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This paper presents a new set of bivariate discrete orthogonal moments which are based on bivariate Hahn polynomials
with non-separable basis. The polynomials are scaled to ensure numerical stability. Their computational aspects are dis-
cussed in detail. The principle of parameter selection is established by analyzing several plots of polynomials with different
kinds of parameters. Appropriate parameters of binary images and a grayscale image are obtained through experimental
results. The performance of the proposed moments in describing images is investigated through several image reconstruc-
tion experiments, including noisy and noise-free conditions. Comparisons with existing discrete orthogonal moments are
also presented. The experimental results show that the proposed moments outperform slightly separable Hahn moments for
higher orders.
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1. Introduction

Moments and moment invariants have been widely used
in image processing (Hu, 1962; Campisi et al., 2004;
Sroubek et al., 2007; Žunić et al., 2010; Papakostas
et al., 2010; Dai et al., 2010; Fujarewicz, 2010). They
can be divided into three categories: geometric moments,
continuous orthogonal moments (Teague, 1980) and
discrete orthogonal moments (Mukundan et al., 2001; Yap
et al., 2003; 2007; Zhou et al., 2005). Typical continuous
orthogonal moments include Zernike moments and
Legendre moments.

When one calculates continuous orthogonal
moments for a digital image, it is necessary to discretize
continuous integrals approximately and transform
the image coordinate to the definition domain of
Zernike and Legendre polynomials. These two steps
lead to discretization errors and a higher time cost,
respectively. Because discrete orthogonal polynomials
such as Chebyshev, Krawtchouk and Hahn polynomials
exactly satisfy the orthogonal property, they do not
require any numerical approximation or spatial domain
transformation (Mukundan et al., 2001; See et al., 2007).
Hence, discrete orthogonal moments are proved to be

more suitable for image representation than continuous
orthogonal moments.

For processing a two-dimensional image, a
discrete orthogonal polynomial must be extended to
two dimensions. There are two forms of two-dimensional
polynomials, including a separable form and a
non-separable form. Recently, Zhu (2012) has
systematically addressed the theory of separable
two-dimensional moments, whose basis functions are
constructed by a tensor product of two different or same
orthogonal polynomials in one variable, and several new
types of continuous and discrete orthogonal moments
have been proposed. Non-separable discrete orthogonal
Charlier and Meixner moments are presented by Zhu
et al. (2011).

Since the definition domains of Charlier and Meixner
polynomials are [0, ∞], they must be truncated to
[0, N − 1] in defining moments of a digital image
with size N × N . This approximation leads to
the result that the image representation capability of
Charlier and Meixner moments is only comparable to
Legendre moments, and is poorer than that of Chebyshev
moments. However, the definition domain of Hahn
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polynomials is exactly the same as that the image domain,
while Meixner polynomials, Chebyshev polynomials
and Krawtchouk polynomials are limit cases of Hahn
polynomials, which encourages us to find more properties
of Hahn polynomials. Dual Hahn polynomials are related
to Hahn polynomials by switching the roles of x and n
(in the definition of Hahn polynomials, x denotes the
definition field and n denotes the order of polynomials),
and the corresponding moments are proposed by Zhu
et al. (2007). Unfortunately, dual Hahn polynomials are
orthogonal on a non-uniform lattice, so an intermediate
non-uniform lattice needs to be introduced before defining
dual Hahn moments.

The purpose of this paper is to introduce a new
kind of moments with bivariate Hahn polynomials as their
basis function, and the proposed moments are expected to
have a better image representation capability. The theory
of multivariate orthogonal polynomials is an important
topic of applied mathematics and physical applications.
Continuous orthogonal polynomials of several variables
have been long studied (Dunkl and Xu, 2001; Hunek,
2011). But discrete orthogonal polynomials have been
less discussed due to their complicated structure. Xu
(2004) identified discrete orthogonal polynomials of
several variables in polynomial subspaces, and proved that
they satisfied a three-term relation and Favard’s theorem.
He studied the second order partial difference equation
of two variables to determine when it has orthogonal
polynomials as solutions (Xu, 2005). Iliev and Xu
(2007) found that second order difference equations have
discrete orthogonal polynomials as their eigenfunctions.
They provide a family of orthogonal basis explicitly,
including Hahn polynomials of several variables. In
the case of two dimensions, we call them bivariate
Hahn polynomials. The computation of bivariate Hahn
polynomials does not require a coordinate transformation
and suitable approximation of the continuous moments
integrals, which may lead further to high computational
complexity and a discretization error. Taking them as
the basic functions, we introduce a new set of bivariate
Hahn moments, which are expected to hold a better image
feature extraction capability compared with the existing
discrete moments.

The remainder of this paper is organized as
follows. In Section 2, we review the form of scaled
Hahn polynomials of one variable, and briefly describe
their computational algorithm. Then scaled bivariate
Hahn polynomials are derived before the corresponding
moments are defined. We illustrate the influence
of parameter selection in detail. The reconstruction
experiments for testing the performance of the proposed
moments are shown in Section 3. They are compared
with other existing discrete orthogonal moments. Finally,
Section 4 concludes this paper.

2. Bivariate Hahn polynomials and
moments

2.1. Hahn polynomials of one variable. Hahn
polynomials of one variable x, with the order n, defined
in the region of [0, N − 1] have the representation (Ismail
et al., 2008)

hn(α, β, N |x) = 3F2

( −n, n + α + β,−x
α + 1,−N

∣∣∣∣ 1
)

,

n, x = 0, 1, . . . , N − 1, (1)

where α, β are free parameters, and 3F2(·) is the
generalized hyper-geometric function,

3F2

(
a1, a2, a3

b1, b2

∣∣∣∣ z

)
=

∞∑
k=0

(a1)k(a2)k(a3)k

(b1)k(b2)kk!
zk, (2)

while (a)n is the Pochhammer symbol given by

(a)n = a(a + 1) . . . (a + n − 1),
n ≥ 1 and (a)0 = 1 (3)

The Hahn polynomials satisfy the orthogonal
property

N−1∑
x=0

hn(α, β, N |x)hm(α, β, N |x)w(x) = ρ(n)δmn,

(4)
where δmn denotes the Kronecker symbol, and the
weighting function w(x) is given by

w(x) =
(α + 1)x(β + 1)N−x

(N − x)!x!
, (5)

while ρ(n), which is called the squared-norm, is expressed
by

ρ(n) =
(−1)nn!(β + 1)n(α + β + n + 1)N+1

(−N)n(2n + α + β + 1)N !(α + 1)n
. (6)

To overcome the shortcomings of numerical
fluctuations, scaled Hahn polynomials are adopted
frequently (Yap et al., 2007),

h̃n(α, β, N |x) = hn(α, β, N |x)

√
w(x)
ρ(x)

. (7)

High order polynomials are usually deduced by the
following recurrence relation with respect to n:

h̃n(α, β, N |x)

= A

√
ρ(n − 1)

ρ(n)
h̃n−1(α, β, N |x)

− B

√
ρ(n − 2)

ρ(n)
h̃n−2(α, β, N |x),

n = 2, 3, . . . , N − 1,

(8)
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where

A = 1+B−x
(2n+α+β+1)(2n+α+β+2)
(α+β+n+1)(α+n+1)(N−n)

, (9)

B =
n(n+β)(α+β+n+N +1)(2n+α+β+2)

(2n+α+β)(α+β+n+1)(α+n+1)(N−n)
.

(10)

The initial values for the above recursion can be
obtained from

h̃0(α, β, N |x) =

√
w(x)
ρ(0)

,

h̃1(α, β, N |x) = (1 − x(α + β + 2)
(α + 1)N

)

√
w(x)
ρ(1)

(11)

or, equivalently, a recurrence relation with respect to x can
be found in the work of Zhu et al. (2010).

Figure 1 shows the plots of several lower orders
(orders of 0–4) of scaled Hahn polynomials of one
variable. Polynomials with the parameters α = β are
shown in Figs. 1(a)–(d). They imply that the values
of polynomials are symmetrically distributed about the
center of the x-axis, and if the values of the parameters
α, β become larger, the distribution of polynomials will
be concentrated in the intermediate definition domain of
x. On the other hand, Figs. 1(e) and (f) show that the
difference between the parameters α and β will make
the distribution of polynomials tend to one side of the
definition of the domain. This property indicates that the
Hahn moments can be utilized to extract local features just
like Krawtchouk moments (Yap et al., 2003).

Hahn moments of separable form have been first
introduced by Zhou et al. (2005). Given an image with
a density function f(x, y), separable Hahn moments are
defined as

HMmn

=
N−1∑
x=0

N−1∑
y=0

h̃m(α, β, N |x)h̃n(α, β, N | y)f(x, y),

(12)

where N × N is the size of the image. The orthogonality
property of separable Hahn polynomials helps us in
reconstructing the image using the following inverse
transform:

f(x, y)

=
N−1∑
m=0

N−1∑
n=0

h̃m(α, β, N |x)h̃n(α, β, N | y)HMmn.

(13)

In practical applications, the image can be approximately
reconstructed from several low-order moments.

2.2. Bivariate Hahn polynomials. Bivariate Hahn
polynomials defined on the domain with size N1 × N2

have the form (Iliev and Xu, 2007)

Hn1n2(η, γ, N1, N2|x1, x2)
= (η + n2 + 1)n1(η + x1 + 1)n2

× hn1(η + n2, n2 + γ − 1, N1|x1)
× hn2(η + x1, N1 − x1 + γ − 1, N2|x2),

(14)

where η and γ are free parameters, which means the
values of η and γ do not affect the orthogonality of
bivariate Hahn polynomials. Similarly, they satisfy the
orthogonal property

N1−1∑
x1=0

N2−1∑
x2=0

Hn1n2(η, γ, N1, N2|x1, x2)

× Hm1m2(η, γ, N1, N2|x1, x2)w(x1, x2)
= ρ(n1, n2)δn1m1,n2m2 ,

(15)

where

w(x1, x2) =
(−N1)x1

x1!
(−N2)x2

x2!

× (η + 1)(x1+x2)

(−N1 − N2 − γ + 1)(x1+x2)
,

(16)

ρ(n1, n2) =
(−1)(n1+n2)(1 + η)(n1+n2)

(γ + n1 + n2)(N1+N2−n1−n2)

× n1!(η + γ + 2n2 + n1)N1+1

(−N1)n1(η + γ + 2n1 + 2n2)

× n2!(η + γ + n2 + N1)N2+1

(−N2)n2(η + γ + 2n2 + N1)
.

(17)

Two non-separable Hahn polynomials of one
variable serve as building blocks in Eqn. (14), which
means they must be normalized before computing the
corresponding bivariate polynomials. Substituting α1 =
η + n2, β1 = n2 + γ − 1 and α2 = η + x1, β2 =
N1 − x1 + γ − 1 into Eqns. (5) and (6), we get

w1(x1) =
(η + n2 + 1)x1(n2 + γ)N1−x1

(N1 − x1)!/x1!
, (18)

w2(x1, x2)

=
(η + x1 + 1)x2(N1 − x1 + γ)N2−x2

(N2 − x2)!/x2!
,

(19)

ρ1(n1, n2)

=
(−1)n1n1!(n2 + γ)n1(n1 + 2n2 + η + γ)N1+1

(−N1)n1(2n1 + 2n2 + η + γ)N1!(n2 + η + 1)n1

(20)

ρ2(n1, n2)

=
(−1)n2n2!(γ − x1 + N1)n2(n2 + η + γ + N1)N2+1

(−N2)n2(2n2 + η + γ + N1)N2!(η + x1 + 1)n2

(21)
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Fig. 1. Scaled discrete orthogonal Hahn polynomials of one variable (N = 64).

After tedious manipulation, we can obtain

((η + n2 + 1)n1(η + x1 + 1)n2)2w(x1, x2)
ρ(n1, n2)

=
w1(x1)w2(x1, x2)

ρ1(n1, n2)ρ2(n1, n2)
. (22)

Therefore,

H̃n1n2(η, γ, N1, N2|x1, x2)

=

√
w(x1, x2)
ρ(n1, n2)

Hn1n2(η, γ, N1, N2|x1, x2)

= h̃n1(η + n2, n2 + γ − 1, N1|x1)

× h̃n2(η + x1, N1 − x1 + γ − 1, N2|x2)

(23)
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and

N1−1∑
x1=0

N2−1∑
x2=0

H̃n1n2(η, γ, N1, N2|x1, x2)

H̃m1m2(η, γ, N1, N2|x1, x2) = δn1m1,n2m2 .

(24)

2.3. Influence of parameters η, γ. Since the
parameters η and γ have no distinct meaning in the
definition of bivariate Hahn polynomials, we study them
using a number of plots. In the first example, we consider
the case η = γ. Parameters varying from small to
large are tested: (a) η = γ = 1, (b) η = γ = 5,
(c) η = γ = 10, (d) η = γ = 15, (e) η = γ =
20, (f) η = γ = 25. Figure 2 depicts the first order
of bivariate Hahn polynomials (N = 64) with the same
parameters. It implies that the polynomials contract to the
centre as parameters increase. Moreover, the values of
the polynomials are symmetric along both the dimensions.
These conclusions are identical to those of scaled Hahn
polynomials of one variable.

In the second experiment, we consider the case η �=
γ. Parameter γ is assigned a constant value of 10, which
is a middle value between 1 and 20. Let the parameter
η change: (a) η = 1, (b) η = 5, (c) η = 15, (d) η =
20, i.e., two cases are greater than γ and two cases are
less than γ. The first order of bivariate Hahn polynomials
(N = 64) is plotted in Fig. 3. We can observe that the
values of bivariate Hahn polynomials move from the left
to the right of the x2 axis as η increases. The values are
not symmetrical about the center of the definition domain.
Generally, information of an image is evenly distributed
in the central region of the image. Hence, bivariate Hahn
moments with different parameters are not suitable to
extract global features of an image. We only take the case
η = γ into account in consecutive experiments.

2.4. Bivariate Hahn moments. Given an N × N
image f(x1, x2), its bivariate Hahn moment of (n1 + n2)
order is defined as

Mn1,n2

=
N−1∑
x1=0

N−1∑
x2=0

H̃n1,n2(η, γ, N, N |x1, x2)f(x1, x2).

(25)

According to Eqn. (24), we can obtain the corresponding
inverse transform,

f(x1, x2)

=
N−1∑
n1=0

N−1∑
n2=0

H̃n1,n2(η, γ, N, N |x1, x2)Mn1,n2 . (26)

Due to the orthogonal property of the kernel functions,
Eqn. (26) implies that each moment makes an independent
contribution to the reconstructed image. If the moments
are limited to an order P , Eqn. (26) is approximated by

�

f (x1, x2)

=
P−1∑
n1=0

P−1∑
n2=0

H̃n1,n2(η, γ, N, N |x1, x2)Mn1,n2 .
(27)

3. Experimental results

To validate the feature representation capability of the
proposed moments, we invoke them to achieve image
reconstruction. A reconstructed image can be obtained
according to Eqn. (27). Different evaluation criteria
are applied to measure the performance of binary
and grayscale image reconstructions. In this section,
reconstructions are applied to a set of binary images and
two sets of grayscale images. The experimental results are
compared with other discrete orthogonal moments in both
noise-free and noisy conditions.

3.1. Appropriate choice of parameters η and γ. In
the previous section, we conclude that the parameters
η = γ are suitable to extract global features of an
image. It is necessary to determinate appropriate values
of parameters η and γ before image reconstruction
experiments. Set A consists of 100 binary images selected
from the MPEG-7 CE-2 database (Zhang and Lu, 2001).
Set B is composed of 100 color images chosen from
the COIL100 database (Nene et al., 1988), and 100
color images chosen from the WBIIS database (Wang
et al., 1997) form set C. The color images in sets B and
C are converted to the grayscale format. Then, images of
the three sets are resized to 64 × 64 before experiments.
Figure 4 shows six samples from the three sets. Two
different color sets are used since their distributions of
pixel intensities are significantly different: images in set
B are centered, while images in set C are global.

In order to measure the performance of the
reconstruction, we adopt an objective measure, a
reconstruction error, for a reconstruction of a binary
image (Yap et al., 2003),

ε =
1

N2

N−1∑
x=0

N−1∑
y=0

|f(x, y) − T (f̂(x, y))|, (28)

where f(x1, x2) is the original image pixel intensity at
(x1, x2), and f̂(x1, x2) is its reconstructed version. The
operator T (·) is defined by

T (z) =

{
1 if z ≥ 0.5,

0 if z < 0.5.
(29)
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Fig. 2. First order of bivariate Hahn polynomials (N = 64) with the equivalent parameters.

For gray images, however, neither Eqn. (28) nor
the MSE (Mean Squared Error) is suitable for predicting
human perception of image fidelity and quality. The
Structural Similarity Index Measure (SSIM) is utilized
frequently instead of the MSE in many perceptual
comparisons (Wang et al., 2004). In practice, one usually
requires a single overall quality measure of the entire
image. We use a Mean SSIM (MSSIM) index to evaluate

the overall quality of a reconstructed image (Wang and
Bovik, 2009).

Reconstructions are repeated with different
parameters through the three tested databases. The
reconstruction order is up to 50. Figure 5(a) depicts
the average reconstruction error of set A, and Fig. 5(b)
shows a reconstruction result of Fig. 4(a) as a sample. We
can observe from Figs. 5(a) and (b) that reconstruction
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Fig. 3. First order of bivariate Hahn polynomials (N = 64) with different parameters.

(a) (b) (c) (d) (e) (f)

Fig. 4. Sample images: (a) and (b) are from MPEG-7 CE-2, (c) and (d) are from COIL100, (d) and (e) are from WBIIS.

errors decrease as parameters η and γ increase. When the
parameters are greater than 25, there is little difference.
We think this is because binary images of set A (see
Figs. 4(a) and (b)) contain little information on four
sides, and bivariate Hahn polynomials are approximately
concentrated in the middle of the region of definition
as the parameters increase (see Fig. 2). Figures 5(c)
and (e) show the average MSSIM index of sets B and
C, respectively. Reconstruction results of Figs. 4(d)
and (f) are shown in Figs. 5(d) and (f), respectively.
Figures 5(c)–(f) suggest that we should choose larger
values for η and γ without considering the density
distribution of the image. Unlike the MSE, the MSSIM

index emphasizes structural details, so moments with
larger parameters can provide a higher structural
similarity. Therefore, we can set parameters η = γ = 25
in the following experiments.

3.2. Comparisons against other discrete moments.
Comparisons begin with reconstructions of binary images.
Images in set A are utilized to compare the performance
among Chebyshev moments, separable Hahn moments
and bivariate Hahn moments. It should be noted that
all parameters of separable Hahn moments are set to 20
(α1 = β2 = α2 = β2 = 20) (Zhou et al., 2005). The
averages reconstruction error and a sample reconstruction
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Fig. 5. Reconstruction results with different parameters.

comparison of Fig. 4(a) are shown in Figs. 6(a) and
(b), respectively. We can observe that both separable
and bivariate Hahn moments outperform Chebyshev
moments, and the proposed descriptor has a slightly better
performance than separable Hahn moments, when the
reconstruction order is greater than 20.

This is because the emphasis of bivariate Hahn
moments, with η = γ = 25, approximately focuses on
the center of the image.

The grayscale images obtained from sets B and C
are applied to compare the performance of the proposed
moments against the other discrete orthogonal moments.
Figures 7(a) and (c) show the average MSSIM of sets
B and C, respectively. Figures 7(b) and (d) show
MSSIM index of two samples given in Figs. 4(d) and
(f), respectively. Conclusions achieved from Fig. 7 are
identical to those drawn from Fig. 6. Moreover, the overall
performance of the MSSIM index of set B is better than
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Fig. 6. Reconstruction errors of a binary image.
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Fig. 7. MSSIM index comparisons of reconstruction for grayscale images.

that of set C. This is because bivariate Hahn moments
with large parameters can extract more central details of
an image.

3.3. Robustness to noise. Sensitivity to noise is
usually considered a critical indicator for image moments.
Three testing sets are corrupted by difference additive
noises: set A is degraded by salt-and-pepper noise with

density 0.05 and 0.1, sets B and C are corrupted by
Gaussian noise with zero mean and variance σ2 = 0.01
and 0.03. The overall performance comparisons of the
three sets are depicted in Figs. 8(a)–(f).

Two standard images and the corresponding
degraded versions are shown in the first row of Fig. 9.
They are invoked in reconstruction procedures repeatedly.
Reconstructed images using different moments are
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Fig. 8. Overall performance comparisons of robustness to noise: average reconstruction errors of set A (a), average MSSIM index of
set B (b), average MSSIM index of set C (c).

depicted in the bottom rows of Fig. 9. Compared with
existing orthogonal moments, our proposed moments
exhibit more robustness to different noise signals.

4. Conclusion

This paper introduces a new set of bivariate Hahn
moments with a non-separable orthogonal basis for

describing image features. The normalization of bivariate
Hahn polynomials and selection of parameters were
discussed in detail. Reconstruction experiments were
been carried out to verify their image representation
capability. The results were compared with other existing
orthogonal discrete moments such as Chebyshev and
traditional separable Hahn moments. Images with and
without noise were utilized to evaluate the performance
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original binary 
image

degraded by salt 
and pepper noise 
with density 0.05

degraded by salt 
and pepper noise 
with density 0.1

original gray-
scale image 

degraded by
Gaussian noise
with μ =0 and 
σ=0.01

degraded by
Gaussian noise
with μ =0 and 
σ=0.03

ε = 0.0017 ε = 0.0080 ε = 0.0229 MSSIM=0.9623 MSSIM=0.8322 MSSIM=0.7688
Reconstructed images using Chebyshev moments

ε = 0.0005 ε = 0.0071 ε = 0.0190 MSSIM=0.9631 MSSIM=0.8354 MSSIM=0.7729
Reconstructed images using separate Hahn moments                           

ε = 0.0005 ε = 0.0059 ε = 0.0188 MSSIM=0.9681 MSSIM=0.8369 MSSIM=0.7784
Reconstructed images using bivariate Hahn moments                           

Fig. 9. Reconstructed images with orders up to 50.

of the proposed moments.
The reconstructed images and detailed error showed

that bivariate Hahn moments outperform slightly with the
increase in the order. Moreover, our proposed moments
have fewer parameters to be determined, which may imply
that they are more suitable for practical applications.

However, due to the bivariate form of polynomials,
the values of moments cannot be achieved by the method
presented by Yap et al. (2003). The values of bivariate
Hahn moments are obtained only via pixel-by-pixel
computations, and this process is very time consuming.
Thus, our future work will focus on the fast algorithm to
determine bivariate Hahn polynomials and corresponding
moments.
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