feature should be provided
by some regularizing procedures. Besides, there exists
the problem of sufficiently convenient and constructive
description and determination of the mapping “solution
−→ parameter”. Issues of determining some parameters
through equation solutions are often called reconstruction
(identification) problems. Recently, methods of solving
reconstruction problems have been intensively developed.

A considerable number of works is devoted to solving
problems of reconstructing right-hand parts (e.g., a source
function) of parabolic equations through results of sensor
observations. A typical problem from this field is as fol-
lows.

Let us imagine a water reservoir occupying an
area Ω and n contamination sources located in subareas
Ω1, . . . ,Ωn of Ω. It is assumed that an input concentration
rate of some contaminant at every point ξ in the source
area Ωj is modeled as uj(t)ωj(ξ), where t is current
time. The positive function uj(t) is a measure of the time-
varying intensity of the source located in Ωj ; uj(t) repre-
sents the current rate of the contamination inflow in Ωj .
Let x(t, ξ) be the current concentration of the contaminant
at a point ξ in Ω. Some information on the distribution of
x(t, ξ) in Ω is registered by m sensors. The sensors reg-
ister weighted average concentrations z1(t), . . . , zm(t) in
fixed subareas Θ1, . . . ,Θm of Ω:

zk(t) =
∫

Θk

pk(ξ)x(t, ξ) dξ, k = 1, . . . ,m,

the positive weight coefficients pk(ξ) are supposed to
be given. The problem of reconstructing the right-
hand part (the intensity reconstruction problem) is as
follows. Observing the weighted average concentra-
tions z1(t), . . . , zm(t) of the contaminant in the areas
Θ1, . . . ,Θm, reconstruct the intensities of the contam-
ination sources, u1(t), . . . , un(t), in the source areas
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Ω1, . . . ,Ωm. This problem has been studied by many au-
thors (see, e.g., (Omatu and Seinfeld, 1989; Korbicz and
Zgurowski, 1991; Uciński, 1999)).

In the present work, a new algorithm for solving such
a problem for an abstract parabolic equation is suggested.
A particular case of such an equation is a diffusion equa-
tion describing the process of contaminant propagation
in the atmosphere or liquid media. This algorithm rests
upon constructions of the theory of stable dynamical in-
version based on the combination of methods of the theory
of ill-posed problems and that of positional control. The
essence of the technique described in (Blizorukova and
Maksimov, 1998; Digas et al., 2003; Kryazhimskii and
Osipov, 1987; Kryazhimskii et al., 1997) is that a recon-
struction algorithm is represented as a control algorithm
for some auxiliary dynamical system. It should be noted
that this technique exploits the idea of stabilizing appro-
priate functionals of the Lyapunov type by means of ex-
tremal shift (Krasovskii and Subbotin, 1988). Thus, the
technique combines the stabilization principle with that of
extremal shift in some scheme of control with a model.
In the beginning, some functional treated as a Lyapunov
type one is introduced. Then, a control law for an auxil-
iary system is chosen. This law uses the idea of extremal
shift providing a “weak growth” of the functional in time.

Let us pass to the statement of the problem under in-
vestigation. In a real Hilbert space (H, | · |H), the follow-
ing parabolic equation is considered:

ẋ(t) +Ax(t) = Bu(t) + f(t), (1)

t ∈ T = [0, ϑ], x(0) = x0 ∈ H.

Here,A : V → V ∗ is a linear continuous symmetric oper-
ator satisfying (for some c > 0 and λ ∈ R) the coercivity
condition

〈Ay, y〉V + λ|y|2H ≥ c‖y‖2, ∀y ∈ V.

(V, ‖ · ‖) is a separable and reflexive Banach space, which
is densely and continuously embedded in the space H
identified with its conjugate space (H = H∗); 〈·, ·〉V is
the duality between V and V ∗; x(t) is the phase state
of the system (1) at the moment t; u(t) ∈ U is a dis-
turbance generating the motion x(·); the space of distur-
bances (U, | · |U ) is a Hilbert space with a scalar prod-
uct (·, ·)U ; f(·) ∈ L2(T ;H) is a given input action;
B : U → H is a linear continuous operator.

A solution of the system (1) (which is understood in
the weak sense) is defined to be a unique continuous func-
tion x(·) = x(·;x0, u(·)) of the form

x(t) = S(t)x0+

t∫

0

S(t−τ)(Bu(τ)+f(τ)) dτ, t ∈ T.

Here S(t) : H → H (t > 0) is the semigroup of con-
tinuous linear operators generated by the operatorA. As is

known (Bensoussan et al., 1992), for all u(·) ∈ L2(T ;U),
f(·) ∈ L2(T ;H), x0 ∈ H , there exists a unique solu-
tion of the system (1). Below it is assumed that the set of
admissible system inputs u(·) is of the form

U∗ = {u(·) ∈ L2(T ;U) : u(t) ∈ P for a. a. t ∈ T },
P ⊂ U is a convex bounded and closed set.

The problem under consideration consists in the fol-
lowing. Let Eqn. (1), an action f(·), an initial state x0,
and the set of admissible inputs U∗ be known. In addition,
at moments t ∈ T , values

z(t) = Gx(t) (2)

are inaccurately measured. Here G is a given linear con-
tinuous operator acting from the space of states H into a
Hilbert space of measurements H1. Results of the mea-
surements ξh(t) are, generally speaking, inaccurate:

|ξh(t) − z(t)|H1 ≤ h, t ∈ T. (3)

Here h is the measurement accuracy.
Let Uz be the set of all admissible inputs u(·) com-

patible with some output z(·), i.e.,

Uz = {u(·) ∈ U∗ : Gx(t; 0, x0, u(·)) = z(t), ∀t ∈ T },

J(u(·)) =

ϑ∫

0

ω(t, u(t)) dt (4)

is a given performance index. Here ω(·, ·) : T × U →
R+ = [0,+∞) is a functional, which is convex with re-
spect to the second argument. It is assumed that the func-
tional J(u(·)) is defined on the set U∗ and is lower semi-
continuous. It is necessary to construct a stable algorithm
for calculating an extremal value

J0
z = min{J(u(·)) : u(·) ∈ Uz} (5)

and an extremal input action u0(·) ∈ U0(z), where

U0(z) = arg min{J(u(·)) : u(·) ∈ Uz}.
Since the functional J is convex and the set U∗ is

bounded and closed, the set U0(z) is a non-empty convex
and closed set. Therefore, the problem in question has a
solution. However, the precise calculation of J0

z and u0(·)
is impossible, in particular, due to inaccuracies in mea-
suring the values z(t), t ∈ T (see (3)). In this case, it
is necessary to design a stable algorithm for approximate
determination of the value J0

z and the extremal input ac-
tion uh(·) = u(·; ξh(·)). The stability of the algorithm is
understood in the following sense:

J(uh(·)) → J0
z , uh(·) → U0(z)

weakly in L2(T ;U) as h→ +0.
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The last relation means that any convergent (in L2(T ;U))
sequence {uhl(·)}, hl → +0 as l → +∞, converges to
some element from the set U0(z). Below we present an
algorithm for solving the problem considered in the case
when the operators A and B, as well as the functional J
and the initial state x0, are inaccurately known.

Note that the problem of source function reconstruc-
tion formulated above can be interpreted as an optimal
control problem for the parabolic equation (1) subject to
state constraints. Then the performance index takes the
form (4), whereas the state constraints are given by (2). A
solving algorithm suggested in the paper is oriented to the
case of inaccurate data on the problem parameters, i.e.,
on the system structure, the quality criterion, and the state
constraints.

2. Auxiliary results

Before passing on to solving the problem in question,
let us give auxiliary statements. Introduce the operator
F : L2(T ;U) → L2(T ;H1) and the element b(·) ∈
L2(T ;H1):

(Fu(·))(η) =

η∫

0

GS(η − t)Bu(t) dt, η ∈ T, u(·) ∈ U∗,

b(η) = z(η) −GS(η)x0, η ∈ T.

Here the function z is defined by (2). Then the problem of
calculating the extremal value J0

z and extremal input ac-
tion u0(·) ∈ U0(z) is equivalent to the following extremal
problem.

It is required to find

u0 = argmin{J(u) : u ∈ U∗, Fu = b}

and
J0 = min{J(u) : u ∈ U∗, Fu = b},

where J is the quality criterion (4). Note that the set {u ∈
U∗ : Fu = b} is non-empty. Therefore, there exists a
solution to the last problem, and J0 = J0

z (see (5)). If
the function ω(·, ·) is strictly convex with respect to the
second argument, then the set U0(z) is a singleton and, in
addition, u0 = u0 = U0(z).

Let non-negative numbers νF , νb, and νJ , linear con-
tinuous operators F ν : L2(T ;U) → L2(T ;H1), elements
bν ∈ L2(T ;H1), and convex functionals Jν(·) defined on
U∗ be given in such a way that

|F νu− Fu|L2(T ;H1) ≤ νF , ∀ u ∈ U∗, (6)

|bν − b|L2(T ;H1) ≤ νb, (7)

|Jν(u) − J(u)| ≤ νJ , ∀ u ∈ U∗. (8)

For simplicity, in what follows it is assumed that
νF , νb, νJ ∈ [0, 1).

Our goal is to design an algorithm for approxi-
mate determination of the value J0 and the element u0.
Namely, it is required to construct an algorithm which, us-
ing values F ν , bν , and Jν known instead of F , b, and J ,
forms elements {uj} ∈ U∗, j = 1, . . ., with the properties

|Fuj − b|L2(T ;H1) → 0, (9)

J(uj) → J0 as j → +∞, (10)

if νF = νF
j → 0, νb = νb

j → 0, and νJ = νJ
j → 0 as

j → +∞.
Let us pass on to the description of this algorithm.
Set

K0 = sup{J(u) : u ∈ U∗},
Uγ = {u ∈ U∗ : |Fu− b|L2(T ;H1) ≤ γ},

J0(γ) = inf{J(u) : u ∈ Uγ}.
From the results of (Vasiliev, 1981, p. 182), we obtain
what follows.

Theorem 1. Let uj ∈ U∗, αj > 0, γj > 0, |Jνj (u) −
J(u)| ≤ νJ

j ∀u ∈ U∗,

|Fuj − b|2L2(T ;H1)
+ αjJ(uj) − αjJ

0 ≤ γj ,

νJ
j → 0, αj → +0, γj → +0, (11)

γj/αj → 0 as j → +∞.

Then we have

(a) Jνj (uj) → J0 as j → +∞,

(b)

J0((γj + 2K0αj)1/2) − νJ
j

≤ Jνj (uj) ≤ J0 + γj/αj + νJ
j .

Any element w∗ ∈ W is called an ε-solution (ε > 0)
of the extremal problem ϕ(w) → inf , w ∈ W �= ∅, if
ϕ(w∗) ≤ inf{ϕ(w) : w ∈ W} + ε. We denote by the
symbol Y ν

j (δ, α, ε) the set of elements yi, i = 0, 1, . . . , j,
from U such that

y0 = 0, (12)

yi+1 = yi + uiδ, i = 0, 1, . . . , j − 1, (13)

where ui is an ε-solution of the problem

2〈F νyi − iδbν , F νu〉 + αJν(u) → inf, u ∈ U∗. (14)

Hereinafter, the symbol 〈·, ·〉 denotes the scalar product in
L2(T ;H1).

Let

K1 = |b|L2(T ;H1), |Fu|L2(T ;H1) ≤ K2 ∀u ∈ U∗.

Based on the approach from (Kryazhimskii and Osipov,
1987; Kryazhimskii et al., 1997), the following lemma is
proved.
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Lemma 1. The inequality

|F (yj/(δj)) − b|2L2(T ;H1)

+ α{J(yj/(δj)) − J0}/(δj) ≤ δ∗j
is valid for any j ≥ 1, where

δ∗j = k1ν
F + k2ν

b + (k3(νF )2 + 2ανJ )/(jδ)

+ k4/j + ε/(δj),
k1 = 4(K1 + 2K2),
k2 = K2 + 1,
k3 = 4,

k4 = (K1 +K2)2.

Proof. Let us estimate the change of the value

Λi+1 = |F (yi + δui) − ti+1b|2L2(T ;H1)

+ α

ti+1∫

0

J(ẏ(τ)) dτ − αJ(u0)ti+1

= Λi + μi + δ2|Fui − b|2L2(T ;H1), i ≥ 0,

where

ẏ(t) = ui for t ∈ [ti, ti+1),
i = 0, 1, . . . , ti = iδ, y(0) = 0,

μi = 2〈Fyi − tib, Fui − b〉δ + αδ{J(ui) − J(u0)}.
Since u0 is a solution of the problem under consideration,
the equality

Fu0 = b

is fulfilled. Therefore,

μi = 2〈Fyi − tib, Fui − b〉δ − 2〈Fyi − tib, Fu
0 − b〉δ

+ αδ{J(ui) − J(u0)}
= 2〈Fyi − tib, Fui〉δ + αδJ(ui)

− 2〈Fyi − tib, Fu
0〉δ − αδJ(u0).

Moreover,

λ∗i ≡ 2〈Fyi − tib, Fui〉δ + αJ(ui)δ

− 2〈F νyi − tib
ν , F νui〉δ + αJν(ui)δ =

3∑
j=1

λ(j),

λ
(1)
i = 2〈Fyi − tib, (F − F ν)ui〉δ,
λ

(2)
i = 2〈(F − F ν)yi − ti(b − bν), F νui〉δ,
λ

(3)
i = α{J(ui) − Jν(ui)}δ.

In addition, by (6) we obtain

|Fyi|L2(T ;H1) = |
i−1∑
j=0

Fujδ|L2(T ;H1) ≤ ti−1K2,

|(F − F ν)yi|L2(T ;H1)

=
∣∣∣
i−1∑
j=0

(F − F ν)ujδ
∣∣∣
L2(T ;H1)

≤ νF ti,

|F νu|L2(T ;H1) ≤ |(F ν − F )u|L2(T ;H1) + |Fu|L2(T ;H1)

≤ K2 + νF , u ∈ U∗.

Note that, due to the convexity and completeness of
the set P , the rule for choosing the elements ui implies
the inclusion yi/(δi) ∈ U∗. Thus, we have (see (6)–(8))

λ
(1)
i ≤ 2(K2 +K1)νF δti,

λ
(2)
i = 2(νF + νb)(K2 + νF )δti,

λ
(3)
i ≤ αδνF .

Therefore,

λ∗i ≤ δνFK1i + δνbK2i + ανJδ,

where

K1i = 2((2K2 +K1)ti + νF ),

K2i = 2ti(K2 + νF )δ.

A similar estimate holds if we replace ui by u0. Hence,

μi ≤ 2〈F νyi − tib
ν , F νui〉δ − 2〈F νyi − tib

ν , F νu0〉δ
+ αδ{Jν(ui) − Jν(u0)}
+ 2{K1iν

F +K2iν
b + ανJ}δ.

From (14) we deduce that

μi ≤ 2{K1iν
F +K2iν

b + ανJ}δ + εδ.

It is easily seen that

|Fui − b|2L2(T ;H1)δ
2 ≤ {(K2 +K1)δ}2.

In addition, due to the convexity of J , we obtain

J(y(t)/t) = J
(1
t

t∫

0

ẏ(τ) dτ
)
≤ 1
t

t∫

0

J(ẏ(τ)) dτ.

(15)
Accordingly,

Λi+1 ≤ Λi + 2{K1iν
F +K2iν

b + ανJ}δ
+ {(K2 +K1)δ}2 + εδ

≤ Λi + 2{2((2K2 +K1)(iδ + νF )νF δ

+ 2iδ(K2 + νF )νbδ + ανJδ}
+ {(K2 +K1)δ}2 + εδ, i ≥ 0.

Using (12), we obtain Λ0 = 0. Then

Λi+1 ≤ 2{((2K1 + 4K2)iδ + 2νF )νF δ

+ 2iδ(K2 + νF )νbδ + ανJδ}i
+ {(K1 +K2)δ}2i+ εδi, i ≥ 0.
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Dividing the right-hand and left-hand sides by t2i+1 and
using (15), we get

|F (y(ti+1)/ti+1) − b|2L2(T ;H1)

+ α/ti+1{J(y(ti+1)/ti+1) − J(u0)}

≤ 2
{2K1 + 4K2

δ
+

2νF

(i+ 1)δ2
}
νF δ + ε/(δ(i+ 1))

+ 4(K2 + νF )νb + 2ανJ/((i+ 1)δ)

+ (K1 +K2)2/(i+ 1)

= 4{(K1 + 2K2)νF + (K2 + νF )νb}
+ 2{2(νF )2 + ανJ}/((i+ 1)δ)

+ (K1 +K2)2/(i+ 1) + ε/(δ(i+ 1)).

�
The next theorem follows from Theorem 1 and

Lemma 1.

Theorem 2. Let

(a) δj → +0, εj → +0 as j → +∞;

(b) sequences {αj} and {γj} satisfy the conditions (11);

(c) inequalities

k1ν
F
j + k2ν

b
j + (k3(νF

j )2 + 2αjν
J
j )/(jδj)

+ k4/j + εj/(δjj) ≤ γj

be true;

(d) {yi}j
i=0 = Y ν

j (δj , αj , εj).

Then the sequence of elements {uj}+∞
j=1 ,

uj = yj/(δjj) ∈ U∗,

satisfying the conditions (9) and (10), solves the problem
of approximate calculation of u0 and J0.

As is seen from Lemma 1 and Theorem 2, choosing
appropriate relations between the values δ, i, νF , νb, νJ ,
and α, we provide a “slow” growth of the Lyapunov func-
tional

Λ(t) = |F (y(t)/t) − b|2L2(·;H1)

+ α

t∫

0

J(ẏ(τ)) dτ/t − αJ(u0)/t, t > 0.

The rule (14) for choosing controls ui is, in essence, a
modification of the extremal shift principle from the the-
ory of differential games (Krasovskii and Subbotin, 1988).

Let

ν1(α, δ, j, ε, νF , νb, νJ ) = δ∗j + 2K0α/(δj),

ν2(α, δ, j, ε, νF , νb, νJ ) = δ∗j δj/α.

The next inequalities follow from Lemma 1:

|F (yj/(δj)) − b|2L2(T ;H1)
≤ ν1(α, δ, j, ε, νF , νb, νJ ),

(16)
J(yj/(δj)) − J0 ≤ ν2(α, δ, j, ε, νF , νb, νJ). (17)

The following lemma holds.

Lemma 2. Let νF
j → 0, νb

j → 0, νJ
j → 0, αj → +0,

αj/(δjj) → +0, (δj + εj)/αj → +0, εj/(δjj) → +0,
νF

j jδj/αj → 0, νb
j jδj/αj → 0 as j → +∞.

Then

|F (yj/(δjj)) − b|2L2(T ;H1) → 0,

J(yj/(δjj)) → J0 as j → +∞.

Condition 1.

j = j(h) = [1/h], νF
j = a1h, νb

j = a2h,

νJ
j = a3h, εj = a4δj , αj = δ

1/2
j ,

δj = h1−κ, κ = const ∈ (0, 1).

Here the symbol [1/h] denotes the integer part of
1/h; aj , j = 1, . . . , 4, are some constants. In this case,
j = j(h) → +∞ as h → +0 and the elements yj/(δjj)
depend on h, i.e.,

uh = yj(h)/(h1−κ[1/h]) ∈ U∗. (18)

The next statement can be formulated.

Corollary 1. Let Condition 1 be fulfilled and h ∈
(0, 1 − ε∗), ε∗ = const ∈ (0, 1). Then the inequalities

|F (uh) − b|2L2(T ;H1)
≤ Ch, (19)

J(uh) − J0 ≤ C0h
1/2−κ/2 (20)

hold. Here C = C(ε∗), C0 = C0(ε∗), and the element uh

is defined by (18).

The validity of Corollary 1 follows from the inequal-
ities

ν1(α, δ, j, ε, νF , νb, νJ ) ≤ Ch,

ν2(α, δ, j, ε, νF , νb, νJ ) ≤ C0h
1/2−κ/2

and the inequalities (16) and (17).
Let a sequence of positive numbers {hl}+∞

l=0 , hl →
+0 as l → +∞ be fixed. Let Condition 1 be fulfilled. The
symbol yl is used for the sequence constructed according
to (12)–(14) for j = jl = [1/hl], h = hl, δ = δl = h1−κ

l ,
and κ = const ∈ [0, 1). Then the following theorem is
valid.

Theorem 3. Let ul = yjl
/(jlh1−κ

l ), l = 1, 2, . . . .
Then any weakly convergent subsequence of the sequence
{ul}+∞

l=1 weakly converges in L2(T ;U) to the set U0(z).
If J(u) = |u|2L2(T ;U), then this convergence is strong.
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3. Solving the algorithm

Let us come back to the problem of approximate calculat-
ing of the value J0

z and the extremal input action uh(·).
Let the operators A and B, as well as the initial state x0,
be inaccurately known. Namely, we have some operators
Aν : V → V and Bν : U → H , and also an element
xν

0 ∈ H such that

|Bν −B|L(U ;H) ≤ νB , (21)

|xν
0 − x0|H ≤ νx0 . (22)

The operator Aν generates a semigroup of linear continu-
ous operators Sν(t), t ≥ 0, such that

sup
t∈T

|Sν(t) − S(t)|L(H;H) ≤ νA.

We also assume that, instead of the functional
ω(t, u), we get functionalsων(t, u) which are convex with
respect to u, such that the functionals

Jν(u(·)) =

ϑ∫

0

ων(t, u(t)) dt, (23)

are defined on the set U∗, are lower semicontinuous and
satisfy the inequalities

|Jν(u(·)) − J(u(·))| ≤ νI , ∀u(·) ∈ U∗.

Here νA, νB , νx0 , and νI ∈ [0, 1) are given numbers.
Let the sequence {(yi(·), ψi(·)}j

i=0 of elements from
L2(T ;U)× L2(T ;H) be defined by the rule:

yi+1(·) = yi(·) + δwi(·) ∈ L2(T ;U), y0(·) = 0,
(24)

ψi+1(·) = ψi(·) + δζi(·) ∈ L2(T ;H), (25)

ψ0(·) = 0, i = 0, 1, . . . , j − 1,

where wi(·) is a β0-solution to the problem

ϑ∫

0

{
2(Bν∗ψi(t), w(t))U + αων(t, w(t))

}
dt→ inf,

w(·) ∈ U∗; (26)

γi(·) ∈ C(T,H), |γi(·) − γ̄i(·)|C(T,H) ≤ β2, (27)

γ̄i(·) is a solution on T to the Cauchy problem

γ̇(t) = Aνγ(t) +Bνwi(t), γ(0) = 0; (28)

|ζi(·) − ζ̄i(·)|C(T,H) ≤ β1, (29)

ζ̄i(·) is a solution on T to the Cauchy problem

ζ̇(t) = −Aν∗ζ(t) −G∗κi(t), ζ(ϑ) = 0; (30)

κi(t) = Gγi(t) − bν(t), t ∈ T. (31)

Here the symbol G∗ stands for the operator adjoint to G,

bν(t) = ξh(t) −GSν(t)xν
0 .

Note that, in this case, we have

(F νu(·))(η)

=

η∫

0

GSν(η − t)Bνu(t) dt, η ∈ T, u(·) ∈ U∗.

Let

ψ∗
i+1(·) = ψ∗

i (·) + δζ∗i (·) ∈ L2(T ;H),
i = 0, 1, . . . , j − 1, (32)

where ζ∗i (·) is a solution on T of the problem

�̇(t) = −Aν∗�(t) −G∗κ∗i (t), �(ϑ) = 0, (33)

κ∗i (t) = Gγ̄i(t) − bν(t), t ∈ T. (34)

Here γ̄i(·) is a solution of the problem (28) on T .

Lemma 3. For any w(·) ∈ U∗, the following equality

ϑ∫

0

{
2(Bν∗ψ∗

i (t), w(t))U + αων(t, w(t))
}

dt

= 2Ψi(w(·)) + αJν(w(·)),
i = 0, . . . , j − 1, (35)

holds, where

Ψi(w(·)) = 〈F νyi(·) − iδbν, F νw(·)〉. (36)

Proof. Taking into account the structure of the func-
tional Jν(·) (23), we conclude that (35) is equivalent to
the equality

ϑ∫

0

(Bν∗ψ∗
i (t), w(t))U dt = Ψi(w(·)),

i = 0, . . . , j − 1. (37)

Introduce the notation

νi(η) = (F νyi(·))(η) − iδbν(η)

=

η∫

0

GSν(η − t)Bνyi(t) dt− iδbν(η), η ∈ T.

(38)

Then

Ψi(w(·)) =

ϑ∫

0

(νi(η) dη,
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η∫

t0

GSν(η − t)Bνw(t) dt)H1 dη

=

ϑ∫

0

(Bν∗χi(t), w(t))U dt,

where the symbol (·, ·)H1 stands for the scalar product in
H1,

χi(t) =

ϑ∫

t

Sν∗(η − t)G∗νi(η) dη. (39)

To prove (35), it is sufficient to show that

ψ∗
i (·) = χi(·) (40)

for i = 0, . . . , j − 1.
Let us prove (40) by induction. For i = 0, we have

y0(·) = 0. By virtue of (38) and (39), we obtain χ0(·) =
0 = ψ∗

0(·). Assume that the equalities (40) hold for some
i < j − 1. Show that the equality

ψ∗
i+1(·) = χi+1(·) (41)

is also true. From (38) and (24), it follows that

νi+1(η) = νi(η) + δ{Gφi(η) − bν(η)}, (42)

where

φi(η) =

η∫

0

Sν(η − t)Bνwi(t) dt.

Note that φi(·) is a solution of the Cauchy prob-
lem (28), i. e., φi(·) = γ̄i(·). Then (see (42) and (33))

νi+1(·) = νi(·) + δκ∗i (·). (43)

Further, from (39) and (43), it follows that

χi+1(·) = χi(·) + δρi(·). (44)

where

ρi(t) =

ϑ∫

t

Sν∗(η − t)G∗κ∗i (η) dη.

Consequently, the function ρi(·) is a solution of the
Cauchy problem (33), i.e., ρi(·) = ζ̄i(·). Hence, due to
(44), (34), and (40), we get (41). �

Introduce the constants

C1 = sup{|u|U : u ∈ U∗},
C2 = (|B|L(U ;H) + 1)C1ϑ

1/2,

C3 = |G|2L(H;H1)ϑK3,

K3 = sup
t∈T

sup
ν∈(0,1]

|Sν(t)|L(H;H).

Lemma 4. Let the elements {yi(·), ψi(·)} be defined
according to (24)–(31). Then {yi(·)}j

i=0 = Y ν
j (δ, α, ε),

where
ε = jC2δ(β1 + C3β2) + β0.

Proof. By definition, wi(·) is a β0-solution of the prob-
lem (26). Taking into account (35), we show that, for all
β0, β1, β2 ≥ 0, wi(·) is an ε-solution of the problem

2Ψi(w(·)) + αJν(w(·)) → inf, w(·) ∈ U∗. (45)

It is sufficient to prove that wi(·) is an εi-solution of the
problem (45), where εi = μi + β0,

μi = iC2δ(β1 + C3β2) (46)

(clearly, εi ≤ ε for i ≤ j). For this purpose, it is sufficient
to prove that the values of the functionals to be minimized
in the problems (26) and (45) (for an arbitrary w(·) ∈ U∗)
differ by no more than μi or (see (36) and (37)):

εi(w(·)) =
∣∣∣

ϑ∫

0

2(Bν∗ψ∗
i (t), w(t))U dt

−
ϑ∫

0

2(Bν∗ψi(t), w(t))U dt
∣∣∣ ≤ μi. (47)

Using the Cauchy-Bunyakovsky inequality, we get

εi(w(·)) ≤
( ϑ∫

0

|Bν |2L(U ;H)|w(t)|2U dt
)1/2

×
( ϑ∫

0

|ψ∗
i (t) − ψi(t)|2H dt

)1/2

≤ (|B|L(U ;H) + νB)C1ε
(1)
i ϑ1/2 = C2ε

(1)
i ,

where
ε
(1)
i = |ψ∗

i (·) − ψi(·)|C(T,H).

Therefore, for (47) it is sufficient to prove that

ε
(1)
i ≤ iδ(β1 + C3β2). (48)

We prove the inequalities (48) by induction. Since
ψ∗

i (·) = ψi(·) = 0, the relation (48) holds for i = 0.
Assume that the relation holds for some i and prove that

ε
(1)
i+1 ≤ (i+ 1)δ(β1 + C3β2). (49)

Due to (31) and (34), we have

|κ∗i (t) − κi(t)|H ≤ |G|L(H;H1)β2, t ∈ T. (50)

Then, by virtue of (50), the solution ζ̄i(·) of the Cauchy
problem (30) solves the Cauchy problem

ζ̇(t) = −Aν∗ζ(t) −G∗κ∗i (t) + λi(t), ζ(ϑ) = 0,
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where

λi(t) = G∗(κi(t) − κ∗i (t)), |λi(t)|H ≤ |G|2L(H;H1)β2.

Therefore, the function ζi(·) = ζ̄i(·) − ζ∗i (·) is a solution
on T of the Cauchy problem

ζ̇(t) = −Aν∗ζ(t) + λi(t), ζ(ϑ) = 0.

Thus,

|ζ̄i(·) − ζ∗i (·)|C(T,H)

≤ ϑβ2|G|2L(H;H1) sup
t∈T

sup
ν∈[0,1]

|Sν(t)|L(H;H)

= C3β2.

Hence, using (29), we derive

|ζi(·) − ζ∗i (·)|C(T ;H) ≤ β1 + C3β2. (51)

By virtue of (25) and (32), we conclude from (51) that

ε
(1)
i+1 ≤ ε

(1)
i + δ|ζi(·) − ζ∗i (·)|C(T ;H)

≤ ε
(1)
i + δ(β1 + C3β2).

This implies (48). �
Note that the inequalities

|Fu− F νu|L2(T ;H1)

=
( ϑ∫

0

∣∣∣
η∫

0

G(S(η−t)B−Sν(η−t)Bν)u(t) dt
∣∣∣2
H1

dη
)1/2

≤ ϑ|G|L(H;H1){νA|B|L(U ;H) +K3ν
B}C1

≤ νF = C4(νA + νB),
(52)

|bν − b|L2(T ;H1)

=
( ϑ∫

0

∣∣∣G(Sν(η)xν
0 − S(η)x0)

∣∣∣2
L(H;H1)

dη
)1/2

+
( ϑ∫

0

|ξh(t) − z(t)|2H1
dt

)1/2

≤ ϑ1/2(|G|L(H;H1)(K3ν
x0 + |x0|HνA) + h)

≤ νb = C5(νx0 + νA + h)

(53)

are fulfilled. Here

C4 = ϑ|G|L(H;H1)C1 max{K3, |B|L(U ;H)},
C5 = ϑ1/2(|G|L(H;H1) max{K3, |x0|H} + 1).

The next statement follows from Theorems 1 and 2
together with Lemma 4.

Theorem 4. Let νA
j → 0, νB

j → 0, νx0
j → 0, hj → +0,

β0,j → +0, β1,j → +0, β2,j → +0 and Conditions
(a)–(c) of Theorem 2, where νF

j = C4(νA
j + νB

j ), νb
j =

C5(νx0
j + νA

j + hj), εj = jC2δj(β1,j + C3β2,j) + β0,j ,

be fulfilled. Let the sequences {yi(·), ψi(·)}j
i=0 be defined

according to (24)–(31), where δ = δj , α = αj , h = hj ,
β0 = β0,j , β1 = β1,j , β2 = β2,j , ν = νj , |Jνj (u(·)) −
J(u(·))| ≤ νI

j ≡ νJ
j ∀u(·) ∈ U∗. Then the sequence of

elements {uj}+∞
j=1,

uj = yj(·)/(δjj),
satisfies the conditions (9) and (10), i.e., it solves the prob-
lem of approximate determination of u0 and J0. In addi-
tion, the inequalities (b) of Theorem 1 are valid and any
weakly convergent subsequence of the sequence {uj}+∞

j=1

weakly converges in L2(T ;U) to the set U0(z).
Consequently from Theorem 4 and the inequalities

(52), (53), the next statement follows.

Corollary 2. Let j = j(h) = [1/h], νA
j = k(1)h,

νB
j = k(2)h, νx0

j = k(3)h, δj = h1−κ , (κ = const ∈
(0, 1)), αj = h1/2−κ/2, β1,j = k(4)h, β2,j = k(5)h,
β0,j = k(6)h, νI

j = k(7)h, and h ∈ (0, 1 − ε∗),
ε∗ = const ∈ (0, 1). Then the inequalities (19) and (20),
in which C and C0 are some constants depending on ε∗,

uh = yj(·)/(h1−κ [1/h]),

are fulfilled. The element yj(·) is defined according to
(24)–(31) for j = j(h).

4. Conclusions

In the present work, the problem of source function recon-
struction was under investigation. A new algorithm for
solving such a problem for an abstract differential equa-
tion was suggested. This algorithm relies upon construc-
tions of the theory of stable dynamical inversion based
on the combination of methods of the theory of ill-posed
problems and that of feedback control. The inversion the-
ory exploits the idea of stabilizing appropriate functionals
of the Lyapunov type by means of the extremal shift.

The work was supported by the Russian Foundation
for Basic Research (project 10-01-00002), by the Ural-
Siberian Project and by the program of the Presidium of
the RAS Mathematical Control Theory.
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