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Universidad Nacional Autonoma de México, Circuito Exterior, C.U. 04510 D.F., México
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1. Introduction

In the last fifteen years an increasing interest has been
observed in the study of the controllability of coupled
equations of the same nature, exerting control on fewer
equations that the total number of equations in the system.
Great effort has been observed in the study of coupled
parabolic equations (see, e.g., the work of Ammar-Kohdja
et al. (2011) and the references therein) but very little
has been said about the controllability of coupled wave
equations.

As far as we know, only five papers have been
published treating this interesting problem (Dáger, 2006;
Tebou, 2008; Alabau-Boussouira, 2003), and two are very
recent results (Alabau-Boussouira and Leautaud, 2011;
Rosier and de Teresa, 2011). The first two papers deal
with the so-called “insensitizing controls”, a concept
introduced by Lions (1989) that can be transformed in
the controllability of a cascade system of two equations
with the particularity that the only controlled state is
“the second” and this second equation is a backward
equation with zero initial data (Lions, 1989; Bodart and
Fabre, 1995; de Teresa, 2000; Dáger, 2006; Tebou, 2008).

More precisely, in the case of the wave equation, the
following problem is treated. For Ω an open and bounded
set of R

N , ω,O ⊂ Ω non-empty subsets and T > 0, we
consider the coupled system
⎧
⎪⎪⎨

⎪⎪⎩

ytt − Δy = hχω in Q := Ω × (0, T ),
y = 0 on Σ := ∂Ω × (0, T ),
y(x, 0) = y0(x), in Ω,
yt(x, 0) = y1(x) in Ω,

(1)

⎧
⎨

⎩

qtt − Δq = y χO in Q,
q = 0 on Σ,
q(x, T ) = 0, qt(x, T ) = 0 in Ω.

(2)

The problem is now to give conditions on ω, O and T > 0
to guarantee that for every (y0, y1) ∈ L2(Ω) × H−1(Ω)
there exists a control h in an appropriate space, such that

q(x, 0) = qt(x, 0) = 0.

This problem was solved in the one dimensional case
by Dáger (2006) and in the n-dimensional case by Tebou
(2008). A controllability result for a system similar to (1),
(2) in the one dimensional case is also presented by Rosier
and de Teresa (2011).
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On the other hand, using a two level energy
method, Alabau-Boussouira (2003) solved, for a small
parameter α > 0, the following boundary controllability
problem. Given any initial (y0, q0, y1, q1) and final data
(y0,T , q0,T , y1,T , q1,T ) both in

V := L2(Ω) × H1
0 (Ω) × H−1(Ω) × L2(Ω)),

the author described conditions on Γ0 and T > 0 that
guarantee the existence of v ∈ L2(Σ) such that the
corresponding solution to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt − Δy + αq = 0 in Q,
qtt − Δq + αy = 0 in Q,
y = v on Γ0 × (0, T ),
y = 0 on Γ1 × (0, T ),
q = 0 on Σ,
y(x, 0) = y0(x) in Ω,
yt(x, 0) = y1(x) in Ω,
q(x, 0) = q0(x), in Ω,
qt(x, 0) = q1(x) in Ω

(3)

satisfies

(y(T ), q(T ), yt(T ), qt(T ) = (y0,T , q0,T , y1,T , q1,T ).

In the work of Alabau-Boussouira and Leautaud (2011) a
generalization of this result is given, but again, the result
is proved for a small coupling parameter.

We notice that controllability and observability
questions for coupled partial differential equations are
closely related to source identification and sensor location
problems for distributed parameter systems (see, e.g.,
Khapalov, 2010; Uciński and Patan, 2010; El Jai and
Hamzaoui, 2009). These models also arise in a very
important applied area—wave propagation in porous
media (Boit, 1962; Holger et al., 2010). Stabilizability of
coupled wave equations and its applications are discussed
by Najafi et al. (1997) and Najafi (2001).

In this paper we work in the one-dimensional model.
We improve results existing in the literature for the
case of one boundary control of two coupled hyperbolic
equations. We demonstrate that the condition imposed by
Alabau-Boussouira (2003) as well as Alabau-Boussouira
and Leautaud (2011) on the “smallness” of the coupling
parameter can be eliminated. Instead of the smallness,
we obtain explicit analytic conditions on the coupling
parameters necessary and sufficient for the exact
controllability of the system. These conditions have a
spectral character, and for a given system, there is only
a finite number of parameters that violate the conditions.

Let Ω = (0, π), T > 0, Q = Ω× (0, T ) and α, β ∈

R. We study controllability properties of the system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt − yxx + αq = 0 in Q,
qtt − qxx + βy = 0 in Q,
y(0, t) = u(t), y(π, t) = 0 t ∈ (0, T )
q = 0 on Σ,
y(x, 0) = y0(x) in Ω,
yt(x, 0) = y1(x) in Ω,
q(x, 0) = q0(x), in Ω,
qt(x, 0) = q1(x) in Ω.

(4)

We will also consider the particular case in which α = 0
for Q = (0, π) × (0, T ),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt − yxx = 0, in Q
qtt − qxx + βy = 0 in Q,
y(0, t) = u(t), y(π, t) = 0 t ∈ (0, T )
q = 0 on Σ,
y(x, 0) = y0 in (0, π),
yt(x, 0) = y1(x) in (0, π),
q(x, 0) = q0(x) in Ω,
qt(x, 0) = q1(x) in Ω.

(5)

This last case is especially important to us because,
on the one hand, it is related to insensitizing results
(and gives a different proof of the results of Rosier and
de Teresa (2011)) and, on the other hand, it reveals the
main ideas behind the rest of the proofs in this paper. In
fact, we first prove the controllability result for (5), where
we use the properties of exponential divided differences of
a special form, {exp(iωnt), t exp(iωnt)}. The key point
to solve the controllability problem for (4) is to use the
results of Avdonin and Ivanov (2001) as well as Avdonin
and Moran (2001a), who presented a study of exponential
divided differences of a general form.

To prove our results, we apply the method of
moments. It has been widely used in the control theory of
distributed parameter systems since the classical papers
of H.O. Fattorini and D.L. Russell in the late 1960s to
early 1970s (see the excellent survey by Russell (1978)
and the book by Avdonin and Ivanov (1995) for the history
of the subject and complete references). The method is
based on properties of exponential families (usually in the
space L2(0, T )), the most important of which for control
theory are minimality, the Riesz basis property and also
the L-basis property. The latter is defined to be a Riesz
basis in the closure of the linear span of the family. Recent
investigations into new classes of distributed systems such
as hybrid systems, systems with memory, and damped
systems as well as problems of simultaneous control
have raised a number of new and difficult problems in
the theory of exponential families (see, e.g., Hansen
and Zuazua, 1995; Avdonin and Moran, 2001b; Pandolfi,
2009; Avdonin and Pandolfi, 2011) including the theory
of vector-valued exponentials (Avdonin and Ivanov, 1995)
and many other interesting topics.
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As mentioned above, we study the controllability
properties of the system (4). We suppose that u ∈
L2(0, T ) and then set H0 = L2(0, π), H1 =
H1

0 (0, π), H−1 = H−1(0, π) and V = H0 × H1 ×
H−1 ×H0. Our important auxiliary result establishes the
regularity of the solution to the IBVP (4).

Theorem 1. Let (y0, q0, y1, q1) ∈ V . Then the
solution pair (y, q) = (yu(x, t), qu(x, t)) of the
IBVP (4) exists, is unique and satisfies the inclusion
(y, q, yt, qt) ∈ C([0, T ];V). This means that for any
t ∈ [0, T ], (y(·, t), q(·, t), yt(·, t), qt(·, t)) ∈ V and is
continuous in t in the norm on V .

Definition 1.
(i) The system (4) is called exactly controllable in the
time interval [0, T ] if, for any (y0, q0, y1, q1) ∈ V , the
reachable set

{(yu(·, T ), qu(·, T ), yu
t (·, T ), qu

t (·, T )) : u ∈ L2(0, T )}
is equal to V .
(ii) The system (4) is called approximately controllable in
the time interval [0, T ] if, for any (y0, y1, q0, q1) ∈ V , the
reachable set

{(yu(·, T ), qu(·, T ), yu
t (·, T ), qu

t (·, T )) : u ∈ L2(0, T )}
is dense in V .

The main results of this paper are described by the
following theorem.

Theorem 2. Suppose β �= 0, and consider the equality

n2 −
√

αβ = m2 +
√

αβ, m, n ∈ N. (6)

(i) If (6) never occurs for m �= n, the system (4) is exactly
controllable in the time interval [0, T ], T ≥ 4π.
(ii) If (6) occurs for some m, n, the system (4) is not ap-
proximately controllable for any T .
(iii) The system (4) is not approximately controllable for
T < 4π.

Remark 1. If β = 0, then the second equation is
decoupled from the first equation, where the control acts
and therefore system (4) is not approximately controllable
for any T > 0.

Remark 2. Observe that equality (6) holds if αβ = p2/4
for some p ∈ N. In particular, it never holds if |αβ| is
small enough, more precisely, if |α β| < 1/4. Therefore,
our results agree with those of Alabau-Boussouira (2003)
as well as Alabau-Boussouira and Leautaud (2011) for the
one dimensional setting.

We notice that the system (4) is symmetric with
respect to y and q, but control u appears in an asymmetric
way. We formulate separately the important particular
case (for α = 0) of Theorem 2.

Theorem 3. If β �= 0, the system (5) is exactly control-
lable for T ≥ 4π.

The technique used in the proof of this theorem
allows us to strengthen the last result:

Theorem 4. Let β �= 0 and O = (a, b) ⊂ (0, π). If
we replace β by βχO in the second equation of (5), the
system (5) is exactly controllable for T ≥ 4π.

The rest of the paper is organized as follows. In
Section 2 we reduce the controllability problem to a
moment problem. In Section 3 we solve this moment
problem. In Section 3.1 we consider the case α = 0,
in Sections 3.2 and 3.3 we consider the cases αβ > 0
and αβ < 0, correspondingly. In Section 4 we prove
Theorems 1–3.

2. From the coupled system to the moment
problem

To prove Theorem 2, we transform the controllability
problem into a moment problem of the form

∫ T

0

u(t)fn(t) dt = cn, n ∈ N. (7)

It is known (see Avdonin and Ivanov, 1995, Ch. I.2) that
the problem (7) has a solution u ∈ L2(0, T ) for any
{cn}n∈N ∈ �2(R) if and only if the family F = {fn}n∈N

forms an L-basis in L2(0, T ). The family F has different
forms in the cases α = 0, αβ > 0 and αβ < 0. We prove
that in all these cases, when (6) does not hold (it may hold
if αβ > 0), the corresponding family F forms a Riesz
basis in L2(0, T ) for T ≥ 4π.

We start with deriving the problem of moments
related to the exact controllability of the system (4).
It is well known that the reversibility and linearity of
the system (4) makes the exact controllability equivalent
to the exact controllability from zero. Therefore, we
consider the system

⎧
⎪⎪⎨

⎪⎪⎩

ytt − yxx + α q = 0, 0 < x < π, 0 < t < T,
qtt − qxx + β y = 0,
y(0, t) = u(t), y(π, t) = q(0, t) = q(π, t) = 0,
y(x, 0) = yt(x, 0) = q(x, 0) = qt(x, 0) = 0.

(8)

Here α, β ∈ R, with β �= 0 and u ∈ L2(0, T ).
We present y, q in the form of series

y(x, t) =
∞∑

n=1

an(t)φn(x), q(x, t) =
∞∑

n=1

bn(t)φn(x),

(9)
where φn(x) =

√
2/π sin(n x). Multiplying (8) by
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sin nx and integrating by parts in (0, π), we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ π

0

(ytt(x, t) + n2y(x, t) + α q(x, t)) sin nxdx

= n u(t), 0 < t < T,∫ π

0

(qtt(x, t) + n2q(x, t) + β y(x, t)) sin nxdx

= 0, 0 < t < T.

(10)

Substituting (9) in (10), we obtain

⎧
⎪⎨

⎪⎩

än + n2 an + α bn = κn u(t), κn =
√

2
π n,

b̈n + n2 bn + β an = 0,

an(0) = ȧn(0) = bn(0) = ḃn(0) = 0.

(11)

To solve the system (11) for every n, we set

Yn =

⎛

⎜
⎜
⎝

an

bn

ȧn

ḃn

⎞

⎟
⎟
⎠ , An =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1

−n2 −α 0 0
−β −n2 0 0

⎞

⎟
⎟
⎠

and rewrite (11) in the form

Ẏn(t) = AnYn(t) + Fn(t), Yn(0) = 0. (12)

The solution to (12) can be written in the form

Yn(t) =
∫ t

0

eAn(t−τ)Fn(τ) dτ,

Fn(t) =

⎛

⎜
⎜
⎝

0
0
κn

0

⎞

⎟
⎟
⎠u(t).

(13)

We use the finite power series representation of the
matrix function eAnt which crucially employs the
Cayley–Hamilton theorem (see Leonard, 1996),

eAnt = z0,n(t)I + z1,n(t)An

+ z2,n(t)A2
n + z3,n(t)A3

n, (14)

where zk,n(t) are the solutions of the differential
equations

z(4) + 2 n2 z′′ + n4 − α β = 0,

z
(j)
k,n(0) = δjk, j, k = 0, 1, 2, 3. (15)

The characteristic polynomial associated to (15) is

λ4 + 2 n2 λ2 + n4 − α β

=
(
λ2 + n2 −

√
α β
) (

λ2 + n2 +
√

α β
)

.

The roots of this polynomial determine the solutions
zk,n(t). The controllability problem reduces then to the
moment problem of the form
∫ T

0

eAn(T−t)Fn(t) dt = cn, {cn}n∈N ∈ �2(R4).

In the following sections we present the explicit form of
this moment problem and derive its solution depending on
the parameters α and β.

3. Solution of the moment problem

It is well known (see, e.g., Avdonin and Ivanov, 1995, Sec.
III.1) that the norms of the functions y and q as well as
their time derivatives in the corresponding Sobolev spaces
are equivalent to the norms of their Fourier coefficients in
the weighted �2 spaces:

‖ (yu(·, T ), qu(·, T ), yu
t (·, T ), qu

t (·, T )) ‖2
V

�
∞∑

n=1

[|an(T )|2 + |nbn(T )|2 + |n−1ȧn(T )|2

+|ḃn(T )|2
]
.

(16)

Solutions of Eqns. (11) and (12) depend on α and β.
We discuss three different cases.

3.1. Case α = 0, β �= 0. It can be easily checked that
the solution of (11) and (12), in the case α = 0, is given
by the formulas

an(t) =
κn

n

∫ t

0

sin(n (t − τ)) u(τ) dτ,

bn(t) = − κnβ

2 n3

∫ t

0

(sin(n (t − τ))

− n (t − τ) cos(n (t − τ))) u(τ) dτ,

ȧn(t) =κn

∫ t

0

cos(n (t − τ))u(τ) dτ,

ḃn(t) = − κn β

2n

∫ t

0

(t − τ) sin(n (t − τ))u(τ) dτ.

Since κn =
√

2/πn, we can write

an(t) =

√
2
π

∫ t

0

sin(n (t − τ)) u(τ) dτ,

nbn(t) = − β√
2π

∫ t

0

(
sin(n (t − τ))

n

− (t − τ) cos(n (t − τ))) u(τ) dτ,

n−1ȧn(t) =

√
2
π

∫ t

0

cos(n (t − τ))u(τ) dτ,

ḃn(t) = − β√
2π

∫ t

0

(t − τ)

× sin(n (t − τ))u(τ) dτ.
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Our next step is to prove that the family of functions

F =

{√
2
π

sin nt,
β√
2π

(
− sin nt

n
+ t cosnt

)
,

√
2
π

cosnt, − β√
2π

t sin nt

}

, n ∈ N,

forms an L-basis in L2(0, T ) for T ≥ 4π. Recall that a
family is said to be an L-basis if it forms a Riesz basis in
the closure of its linear span.

It is known (see, e.g., Avdonin and Ivanov, 1995;
2001; Avdonin and Moran, 2001a, Section II.4.5) that the
family

E = {sin nt, t cosnt, cosnt, t sinnt, } , n ∈ N,

forms an L-basis in L2(0, T ) for T ≥ 4π. It is easy to
check that the operator B which maps E to F is bounded
and boundedly invertible in L2(0, T ) for any T > 0 since
its matrix form can be presented as

B = diag (Bn)∞n=1, (17)

with

Bn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

√
2
π 0 0 0

− β

n
√

2π

β√
2π

0 0

0 0
√

2
π 0

0 0 0 − β√
2π

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

B−1
n =

⎛

⎜
⎜
⎜
⎝

√
π
2 0 0 0

1
n

√
π
2

√
2π
β 0 0

0 0
√

π
2 0

0 0 0 −
√

2π
β

⎞

⎟
⎟
⎟
⎠

.

Therefore, F is also an L-basis in L2(0, T ) for T ≥ 4π.

Remark 3. The presented proof can be extended to the
case when instead of β we take βχO as in Theorem 4.
Only the expression of the moment problem becomes
more complicated but the method of its solution is exactly
the same. We skip the routine details of the proof and
refer to the works of Rosier and de Teresa (2011) as well
as Kavian and de Teresa (2010) for related results.

3.2. Case αβ > 0. In this section we consider the
case in which both the coupling parameters have the
same sign. As previously, we want to solve a problem
of moments. To this end, we need to construct the
corresponding Riesz basis of exponentials. In general (see
below), this basis is given by two families of functions.
The first one is defined by a finite number of indexes n :
n2 <

√
αβ, and the second—by an infinite number of

indexes n : n2 ≥ √
α β. Clearly, when αβ ≤ 1, we only

have the second family indexed by n ∈ N. We start with
the study of the finite family.

Subcase n2 <
√

α β. There can be a finite number of
n satisfying this inequality. In this case, the characteristic
polynomial of matrix An is given by

λ4 + 2 n2 λ2 + n4 − α β

= (λ2 + (γ+
n )2)(λ2 − (γ−

n )2),

where

γ+
n =

√

n2 +
√

α β, γ−
n =

√√
α β − n2.

In this case the solution of (11) and (12) has the form

an(t)

=
κn

2

∫ t

0

( sinh[(t − τ)γ−
n ]

γ−
n

+
sin[(t − τ)γ+

n ]
γ+

n

)

× u(τ) dτ,

bn(t)

=
κn

2

√
β

α

∫ t

0

(
sin[(t − τ)γ+

n ]
γ+

n
− sinh[(t − τ)γ−

n ]
γ−

n

)

× u(τ) dτ,

ȧn(t)

=
κn

2

∫ t

0

(cos[(t − τ)γ+
n ] + cosh[(t − τ)γ−

n ])u(τ) dτ,

ḃn(t)

=
κn

2

√
β

α

∫ t

0

(cos[(t − τ)γ+
n ] − cosh[(t − τ)γ−

n ])

× u(τ) dτ.

We consider the finite family

F√
αβ

=
{

n√
2π

(
sinh[(t − τ)γ−

n ]
γ−

n
+

sin[(t − τ)γ+
n ]

γ+
n

)

,

n2

√
2π

(
sin[(t − τ)γ+

n ]
γ+

n
− sinh[(t − τ)γ−

n ]
γ−

n

)

,

1√
2π

(
cos[(t − τ)γ+

n ] + cosh[(t − τ)γ−
n ]
)
,

n√
2π

(
cos[(t − τ)γ+

n ] − cosh[(t − τ)γ−
n ]
)
}

n2≤√
αβ

.

It is clear that the map that transforms F√
αβ into the

family

E√αβ =
{
e−i(iγ−

n t), ei(iγ−
n t), eiγ+

n t, e−iγ+
n t
}

n2≤√
αβ

is bounded and boundedly invertible in L2(0, T ).

Subcase n2 ≥ √
α β. We define ω±

n =
√

n2 ±√
α β.
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The solution of (11) and (12) is given by

an(t)

=
κn

2

∫ t

0

(
sin(ω−

n (t − τ))
ω−

n
+

sin(ω+
n (t − τ))
ω+

n

)

× u(τ) dτ, (18)

bn(t)

=
κn

2

√
β

α

∫ t

0

(
sin(ω+

n (t − τ))
ω+

n
− sin(ω−

n (t − τ))
ω−

n

)

× u(τ) dτ, (19)

ȧn(t)

=
κn

2

∫ t

0

(
cos(ω−

n (t − τ)) + cos(ω+
n (t − τ))

)
u(τ) dτ,

(20)

ḃn(t)

=
κn

2

√
β

α

∫ t

0

(
cos(ω+

n (t − τ)) − cos(ω−
n (t − τ))

)

× u(τ) dτ. (21)

If some ω−
n = 0, we set

sin ω−
n (t − τ)
ω−

n
= t − τ.

Remark 4. One can check that, as α → 0, we obtain in
the limit the formulas of Section 3.1.

Substituting κn =
√

2/πn, we have

an(t) =
n√
2π

∫ t

0

(
sin(ω−

n (t − τ))
ω−

n

+
sin(ω+

n (t − τ))
ω+

n

)

u(τ) dτ, (22)

nbn(t) =
n2

√
2π

√
β

α

∫ t

0

(
sin(ω+

n (t − τ))
ω+

n

− sin(ω−
n (t − τ))
ω−

n

)

u(τ) dτ, (23)

n−1ȧn(t) =
1√
2π

∫ t

0

(
cos(ω−

n (t − τ))

+ cos(ω+
n (t − τ))

)
u(τ) dτ, (24)

ḃn(t) =
n√
2π

√
β

α

∫ t

0

(
cos(ω+

n (t − τ))

− cos(ω−
n (t − τ))

)
u(τ) dτ. (25)

Let us consider the family

E1 =
{

sin(ω+
n t),

sin(ω+
n t) − sin(ω−

n t)
ω+

n − ω−
n

,

cos(ω+
n t),

cos(ω+
n t) − cos(ω−

n t)
ω+

n − ω−
n

}

n2≥√
αβ

.

One can check that the operator which maps E1 to the
family

F1 =
{

n√
2π

(
sin(t ω−

n )
ω−

n

+
sin(t ω+

n )
ω+

n

)

,

n2

√
2π

√
β

α

(
sin(t ω+

n )
ω+

n
− sin(t ω−

n )
ω−

n

)

,

1√
2π

(
cos(t ω−

n ) + cos(t ω+
n )
)
,

n√
2π

√
β

α

(
cos(t ω+

n ) − cos(t ω−
n )
)
}

n2≥√
αβ

is bounded and boundedly invertible in L2(0, T ) for any
T > 0. In fact, F1 = B E1, where B is a diagonal block
matrix of the form (17), with

Bn =
1√
2π

⎛

⎜
⎜
⎜
⎜
⎝

n
(

ω+
n +ω−

n

ω+
n ω−

n

)
n

(ω−
n −ω+

n )

ω−
n√

β
αn2 (ω−

n −ω+
n )

ω+
n ω−

n

√
β
αn2 (ω+

n −ω−
n )

ω−
n

0 0
0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0
0 0
2 ω−

n − ω+
n

0
√

β
αn(ω+

n − ω−
n )

⎞

⎟
⎟
⎟
⎠

.

Observe that for every n

detBn =
n4

π2

β(ω+
n − ω−

n )2

αω−
n ω+

n
> 0

and

lim
n→∞detBn =

β2

π2
.

The analysis of the basis property of the corresponding
family in this case can be accomplished according to the
plan presented in Section 3.1. First, we notice that ω+

n −
ω−

n = O(1/n). Due to the results of Avdonin and Ivanov
(2001) as well as Avdonin and Moran (2001a), the family
E := E√αβ ∪E1 forms an L-basis in L2(0, T ) for T ≥ 4π
provided (6) never occurs for m �= n. Therefore, F√

αβ ∪
F1 also forms there an L-basis.

3.3. Case α β < 0. Observe that in this case the
equality (6) never holds, and we will prove that the system
(4) is exactly controllable for any time T ≥ 4π.

Let

δ+
n :=

√
1
2
(
√

n4 − αβ + n2),

δ−n :=

√
1
2
(
√

n4 − αβ − n2).
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The solution of (11) and (12) has the form

an(t) =
κn

√
n4 − αβ

×
∫ t

0

(
δ−n sinh

(
δ−n (t − τ)

)
cos
(
δ+
n (t − τ)

)

+δ+
n cosh

(
δ−n (t − τ)

)
sin
(
δ+
n (t − τ)

))
u(τ) dτ,

bn(t) =
β κn

2
√

n4 − αβ
∫ t

0

(
sinh (δ−n (t − τ)) cos (δ+

n (t − τ))
δ−n

−cosh (δ−n (t − τ)) sin (δ+
n (t − τ))

δ+
n

)

u(τ) dτ,

ȧn(t) =κn

∫ t

0

cosh
(
δ−n (t − τ)

)
cos
(
δ+
n (t − τ)

)
u(τ) dτ,

ḃn(t) = −
√

−β

α
κn

×
∫ t

0

sinh
(
δ−n (t − τ)

)
sin
(
δ+
n (t − τ)

)
u(τ) dτ.

We see that δ+
n � n and δ−n = O(1/n).

Substituting κn =
√

2/πn, we have

an(t) =n

√
2

π(n4 − αβ)

×
∫ t

0

(
δ−n sinh

(
δ−n (t − τ)

)
cos
(
δ+
n (t − τ)

)

+δ+
n cosh

(
δ−n (t − τ)

)
sin
(
δ+
n (t − τ)

))

× u(τ) dτ,

nbn(t) =
β√
2π

n2

∫ t

0

(
sinh (δ−n (t − τ)) cos (δ+

n (t − τ))
δ−n
√

n4 − αβ

−cosh (δ−n (t − τ)) sin (δ+
n (t − τ))

δ+
n

√
n4 − αβ

)

u(τ) dτ,

ṅ−1an(t) =

√
2
π

∫ t

0

cosh
(
δ−n (t − τ)

)

cos
(
δ+
n (t − τ)

)
u(τ) dτ,

ḃn(t) = − n

√

−β

α

√
2
π
·
∫ t

0

sinh
(
δ−n (t − τ)

)

× sin
(
δ+
n (t − τ)

)
u(τ) dτ.

Let us consider the family

E =

{

e(δ−
n +iδ+

n )t,
e(δ−

n +iδ+
n )t − e−(δ−

n −iδ+
n )t

2δ−n
,

e(δ−
n −iδ+

n )t,
e(δ−

n −iδ+
n )t − e−(δ−

n +iδ+
n )t

2δ−n

}

n∈N

.

One can check that the operator which maps E to the
family

F1 =

{

n

√
2
π

(
δ+
n cosh(δ−n t) sin(δ+

n t)
√

n4 − αβ

+
δ−n cos(δ+

n t) sinh(δ−n t)
√

n4 − αβ

)

,

n2β√
2π

(
cosh(δ−n t) sin(δ+

n t))

δ+
n

√
n4 − αβ

− sinh(δ−n t) cos(δ+
n t)

δ−n
√

n4 − αβ

)

,

√
2
π

cosh(δ−n t) cos(δ+
n t),

√
2
π

n

√

−β

α
sinh(δ−n t) sin(δ+

n t)

}

is bounded and boundedly invertible in this space. In fact,
F1 = B E , where B is a diagonal block matrix of the form
(17) with

Bn =

√
2
π

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− inδ+
n

2
√

n4−αβ

nδ−
n (δ−

n +iδ+
n )

2
√

n4−αβ√
π

8
in2β√

n4−αβδ+
n

−
√

π
8

in2β(δ−
n +iδ+

n )√
n4−αβδ+

n

1
2 − δ−

n

2

0 1
2 in
√

− β
αδ−n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

inδ+
n

2
√

n4−αβ

nδ−
n (δ−

n −iδ+
n )

2
√

n4−αβ

−
√

π
8

in2β√
n4−αβδ+

n

√
π

8
in2β(δ−

n −iδp)√
n4−αβδ+

n

1
2 − δ−

n

2

0 − 1
2 in
√

− β
αδ−n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

detBn =
n4α
(
− β

α

)3/2√√
n4 − αβ − n2

2π2
√

n4 − αβ
√√

n4 − αβ + n2

�= 0

and

lim
n→∞ detBn =

β|β|
4π2

.

Due to the results of Avdonin and Ivanov (2001) as
well as Avdonin and Moran (2001a), E forms an L-basis
in L2(0, T ) for T ≥ 4π and then F , too.
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4. Theorem proofs

Proof. (Theorem 1) From the results of Sections 3.1–3.3
it follows that for any α, β ∈ R (β �= 0) the family FN =
{fn(t)}n≥N forms an L–basis in L2(0, T ) for T ≥ 4π
and sufficiently large N . Then Theorem 1 follows from
the results of (Avdonin and Ivanov, 1995, Theorems I.2.1a
and III.3.10a). For β = 0 the statement of Theorem 1 is
obviously true. �

Proof. (Theorem 2(i)) If (6) never occurs, the family F
forms an L–basis in L2(0, T ) for T ≥ 4π. The statement
of Theorem 2(i) now follows from the work of Avdonin
and Ivanov (1995, Theorems 1.2.1a and III.3.10a). �

Proof. (Theorem 2(ii)) If αβ > 0 (see Section 3.2) for
some α and β, there may exist a finite number of pairs
(m, n) satisfying equality (6). In this case the family
F is clearly linearly dependent since some function (or
functions) repeats twice in this family. Then, according
to Avdonin and Ivanov (1995, Theorems I.2.1e and
III.3.10e), our system is not approximately controllable
for any T > 0. �

Proof. (Theorem 2(iii)) If T < 4π, then in all the cases
considered in Section 3 the corresponding family E does
form an L–basis in L2(0, T ). Moreover, it was proved
by Avdonin and Moran (2001a) that there exists a proper
subfamily ET ⊂ E constituting a Riesz basis in L2(0, T ).
Then the family FT = BET is also a Riesz basis in
L2(0, T ) since B is a linear isomorphism in this space.
Then we again can use Theorems I.2.1e and III.3.10.e
of Avdonin and Ivanov (1995) to demonstrate that our
system is not approximately controllable in L2(0, T ) if
T < 4π. �

Theorem 3 follows evidently from Theorem 1.2 but
really it was proved independently.

5. Conclusions

In this paper we described exactly controllable spaces
(with sharp Sobolev scale exponents) for a coupled
hyperbolic system, obtained a sharp estimate of
controllability time, and gave explicit descriptions of (at
most a finite number) non-controllable situations.

The following two conjectures may be considered
our future plans.

Conjencture 1. We work on the one dimensional setting
here, but we expect that similar results (exact controlla-
bility in the same order Sobolev spaces with at most a fi-
nite number of non-controllable cases) are valid also in a
multi-dimensional situation.

Conjencture 2. Observe that the control time given in
Theorem 2(i) is the doubled control time needed to con-
trol from the boundary a single (one dimensional) wave

equation. So we can expect that in the general framework
(in several dimensions) the control time for two coupled
wave equations with a single boundary control will be the
double of the geometric time required for a single wave
equation controlled from the boundary.

Acknowledgment

The first author expresses his gratitude to the Institute
of Physics and Mathematics of Universidad Michoacana
de San Nicolás de Hidalgo, México, for its hospitality.
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