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DESCRIPTOR FRACTIONAL LINEAR SYSTEMS WITH REGULAR PENCILS
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Methods for finding solutions of the state equations of descriptor fractional discrete-time and continuous-time linear systems
with regular pencils are proposed. The derivation of the solution formulas is based on the application of the Z transform,
the Laplace transform and the convolution theorems. Procedures for computation of the transition matrices are proposed.
The efficiency of the proposed methods is demonstrated on simple numerical examples.
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1. Introduction

Descriptor (singular) linear systems with regular pencils
have been considered in many papers and books (Dodig
and Stosic, 2009; Wang, 2012, Dai, 1989; Fahmy and
O’Reill, 1989; Kaczorek, 2004; 1992; 2007a; 2007b;
Kucera and Zagalak, 1988, Luenberger, 1978; Van
Dooren, 1979). The eigenvalue and invariant assignment
by state and output feedbacks was investigated by
Dodig and Stosic (2009), Wang (2012), Dai (1989),
Fahmy and O’Reill (1989) as well as Kaczorek (2004;
1992), while the realization problem for singular positive
continuous-time systems with delays was discussed by
Kaczorek (2007b). The computation of Kronecker’s
canonical form of a singular pencil was analyzed by Van
Dooren (1979). A delay dependent criterion for a class of
descriptor systems with delays varying in intervals was
proposed by Wang (2012).

Fractional positive continuous-time linear systems
were addressed by Kaczorek (2008), along with positive
linear systems with different fractional order (Kaczorek,
2007a). A new concept of practical stability of positive
fractional 2D systems was proposed by Kaczorek (2010b),
who also presented an analysis of fractional linear
electrical circuits (Kaczorek, 2012a) and some selected
problems in the theory of fractional linear systems
(Kaczorek, 2011b).

A new class of descriptor fractional linear systems
and electrical circuits was introduced, their solution
of state equations was derived and a method for
decomposition of the descriptor fractional linear systems

with regular pencils into dynamic and static parts was
proposed by Kaczorek (2012a), who also considered
positive fractional continuous-time linear systems with
singular pencils (Kaczorek, 2012b). Fractional-order
iterative learning control for fractional-order systems was
addressed by Yan et al. (2011c).

In this paper, methods of finding solutions of the
state equations of descriptor fractional discrete-time and
continuous-time linear systems with regular pencils will
be proposed.

The paper is organized as follows. In Section 2 the
solution to the state equation of the descriptor system is
derived using the method based on the Z transform and
the convolution theorem. A method for computation of the
transition matrix is proposed and illustrated on a simple
numerical example in Section 3. In Section 4 the proposed
method is extended to continuous-time linear systems.
Concluding remarks are given in Section 5.

The following notation will be used: R is the set of
real numbers, R

n×m is the set of real n×m matrices and
R

n = R
n×1, Z+ is the set of nonnegative integers, In is

the n× n identity matrix.

2. Discrete-time fractional linear systems

Consider the descriptor fractional discrete-time linear
system

EΔαxi+1 = Axi +Bui,

i ∈ Z+ = {0, 1, 2, . . .}, 0 < α < 1, (1)
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where α is the fractional order, xi ∈ R
n is the state vector

ui ∈ R
m is the input vector and E,A ∈ R

n×n, B ∈
R

n×m. It is assumed that detE = 0, but the pencil (E,
A) is regular, i.e.,

det[Ez −A] �= 0 for somez ∈ C. (2)

Without lost of generality we may assume that

E =
[
E1 0
0 0

]
∈ R

n×n, E1 ∈ R
r×r

and

rankE1 = rankE = r < n. (3)

Admissible boundary conditions for (1) are given by x0.
The fractional difference of the order α ∈ [0, 1) is defined
by

Δαxi =
i∑

k=0

ckxi−k, (4a)

where

ck = (−1)k

(
α
k

)
, k = 0, 1, . . . (4b)

and(
α
k

)

=

{
1

α(α− 1) . . . (α − k + 1)
k!

for
for

k = 0,
k = 1, 2, . . .

(4c)

Substitution of (4a) into (1) yields

Exi+1 = Fxi +
i+1∑
k=2

ckxi−k+1 +Bui, i ∈ Z+, (5)

where F = A− Ec1 = A− Eα.
Applying to (5) the Z-transform and taking into

account that (Kaczorek, 1992)

Z[xi−p]

= z−pX(z) + z−p

−p∑
j=−1

xjz
−j , p = 1, 2, . . . , (6)

we obtain

X(z) = [Ex− F ]−1{Ex0z −H(z) +BU(z)}, (7a)

where

X(z) = Z[xi] =
∞∑

i=0

xiz
−i,

U(z) = Z[ui] =
∞∑

i=0

uiz
−i,

H(z) = Z[hi], hi =
i+1∑
k=2

Eckxi−k+1. (7b)

Let

[Ex− F ]−1 =
∞∑

j=−μ

ψjz
−(j+1), (8)

where μ is the positive integer defined by the pair (E,A)
(Kaczorek, 1992; Van Dooren, 1979). Comparison of the
coefficients at the same powers of z of the equality

[Ex− F ]

⎛
⎝ ∞∑

j=−μ

ψjz
−(j+1)

⎞
⎠

=

⎛
⎝ ∞∑

j=−μ

ψjz
−(j+1)

⎞
⎠ [Ex− F ] = In (9a)

yields

Eψ−μ = ψ−μE = 0 (9b)

and

Eψk + Eψk+1

= ψkE + ψk−1E

=
{
In
0

for
for

k = 0 ,
k = 1 − μ, 2 − μ, . . . ,−1, 1, 2, . . .

(9c)

From (9b) and (9c) we have the matrix equation

G

[
ψ0μ

ψ1N

]
=
[
V
0

]
, (10a)

where

G =
[
G1 0
G21 G2

]
∈ R

(N+μ+1)n×(N+μ+1)n,

G21 =

⎡
⎢⎢⎢⎣

0 . . . 0 F
0 . . . 0 0
... . . .

...
...

0 . . . 0 0

⎤
⎥⎥⎥⎦ ∈ R

Nn×(μ+1)n,

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E 0 0 . . . 0 0 0
F E 0 . . . 0 0 0
0 F E . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . F E 0
0 0 0 . . . 0 F E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(μ+1)n×(μ+1)n,

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E 0 0 . . . 0 0 0
F E 0 . . . 0 0 0
0 F E . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . F E 0
0 0 0 . . . 0 F E

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

Nn×Nn,
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ψ0μ =

⎡
⎢⎢⎢⎣

ψ−μ

ψ1−μ

...
ψ0

⎤
⎥⎥⎥⎦ ∈ R

(μ+1)n×n,

ψ1N =

⎡
⎢⎢⎢⎣

ψ1

ψ2

...
ψN

⎤
⎥⎥⎥⎦ ∈ R

Nn×n,

V =

⎡
⎢⎢⎢⎣

0
...
0
In

⎤
⎥⎥⎥⎦ ∈ R

(μ+1)n×n. (10b)

Equation (10a) has the solution[
ψ0μ

ψ1N

]

for given G and V if and only if

rank
{
G,

[
V
0

]}
= rank G. (11)

It is easy to show that the condition (11) is satisfied if the
condition (2) is met.

Substituting (8) into (7a) we obtain

X(z) =

⎛
⎝ ∞∑

j=−μ

ψjz
−(j+1)

⎞
⎠ [Ex0z −H(z) +BU(z)].

(12)
Applying the inverse transform Z−1 and the convolution
theorem to (12), we obtain

xi = ψiEx0 −
i+μ−1∑

k=0

ψi−k−1

k+1∑
j=2

cjxk−j+1

+
i+μ−1∑

k=0

ψi−k−1Buk. (13)

To find the solution to Eqn. (1), first we compute the
transition matrices ψj for j = −μ, 1 − μ, . . . , 1, 2, . . .
and next, using (13), we obtain the desired solution.

3. Computation of transition matrices

To compute the transition matrices ψk for k = −μ, 1 −
μ, . . . , N, . . . , the following procedure is recommended.

Procedure 1.
Step 1. Find a solution ψ0μ of the equation

G1ψ0μ = V, (14)

where G1, ψ0μ and V are defined by (10b). Note that, if
the matrix E has the form (3), then the first r rows of the
matrix ψ0μ are zero and its n− r last rows are arbitrary.

Step 2. Choose n − r arbitrary rows of the matrix ψ0 so
that

rank
{[

E 0
F E

]
,

[
In − Fψ−1

0

]}

= rank
[
E 0
F E

]
(15)

and the equation
[
E 0
F E

] [
ψ0

ψ1

]
=
[
In − Fψ−1

0

]

has a solution with arbitrary last n− r rows of the matrix
ψ1.

Step 3. Knowing ψ0μ, choose the last n − r rows of the
matrix ψ1 so that

rank
{[

E 0
F E

]
,

[
Fψ0

0

]}
= rank

[
E 0
F E

]

(16)
and the equation

[
E 0
F E

] [
ψ1

ψ2

]
= −

[
F
0

]
ψ0 (17)

has a solution with arbitrary last n− r rows of the matrix
ψ2. Repeating the last step for

[
ψ2

ψ3

]
,

[
ψ3

ψ4
, . . .

]

we may compute the desired matrices ψk for k = −μ, 1−
μ, . . . .

The details of the procedure will be shown on the
following example.

Example 1. Find the solution to Eqn. (1) for α = 0.5
with the matrices

E =
[

1 0
0 0

]
, A =

[
0 0
1 −2

]
, B =

[
1
2

]

(18)
and the initial condition

x0 =
[

1
0

]

and ui, i ∈ Z+.
In this case the pencil (2) of (18) is regular since

det[Ez −A] =
∣∣∣∣ z 0
−1 2

∣∣∣∣ = 2z, (19)

μ = 1 and

F = [Eα−A] =
[

α 0
−1 2

]
=
[

0.5 0
−1 2

]
. (20)
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Using Procedure 1, we obtain the following.

Step 1. In this case Eqn. (14) has the form
⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
α 0 1 0
−1 2 0 0

⎤
⎥⎥⎦
[
ψ−1

ψ0

]
=

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ , (21)

and its solution with the arbitrary second row
[ ψ0

21 ψ0
22 ] of ψ0 is given by

[
ψ−1

ψ0

]
=

⎡
⎢⎢⎣

0 0
0 0.5
1 0
ψ0

21 ψ0
22

⎤
⎥⎥⎦ . (22)

Step 2. We choose the row [ ψ0
21 ψ0

22 ] of ψ0 so that (15)
holds, i.e.,

rank

⎡
⎢⎢⎣

1 0 0 0 1 0
0 0 0 0 0 0
α 0 1 0 0 0
−1 2 0 0 0 0

⎤
⎥⎥⎦

= rank

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
α 0 1 0
−1 2 0 0

⎤
⎥⎥⎦ , (23)

and the equation
⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
α 0 1 0
−1 2 0 0

⎤
⎥⎥⎦
[
ψ0

ψ1

]
=

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ (24)

has the solution

[
ψ0

ψ1

]
=

⎡
⎢⎢⎣

1 0
0.5 0
−α 0
ψ1

21 ψ1
22

⎤
⎥⎥⎦ (25)

with the second arbitrary row [ ψ1
21 ψ1

22 ] of ψ1.

Step 3. We choose [ ψ1
21 ψ1

22 ] so that the equation

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
α 0 1 0
−1 2 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−α 0
ψ1

21 ψ1
22

α2 0
ψ2

21 ψ2
22

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
α 0
0 0
0 0
0 0

⎤
⎥⎥⎦
(26)

has the solution

[
ψ1

ψ2

]
=

⎡
⎢⎢⎣

−α 0
−0.5α 0
α2 0
ψ2

21 ψ2
22

⎤
⎥⎥⎦ (27)

with arbitrary [ ψ2
21 ψ2

22 ].
Continuing the procedure, we obtain

ψ−1 =
[

0 0
0 0.5

]
, ψk = (−1)k

[
αk 0

0.5αk 0

]

(28)

for k = 0, 1, . . .
Using (13), (18) and (20), we obtain the desired

solution of the form

xi = ψi

[
1
0

]
−

i∑
k=0

ψi−k−1

k+1∑
j=2

[
1 0
0 0

]
cjxk−j+1

+
i∑

k=0

ψi−k−1

[
1
2

]
uk, (29)

where cj are defined by (4b). �

4. Continuous-time fractional linear
systems

Consider the descriptor fractional continuous-time linear
system described by the state equations

EDαx(t) = Ax(t) +Bu(t),
n− 1 < α ≤ n ∈ {1, 2, . . .} (30a)

y(t) = Cx(t) +Du(t), (30b)

where Dα is the Caputo differentiation operator, x(t) ∈
R

n, u(t) ∈ R
m, y(t) ∈ R

p are the state, input and output
vectors and E,A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, D ∈
R

p×m.
It is assumed that detE = 0 and the pencil (E,A) is

regular, i.e.,

det[Eλ−A] �= 0 for some λ ∈ C. (31)

Admissible initial conditions for (30a) are given by

x(k)(0) = xk,0 for k = 0, 1, . . . , n− 1. (32)

Applying the Laplace transform (L) to Eqn. (30a), we
obtain (Kaczorek, 2011b)

[Esα −A]X(s) = BU(s) +
n−1∑
k=0

sα−k−1xk,0, (33)

where X(s) = L[x(t)] and U(s) = L[u(t)]. If the
condition (31) is satisfied, then from (33) we obtain

X(s) = [Esα −A]−1

(
BU(s) +

n−1∑
k=0

sα−k−1xk,0

)
.

(34)



Descriptor fractional linear systems with regular pencils 313

In a particular case when detE �= 0, from (34) we
have

X(s) =
∞∑

i=0

(E−1A)iE−1s−(i+1)α (35)

×
(
BU(s) +

n−1∑
k=0

sα−k−1xk,0

)

since

[Esα −A]−1 = [Esα(In − (Esα)−1)A]−1

=
∞∑

i=0

(E−1A)iE−1s−(i+1)α.

Using the inverse Laplace transform (L−1) and the
convolution theorem, we obtain

x(t) = L−1[X(s)]

=
∞∑

i=0

[ ∫ t

0

(E−1A)i (t− τ)(i+1)α−1

Γ[(i+ 1)α]
E−1Bu(τ) dτ

+
n−1∑
k=0

tiα+k

Γ(iα+ k + 1)
(E−1A)ixk,0

]
,

(36)

where Γ(α) is the gamma function (Kaczorek, 2011b).
Therefore, the following theorem for detE �= 0 has

been proved.

Theorem 1. The solution of Eqn. (30a) for detE �= 0
and the initial conditions (32) is given by (36).

If E = In, then (36) takes the form (Kaczorek,
2011b)

x(t) =
n∑

l=1

Φl(t)x(l−1)(0+) +
∫ t

0

Φ(t− τ)Bu(τ) dτ,

(37)
where

Φl(t) =
∞∑

k=0

Akt(kα+l)−1

Γ(kα+ l)
, (38a)

Φ(t) =
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
. (38b)

If detE = 0 but the pencil is regular (the condition
(31) is met), then

[Esα −A]−1 =
∞∑

i=−μ

Tis
−(i+1)α, (39)

where Ti satisfy the equality

ETi −ATi−1 = TiE − Ti−1A

=
{
In for i = 0,
0 for i �= 0, (40)

and Ti = 0 for i < −μ, T−μE = ET−μ = 0.
The equality (40) follows from the comparison of the

coefficients at the same powers of s in the equality

[Esα −A]

⎛
⎝ ∞∑

i=−μ

Tis
−(i+1)α

⎞
⎠

=

⎛
⎝ ∞∑

i=−μ

Tis
−(i+1)α

⎞
⎠ [Esα −A] = In.

Substitution of (39) into (34) yields

X(s) =
∞∑

i=−μ

Ti

[
s−(i+1)αBU(s) +

n−1∑
k=0

s−iα−k−1xk,0

]

=
∞∑

i=0

Ti

[
s−(i+1)αBU(s) +

n−1∑
k=0

s−iα−k−1xk,0

]

+
μ∑

i=1

T−i

[
s(i+1)αBU(s) +

n−1∑
k=0

siα−k−1xk,0

]
.

(41)

Applying the inverse Laplace transform and the
convolution theorem to (41), we obtain

x(t) =
∞∑

i=0

[ ∫ t

0

TiB
(t− τ)(i+1)α−1

Γ[(i+ 1)α]
Bu(τ) dτ

+
n−1∑
k=0

Ti
tiα+k

Γ(iα+ k + 1)
Exk,0

]

+
μ∑

i=1

T−i

[
Bu(t)(i−1)α +

n−1∑
k=0

δ(iα−1)Exk,0

]

(42)

or

x(t) =
∞∑

i=0

[ ∫ t

0

(T0A)iT0B
(t− τ)(i+1)α−1

Γ[(i+ 1)α]
u(τ) dτ

+
n−1∑
k=0

(T0A)iT0
tiα+k

Γ(iα+ k + 1)
xk,0

]

+
μ∑

i=1

T−i

[
Bu(t)(i−1)α +

n−1∑
k=0

δ(iα−1)Exk,0

]
,

(43)

since by (40) Ti = (T0A)iT0 for i = 0, 1, . . . and δ(k) is
the k-th derivative of the delta impulse function δ.

Therefore, the following theorem has been proved.

Theorem 2. If the condition (31) is satisfied, then the so-
lution of Eqn. (30a) with the admissible initial conditions
(32) is given by (42) or (43).



314 T. Kaczorek

In a particular case of 0 < α ≤ 1, from (43) we have

x(t) =
∞∑

i=0

(T0A)iT0

[ ∫ t

0

B
(t− τ)(i+1)α−1

Γ[(i+ 1)α]
u(τ) dτ

+
tiα

Γ(iα+ 1)
Ex0

]

+
μ∑

i=1

T−i[Bu(t)(i−1)α + δ(iα−1)Ex0].

(44)

To compute the matrices Ti for i = −μ, 1 − μ, . . . , the
procedure given in Section 3 is recommended.

Example 2. Consider Eqn. (30a) for α = 0.5 with the
matrices

E =
[

1 0
0 0

]
, A =

[
0 0
1 −2

]
, B =

[
1
2

]

(45)
and the zero initial condition x0 = 0. The pencil is regular
since

det[Eλ−A] =
∣∣∣∣ λ 0
−1 2

∣∣∣∣ = 2λ, (λ = sα) (46)

and

[Eλ−A]−1 =
[

λ−1 0
0.5λ−1 0.5

]
= T−1 + T0λ

−1,

(47a)

where

T−1 =
[

0 0
0 0.5

]
, T0 =

[
1 0

0.5 0

]
.

(47b)

Using (42), (43) and (47b) we obtain

x(t) = T0B

∫ t

0

(t− τ)−0.5

Γ(0.5)
u(τ) dτ + T−1Bu(t)

=
[

1
0.5

]∫ t

0

(t− τ)−0.5

Γ(0.5)
u(τ) dτ +

[
0
1

]
u(t).

(48)

�

5. Concluding remarks

New methods of finding solutions of the state equations
of descriptor fractional discrete-time and continuous-time
linear systems with regular pencils have been proposed.
Derivation of the solution formulas has been based
on the application of the Z-transform, the Laplace

transform and the convolution theorems. A procedure for
computation of the transition matrices has been proposed
and its application has been demonstrated on simple
numerical examples. An open problem is the extension
of the method for 2D descriptor fractional discrete and
continuous-discrete linear systems.

Acknowledgment

This work was supported by the National Science Centre
in Poland under the grant no. N N514 6389 40.

References
Dodig, M. and Stosic, M. (2009). Singular systems state

feedbacks problems, Linear Algebra and Its Applications
431(8): 1267–1292.

Dai, L. (1989). Singular Control Systems, Lectures Notes
in Control and Information Sciences, Vol. 118,
Springer-Verlag, Berlin.

Fahmy, M.H and O’Reill, J. (1989). Matrix pencil of closed-loop
descriptor systems: Infinite-eigenvalues assignment, Inter-
national Journal of Control 49(4): 1421–1431.

Gantmacher, F.R. (1960). The Theory of Matrices, Chelsea
Publishing Co., New York, NY.

Kaczorek, T. (2012a). Descriptor fractional linear systems with
regular pencils, Asian Journal of Control 15(4): 1–14.

Kaczorek, T. (2012b). Positive fractional continuous-time linear
systems with singular pencils, Bulletin of the Polish Aca-
demy of Sciences: Technical Sciences 60(1): 9–12.

Kaczorek, T. (2011a). Positive linear systems consisting of n
subsystems with different fractional orders, IEEE Trans-
actions on Circuits and Systems 58(7): 1203–1210.

Kaczorek, T. (2011b). Selected Problems of Fractional System
Theory, Springer-Verlag, Berlin.

Kaczorek, T. (2010a). Positive linear systems with different
fractional orders, Bulletin of the Polish Academy of Scien-
ces: Technical Sciences 58(3): 453–458.

Kaczorek, T. (2010b). Practical stability and asymptotic stability
of positive fractional 2D linear systems, Asian Journal of
Control 12(2): 200–207.

Kaczorek, T. (2008). Fractional positive continuous-time linear
systems and their reachability, International Journal of Ap-
plied Mathematics and Computer Science 18(2): 223–228,
DOI: 10.2478/v10006-008-0020-0.

Kaczorek, T. (2007a). Polynomial and Rational Matrices. Ap-
plications in Dynamical Systems Theory, Springer-Verlag,
London.

Kaczorek, T. (2007b). Realization problem for singular positive
continuous-time systems with delays, Control and Cyber-
netics 36(1): 47–57.

Kaczorek, T. (2004). Infinite eigenvalue assignment by an output
feedbacks for singular systems, International Journal of
Applied Mathematics and Computer Science 14(1): 19–23.



Descriptor fractional linear systems with regular pencils 315

Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research
Studies Press J. Wiley, New York, NY.

Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state
feedback for singular systems, Automatica 24(5): 653–658.

Luenberger, D.G. (1978). Time-invariant descriptor systems, Au-
tomatica 14: 473–480.

Podlubny, I. (1999). Fractional Differential Equations,
Academic Press, New York, NY.

Wang, C. (2012). New delay-dependent stability criteria for
descriptor systems with interval time delay, Asian Journal
of Control 14(1): 197–206.

Van Dooren, P. (1979). The computation of Kronecker’s
canonical form of a singular pencil, Linear Algebra and
Its Applications 27: 103–140.

Yan L., YangQuan C., Hyo-Sung A., (2011c). Fractional-order
iterative learning control for fractional-order systems,
Asian Journal of Control 13(1): 54–63.

Tadeusz Kaczorek received the M.Sc., Ph.D.
and D.Sc. degrees in electrical engineering
from the Warsaw University of Technology in
1956, 1962 and 1964, respectively. In the years
1968–69 he was the dean of the Electrical Engi-
neering Faculty, and in the period of 1970–73 he
was a deputy rector of the Warsaw University of
Technology. In 1971 he became a professor and
in 1974 a full professor at the same university.
Since 2003 he has been a professor at Białystok

Technical University. In 1986 he was elected a corresponding member
and in 1996 a full member of the Polish Academy of Sciences. In the
years 1988–1991 he was the director of the Research Centre of the Po-
lish Academy of Sciences in Rome. In 2004 he was elected an honorary
member of the Hungarian Academy of Sciences. He has been granted
honorary doctorates by nine universities. His research interests cover
systems theory, especially singular multidimensional systems, positive
multidimensional systems, singular positive 1D and 2D systems, as well
as positive fractional 1D and 2D systems. He initiated research in the
field of singular 2D, positive 2D and positive fractional linear systems.
He has published 24 books (six in English) and over 1000 scientific pa-
pers. He has also supervised 69 Ph.D. theses. He is the editor-in-chief of
the Bulletin of the Polish Academy of Sciences: Technical Sciences and a
member of editorial boards of ten international journals.

Received: 28 May 2012
Revised: 12 September 2012


	Introduction
	Discrete-time fractional linear systems
	Computation of transition matrices
	Continuous-time fractional linear systems
	Concluding remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




