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1. Introduction

It is well known that explicit expressions for probability
characteristics of stochastic models can be found only in
a few special cases. In view of this, the study of the
rate of convergence as time t → ∞ to the steady state
of a process is one of two main problems for obtaining
the limiting behaviour of the process. If the model is
Markovian and stationary in time, then the stationary
limiting characteristics usually give usually, sufficient or
almost sufficient information about the model. On the
other hand, if we deal with an inhomogeneous Markovian
model, then we must approximately calculate, in addition
to that, the limiting probability characteristics of the
process. The problem of existence and construction of
limiting characteristics for inhomogeneous (in time) birth
and death processes is important for queueing applications
(see, e.g., Di Crescenzo and Nobile, 1995; Di Crescenzo
et al., 2003; 2012; Granovsky and Zeifman, 2004;

Mandelbaum and Massey, 1995; Massey and Whitt, 1994;
Massey and Pender, 2013; Olwal et al., 2012; Tan et
al., 2013; Zeifman et al., 2006). This is the second
main problem. A general approach and related bounds
for the study on the convergence rate was considered by
Zeifman (1995a), who also first mentioned computation of
the limiting characteristics for the process via truncations
(Zeifman, 1988), and later considered it in detail (Zeifman
et al., 2006). The first results for more general Markovian
queueing models have been obtained recently by Zeifman
et al. (2014).

About two decades ago Vladimir V. Kalashnikov
suggested that in some cases one can obtain uniform (in
time) error bounds of truncation. Here we prove this
conjecture.

The paper is organized as follows. Basic notions
are recalled below in Section 1. Auxiliary statements are
considered in Section 2. The main result is proved in
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Section 3. In Section 4 we consider application of our
bounds for the Mt/Mt/S queueing model. Finally, in
Section 5 we consider a specific queueing example.

Let X = X(t), t ≥ 0 be a Birth and Death
Process (BDP) with birth and death rates λn(t), μn(t),
respectively. Let pij(s, t) = Pr {X(t) = j |X(s) = i}
for i, j ≥ 0, 0 ≤ s ≤ t, be the transition probability
functions of the process X = X(t), and let pi(t) =
Pr {X(t) = i} be the state probabilities.

We assume throughout the paper that

Pr (X (t + h) = j/X (t) = i)

=

⎧
⎨

⎩

qij (t) h + αij (t, h) if j �= i,

1 − ∑

k �=i

qik (t)h + αi (t, h) if j = i, (1)

where all αi(t, h) are o(h) uniformly in i, i.e.,
supi |αi(t, h)| = o(h). Here all qi,i+1 (t) = λi(t),
qi,i−1 (t) = μi(t) for any i > 0, and all other qij(t) ≡ 0.

The probabilistic dynamics of the process are
represented by the forward Kolmogorov system of
differential equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dp0

dt
= −λ0(t)p0 + μ1(t)p1,

dpk

dt
= λk−1(t)pk−1 − (λk(t) + μk(t)) pk

+μk+1(t)pk+1, k ≥ 1.

(2)

By p(t) = (p0(t), p1(t), . . . )
T , t ≥ 0, we denote

the column vector of state probabilities and by A(t) =
(aij(t)) , t ≥ 0, the matrix related to (2). One can
see that A (t) = QT (t), where Q(t) is the intensity (or
infinitesimal) matrix for X(t).

We assume that all birth and death intensity functions
λi(t) and μi(t) are linear combinations of a finite number
of functions which are locally integrable on [0,∞).
Moreover, we assume that

λn(t) ≤ L < ∞, μn(t) ≤ M < ∞, (3)

for almost all t ≥ 0. Throughout the paper by ‖ · ‖
we denote the l1-norm, i.e., ‖x‖ =

∑ |xi|, and ‖B‖ =
supj

∑
i |bij | for B = (bij)∞i,j=0.

Let Ω be a set all stochastic vectors, i.e., l1 vectors
with nonnegative coordinates and the unit norm. Then we
have

‖A(t)‖ ≤ 2 sup(λk(t) + μk(t)) ≤ 2 (L + M)

for almost all t ≥ 0. Hence the operator function A(t)
from l1 into itself is bounded for almost all t ≥ 0 and
locally integrable on [0;∞).

Therefore we can consider the system (2) as the
differential equation

dp
dt

= A (t)p, p = p(t), t ≥ 0, (4)

in the space l1 with a bounded operator function A(t).
It is well known (Daleckij and Krein, 1974) that

the Cauchy problem for the differential equation (1)
has unique solutions for arbitrary initial conditions, and
p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

Therefore, we can apply the general approach
to employ the logarithmic norm of a matrix for the
study of the stability of a Kolmogorov system of
differential equations associated with nonhomogeneous
Markov chains. The method is based on the following two
components: the logarithmic norm of a linear operator
and a special similarity transformation of the matrix
of intensities of the Markov chain considered, see the
corresponding definitions, bounds, references and other
details in the works of Van Doorn et al. (2010), Granovsky
and Zeifman (2004), Zeifman (1985; 1995b; 1995a) or
Zeifman et al. (2006).

Definition 1. A Markov chain X(t) is called weakly
ergodic if ‖p∗(t)−p∗∗(t)‖ → 0 as t → ∞ for any initial
conditions p∗(0),p∗∗(0). Here p∗(t) and p∗∗(t) are the
corresponding solutions of (4).

Set Ek(t) = E {X(t) |X(0) = k} (then the
corresponding initial condition of the system (4) is the
k-th unit vector ek).

Definition 2. Let X(t) be a Markov chain. Then ϕ(t) is
called the limiting mean of X(t) if

lim
t→∞ (ϕ(t) − Ek(t)) = 0

for any k.

2. Auxiliary notions and results

Consider an increasing sequence of positive numbers
{di}, i = 1, 2, . . . , d1 = 1, and the corresponding
triangular matrix

D =

⎛

⎜
⎜
⎜
⎝

d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎠

. (5)

Let l1D be the space of sequences

l1D =
{
z = (p1, p2, . . . )T : ‖z‖1D ≡ ‖Dz‖ < ∞} .

We also introduce the auxiliary space of sequences
l1E as

l1E =
{
z = (p1, p2, · · · )T : ‖z‖1E ≡

∑
k|pk| < ∞

}
.

Set

d = inf
i≥1

di = 1, W = inf
i≥1

di

i
, gi =

i∑

n=1

dn.
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Consider the following expressions:

αk (t) = λk (t) + μk+1 (t) − dk+1

dk
λk+1 (t)

− dk−1

dk
μk (t) , k ≥ 0, (6)

and
α (t) = inf

k≥0
αk (t) . (7)

At first, we recall the definition of the logarithmic
norm and the related bound (for details, see Van Doorn
et al., 2010; Granovsky and Zeifman, 2004; Zeifman
et al., 2006)

Let B (t) , t ≥ 0 be a one-parameter family of
bounded linear operators on a Banach space B and let I
denote the identity operator. For a given t ≥ 0, the number

γ (B (t))B = lim
h→+0

‖I + hB (t)‖ − 1
h

is called the logarithmic norm of the operator B (t) .
If B is an (N +1)-dimensional vector space with the

l1-norm, so that the operator B(t) is given by the matrix
B(t) = (bij(t))

N
i,j=0 , t ≥ 0, then the logarithmic norm

of B(t) can be found explicitly:

γ (B (t)) = sup
j

⎛

⎝bjj (t) +
∑

i�=j

|bij (t)|
⎞

⎠ , t ≥ 0.

On the other hand, the logarithmic norm of the
operator B(t) is related to the Cauchy operator V (t, s)
of the system

dx
dt

= B (t)x, t ≥ 0,

in the following way:

γ (B (t))B = lim
h→+0

‖V (t + h, t)‖ − 1
h

, t ≥ 0.

From the latter, one can deduce the following bounds
of the Cauchy operator V (t, s):

‖V (t, s)‖B ≤ e

t∫

s

γ(B(τ)) dτ
, 0 ≤ s ≤ t.

Recall now the following general statement.

Theorem 1. Let a BDP with the rates λk(t) and μk(t) be
given. Assume that there exists a sequence {di} such that

∞∫

0

α(t) dt = +∞. (8)

Then X(t) is weakly ergodic, and the following bounds
hold:

‖p∗(t) − p∗∗(t)‖1D

≤ e
−

t∫

s

α(τ) dτ‖p∗(s) − p∗∗(s)‖1D, (9)

‖p∗(t) − p∗∗(t)‖

≤ 4e
−

t∫

s

α(τ) dτ ∑

i≥1

gi|p∗i (s) − p∗∗i (s)|, (10)

for any t ≥ s ≥ 0 and any initial conditions p∗(s) and
p∗∗(s).

Proof. The property p(t) ∈ Ω for any t ≥ 0 allows
putting p0(t) = 1−∑i≥1 pi(t). Then from (4) we obtain
the following system:

dz(t)
dt

= B(t)z(t) + f(t), (11)

where

z(t) = (p1(t), p2(t), . . . )
T

,

f(t) = (λ0(t), 0, 0, . . . )T
,

B(t) = (bij(t))
∞
i,j=1

and

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ0 + λ1 + μ1) if i = j = 1,
μ2 − λ0 if i = 1, j = 2,
−λ0 if i = 1, j > 2,
−(λj + μj) if i = j > 1,
μj if i = j − 1 > 1,
λj if i = j + 1 > 1,
0 otherwise.

(12)

This is a linear non-homogeneous differential system
the solution of which can be written as

z(t) = V (t, 0)z(0) +
∫ t

0

V (t, τ)f(τ) dτ, (13)

where V (t, z) is the Cauchy operator of (11) (see, e.g.,
Zeifman, 1995a).

Consider Eqn. (11) in the space l1D. We have
‖f(t)‖1D = d1λ0(t) ≤ L for almost all t ≥ 0. On the
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other hand,

DBD−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(λ0 + μ1) d1
d2

μ2

d2
d1

λ1 −(λ1 + μ2)

0 d3
d2

λ2

. . .

0
. . .

d2
d3

μ3 0
. . .

−(λ2 + μ3) d3
d4

μ4 0

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(14)

Hence

‖B(t)‖1D

= sup
k≥0

(
λk(t) + μk+1(t) +

dk+1

dk
λk+1(t)

+
dk−1

dk
μk(t)

)

≤ sup
k≥0

(
(− λk(t) − μk+1(t) +

dk+1

dk
λk+1(t)

+
dk−1

dk
μk(t)

)
+ 2λk(t) + 2μk+1(t)

)

≤ 2 (L + M) − α(t)

(15)

for almost all t ≥ 0.
Then f(t) and B(t) are bounded and locally

integrable on [0,∞) as a vector function and an operator
function in l1D, respectively.

Now we have the following bound for the logarithmic
norm γ (B(t)) in l1D:

γ (B)1D = γ
(
DB(t)D−1

)

1

= sup
i≥0

(di+1

di
λi+1(t) +

di−1

di
μi(t)

− (λi(t) + μi+1(t)
))

= − inf
k≥0

(αk (t)) = −α(t),

(16)

in accordance with (7). Hence

‖V (t, s)‖1D ≤ e
−

t∫

s

α(τ) dτ
. (17)

Therefore, the bound (9) holds.

On the other hand, we have

‖z‖
≤
∑

i≥1

di|pi|

= d1

(
∣
∣
∣
∑

i≥1

pi +
∑

i≥2

−pi

∣
∣
∣

)

+ d2

(
∣
∣
∣
∑

i≥2

pi +
∑

i≥3

−pi

∣
∣
∣

)

+ . . .

≤ d1

∣
∣
∣
∑

i≥1

pi

∣
∣
∣+ 2d2

∣
∣
∣
∑

i≥2

pi

∣
∣
∣+ · · · ≤ 2‖z‖1D,

(18)

and ‖p∗ − p∗∗‖ ≤ 2‖z‖ for any p∗,p∗∗ and the
corresponding z. Hence the bound (10) holds. �

Corollary 1. Let, in addition, the numbers di grow suf-
ficiently fast so that W > 0. Then X(t) has the limiting
mean, say φ(t), and the following bound holds:

|φ(t) − Ek(t)| ≤ 4
W

e
−

t∫

0
α(τ) dτ‖p(0) − ek‖1D. (19)

Proof. The bound (19) follows from (9) and from the
inequality

‖z‖1D = d1

∣
∣
∣

∞∑

i=1

pi

∣
∣
∣+ d2

∣
∣
∣
∣
∣

∞∑

i=2

pi

∣
∣
∣
∣
∣
+ . . .

≥ W
∑

k≥1

k
∣
∣
∣
∑

i≥k

pi

∣
∣
∣ ≥ W

2
‖z‖1E . (20)

�

3. Truncations

Now we consider the family of “truncated” processes
XN (t) on the state space EN = {0, 1, . . . , N}, where the
birth rates are λn(t), n ∈ EN−1 and the death rates are
μn(t), n ∈ EN (and with the intensity matrix AN ). The
truncated process has the vector of probabilities governed
by the forward Kolmogorov differential system

dpN

dt
= AN (t)pN . (21)

Below we will identify the finite vector with entries
(a1, . . . , aN ) and the infinite vector with the same first
N coordinates and the others equal to zero. The same
identification will be assumed also for the rate matrix AN ,
triangular matrix DN , and so on.

Theorem 2. Let a BDP with the rates λk(t) and μk(t) be
given. Assume that there exists a sequence {di} such that

∞∫

0

α(t) dt = +∞. (22)
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Then XN (t) is weakly ergodic for any N , and the follow-
ing bounds hold:

‖p∗
N(t) − p∗∗

N (t)‖1D

≤ e
−

t∫

s

α(τ) dτ‖p∗
N (s) − p∗∗

N (s)‖1D, (23)

‖p∗
N(t) − p∗∗

N (t)‖

≤ 4e
−

t∫

s

α(τ) dτ ∑

i≥1

gi|p∗i,N (s) − p∗∗i,N (s)|

≤ 8gNe
−

t∫

s

α(τ) dτ
, (24)

for any t ≥ s ≥ 0 and any initial conditions p∗
N (s) and

p∗∗
N (s).

Proof. The property pN (t) ∈ Ω for any t ≥ 0 allows
setting p0,N(t) = 1 −∑i≥1 pi,N(t). Then from (21) we
obtain the following system:

dzN (t)
dt

= BN (t)zN (t) + fN (t), (25)

where zN(t) = (p1,N (t), . . . , pN,N(t))T , fN(t) =
(λ0(t), 0, . . . , 0)T , BN (t) = (bij(t))

N
i,j=1 and

bij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(λ0 + λ1 + μ1) if i = j = 1,
μ2 − λ0 if i = 1, j = 2,
−λ0 if i = 1, j > 2,
−(λj + μj) if i = j > 1,
μj if 1 < i = j − 1 ≤ N,
λj if 1 < i = j + 1 ≤ N − 1,
0 otherwise.

(26)
The solution of Eqn. (25) can be written as

zN (t) = VN (t, 0)zN (0) +
∫ t

0

VN (t, τ)fN (τ) dτ, (27)

where VN (t, z) is the Cauchy operator of (25).
Now the following bound for the logarithmic norm

γ (BN (t)) in the l1D,N norm holds:

γ (BN)1D,N

= γ
(
DNBN (t)D−1

N

)

1

≤ max
0≤i≤N−1

(
di+1

di
λi+1(t) +

di−1

di
μi(t)

− (λi(t) + μi+1(t)))
≤ sup

k≥0
(−αk (t)) = −α(t),

(28)

in accordance with (25). Hence

‖VN (t, s)‖1D,N ≤ e
−

t∫

s

α(τ) dτ
. (29)

Our claim follows from this bound. �

Denote by Ek,N (t) = E {XN(t) |XN(0) = k } the
mathematical expectation of the truncated process under
the initial condition ek.

Corollary 2. Under the assumptions of Theorem 2 the
truncated process XN (t) has the limiting mean for any
N , say φN (t), and the following bounds hold:

|φN (t) − Ek,N (t)|

≤ 4
W

e
−

t∫

0
α(τ) dτ‖pN (0) − ek‖1D,N , (30)

and
|φN (t) − Ek,N (t)| ≤ 8NgN , (31)

for any k and any t ≥ 0.

Now if we suppose in addition that there exist
positive R and a such that

e−
∫

t
s

α(u) du ≤ Re−a(t−s) (32)

for any 0 ≤ s ≤ t, then the process X(t) is exponentially
weakly ergodic.

Moreover, consider a “new” sequence {d∗i } such that
d∗i = d2

i , and the correspondent inequality

e−
∫

t
s

α∗(u) du ≤ R∗e−a∗(t−s) (33)

for any 0 ≤ s ≤ t.

Theorem 3. Let the assumptions of Theorem 2 hold. In
addition, let the inequalities (32) and (33) hold for some
positive R,R∗, a, a∗. Then we have the following bounds
of truncation:

‖p(t) − pN (t)‖ ≤ 8LRR∗(L + M)
aa∗dN

, (34)

for p(0) = pN (0) = e0,

|E0(t) − E0,N (t)| ≤ 4LRR∗(L + M)
aa∗dNW

. (35)

Proof. Consider the correspondent non-homogeneous
equation for X(t) (11) in the form

dz(t)
dt

= BN (t)z(t)+(B(t) − BN (t)) z(t)+ f(t). (36)

Then we have

z(t) = VN (t)z(0)

+
∫ t

0

VN (t, τ)(B(τ) − BN (τ))z(τ) dτ

+
∫ t

0

VN (t, τ)f(τ) dτ.

(37)
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We note that the following equality holds:

VN (t, s)f(s) = VN (t, s)fN(s),

for any 0 ≤ s ≤ t. Hence we have

z(t) − zN (t)

=
∫ t

0

VN (t, τ)(B(τ) − BN (τ))z(τ) dτ (38)

if p(0) = pN (0).
Write B(t) − BN (t) =

(
b∗ij(t)

)∞
i,j=1

. Then

b∗ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 1, j ≤ N,
−λ0 if i = 1, j > N,
0 if 2 ≤ i ≤ N − 1, j ≤ 1,
−λN if i = j = N,
−(λj + μj) if i = j > N,
μj if i ≥ N, j = i + 1
λj if N > i, j = i − 1,
0 otherwise.

(39)
Hence

(B(τ) − BN (τ)) z(τ) = (r1(τ), r2(τ), . . . )T
, (40)

where

ri =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−λ0

∑
i>N pi if i = 1,

0 if 2 ≤ i ≤ N − 1,
−λNpN + μN+1pN+1 if i = N,
λi−1pi−1 − (λi + μi)pi

+μi+1pi+1 if i > N.
(41)

Now we have

D (B(τ) − BN(τ)) z(τ) = (r∗1(τ), r∗2 (τ), . . . )T
, (42)

where

r∗i =

⎧
⎨

⎩

−d1λ0

∑
i>N pi if i = 1,

0 if 2 ≤ i ≤ N,
di (λipj − μi+1pi+1) if i > N,

(43)

and

‖(B(τ) − BN (τ))z(τ)‖1D

=
∑

i

|r∗i (τ)|

≤ 2(L + M)
∞∑

i=N

dipi(τ). (44)

Therefore, in the l1D-norm the following bound holds:

‖z(t) − zN (t)‖

≤
∫ t

0

‖VN(t, τ)‖‖(B(τ) − BN (τ))z(τ)‖ dτ.

≤ 2(L + M)
∫ t

0

Re−a(t−τ)
∞∑

i=N

dipi(τ) dτ

≤ 2R(L + M)
a

sup
0≤τ≤t

∞∑

i=N

dipi(τ).

(45)

For estimating the right-hand side of (45) we
consider now the upper and lower bounds for ‖z(t)‖1D∗ .
Firstly, one has

‖z(t)‖1D∗

≤ ‖V (t)‖1D∗‖z(0)‖1D∗

+
∫ t

0

‖V (t, τ)‖1D∗‖f(τ)‖1D∗ dτ

≤ R∗e−a∗t‖z(0)‖1D∗ +
LR∗

a∗

(46)

since λ0(t) ≤ L for almost all t ≥ 0.
Set X(0) = 0. Then p(0) = (1, 0, 0, . . . )T , z(0) =

0, and hence

‖z(t)‖1D∗ ≤ LR∗

a∗ (47)

for any t ≥ 0.

On the other hand, all pi(t) ≥ 0. Therefore

‖z(t)‖1D∗

=
∑

i≥1

pi(t)
i∑

k=1

d2
k ≥

∑

i≥N

d2
i pi(t)

≥ dN

∑

i≥N

dipi(t), (48)

and ∞∑

i=N

dipi(t) ≤ ‖z(t)‖1D∗

dN
≤ LR∗

a∗dN
, (49)

for any t ≥ 0.
Finally, we have

‖z(t) − zN (t)‖1D ≤ 2LRR∗(L + M)
aa∗dN

, (50)

for p(0) = pN (0) = e0, and the first bound of our
theorem follows now from the inequality d‖z‖ ≤ 2‖z‖1D.

The inequality

‖z‖1D = d1

∣
∣
∣

∞∑

i=1

pi

∣
∣
∣+ d2

∣
∣
∣

∞∑

i=2

pi

∣
∣
∣+ . . .

≥ W
∑

k≥1

k
∣
∣
∣
∑

i≥k

pi

∣
∣
∣ ≥ W

2
‖z‖1E (51)

implies the second bound. �
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Denote by p(t, k) the probability distribution of
X(t) with the initial condition p(0, k) = ek, i.e., with
the initial condition X(0) = k.

Theorem 4. Under the assumptions of Theorem 3, the
following bounds hold:

‖p(t, k) − pN (t, 0)‖

≤ 8Rgke−at +
8LRR∗(L + M)

aa∗dN
, (52)

‖p(t, k) − pN (t, 0)‖

≤ 8R∗g∗ke−a∗t +
8LRR∗(L + M)

aa∗dN
, (53)

and

|Ek(t) − E0,N (t)|

≤ 4Rgk

W
e−at +

4LRR∗(L + M)
aa∗dNW

, (54)

|Ek(t) − E0,N (t)|

≤ 4R∗g∗k
W ∗ e−a∗t +

4LRR∗(L + M)
aa∗dNW

. (55)

Proof. The claim follows from the inequalities (10), (19),
(34) and (35). �

We formulate separately the correspondent statement
for the important case of periodic (1-periodic, for
definiteness) intensities.

Note firstly that in this situation the condition (22)
implies the inequality (32) for

a =
∫ 1

0

α(t) dt, R = eK , K = sup
|t−s|≤1

∫ t

s

α(u) du.

Similarly, the assumption

∫ ∞

0

α∗(t) dt = ∞

implies the inequality (33) for

a∗ =
∫ 1

0

α∗(t) dt,

R∗ = eK∗
,

K∗ = sup
|t−s|≤1

∫ t

s

α∗(u) du.

Theorem 5. Under the assumptions of Theorem 3, let the
birth and death intensities be 1-periodic. Then there ex-
ist a limiting 1-periodic probability distribution π(t), say,

and the respective limiting 1-periodic mean φ(t), and the
following bounds hold:

‖π(t) − pN (t, 0)‖

≤ 4LR2

a
e−at +

8LRR∗(L + M)
aa∗dN

, (56)

‖π(t) − pN (t, 0)‖

≤ 4LR∗2

a∗ e−a∗t +
8LRR∗(L + M)

aa∗dN
, (57)

and

|φ(t) − E0,N (t)|

≤ 4LR2

aW
e−at +

4LRR∗(L + M)
aa∗dNW

. (58)

|φ(t) − E0,N (t)|

≤ 4LR∗2

a∗W ∗ e−a∗t +
4LRR∗(L + M)

aa∗dNW
. (59)

Proof. The existence of the 1-periodic solution π(t) of the
forward Kolmogorov system follows from the exponential
ergodicity in l1D-norm or l1D∗ -norm, respectively. For
obtaining the first summands in all inequalities, we
consider the respective expression on the right-hand side
of (9). Namely, we have, instead of ‖p∗(s) − p∗∗(s)‖1D ,
the following quantity:

‖π(0) − e0‖1D = ‖π(0)‖1D

= ‖q(0)‖1D

≤ lim sup
t→∞

‖q(t)‖1D, (60)

where π(t) and q(t) are the correspondent solutions of
(4) and (11). Now we have, instead of (46), the following
bound:

‖q(t)‖1D

≤ ‖V (t)‖1D‖q(0)‖1D

+
∫ t

0

‖V (t, τ)‖1D‖f(τ)‖1D dτ (61)

≤ Re−at‖q(0)‖1D +
LR

a
,

and

‖π(0) − e0‖1D ≤ lim sup
t→∞

‖q(t)‖1D ≤ LR

a
. (62)

Similarly, (46) implies the bound

‖π(0) − e0‖1D∗ ≤ lim sup
t→∞

‖q(t)‖1D∗ ≤ LR∗

a∗ . (63)

Finally, the claim follows from the inequalities (10),
(19), (34), (35), and (62), (63). �
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Remark 1. The best previous bounds contain an
additional factor of t on the right-hand sides of (34) and
(35), (see Zeifman et al., 2006).

4. Mt/Mt/S queue

In this section we deal with a classic queueing model.
An Mt/Mt/S is a stochastic process whose values
correspond to the numbers of customers in the system,
including any currently in service. Arrivals occur at the
rate λ(t) according to an inhomogeneous Poisson process
and move the process from state i to i + 1. Service
times have a nonstationary exponential distribution with
the parameter μ(t) in the Mt/Mt/S queue. There are
S servers which serve from the front of the queue. If
there are less than S jobs, some of the servers will be
idle. If there are more than S jobs, the jobs queue in a
buffer. The buffer is of infinite size, so there is no limit
on the number of customers it can contain. Let X =
X(t), t ≥ 0 be a queue-length process for the Mt/Mt/S
queue. This is a BDP with the birth and death rates
λn(t) = λ(t) and μn(t) = min (n, S)μ(t), respectively.
There are a number of investigations of this model in a
general situation, and, especially, in the case of periodic
intensities and for the simplest Mt/Mt/1 model (see Di
Crescenzo and Nobile, 1995; Knessl, 2000; Knessl and
Yang, 2002; Mandelbaum and Massey, 1995; Margolius,
2007a; 2007b; Massey and Whitt, 1994; Massey, 2002;
Zhang and Coyle, 1991).

Bounds on the rate of convergence, truncations and
stability for this process were obtained by Granovsky and
Zeifman (2004), Zeifman (1995b; 1995a), Zeifman et al.
(2006) as well as Zeifman and Korotysheva (2012). Here
we improve estimates of the truncation error.

Assume that there exist δ > 1, a function θ∗(t) and
positive numbers R∗ and a∗ such that

Sμ(t) − δ2λ(t) ≥ θ∗(t) (64)

and
e−

∫
t
s (1−δ−2)θ∗(u) du ≤ R∗e−a∗(t−s), (65)

for any s and t, 0 ≤ s ≤ t.

One can see that for some function θ(t) and positive
numbers R and a the corresponding bounds

Sμ(t) − δλ(t) ≥ θ(t) (66)

and
e−

∫
t
s (1−δ−1)θ(u) du ≤ Re−a(t−s), (67)

for any s and t, 0 ≤ s ≤ t, hold, too.
For S = 1 we can choose δ > 1 arbitrarily, and

if S > 1 we suppose δ2 ≤ S/(S − 1). Note that this
assumption is unnecessary. It is formulated here only
for ease of computation. If we choose δ2 > S/(S − 1),

then we obtain another formula for the bounding of α(t)
instead of (71).

Set dk = δk−1. Then

gk =
k∑

n=1

dn =
δk − 1
δ − 1

.

Consider

αk (t) = λ (t) + min (k + 1, S)μ (t)

− δλ (t) − 1
δ

min (k, S)μ (t) , k ≥ 0.
(68)

Then

αk (t) ≥ α0 (t) ≥ λ (t) + μ (t) − δλ (t) (69)

for k < S, and

αk (t) ≥ (Sμ (t) − δλ (t))
(
1 − δ−1

)
(70)

for k ≥ S.
Hence the inequality δ ≤ δ2 ≤ S/(S − 1) implies

α (t) ≥ αS (t)

≥ (Sμ (t) − δλ (t))
(
1 − δ−1

)

≥ (1 − δ−1
)
θ(t),

(71)

and we obtain the following theorem.

Theorem 6. The following bounds of truncation for the
queue-length process of the Mt/Mt/S queue hold:

‖p(t) − pN (t)‖ ≤ 8LRR∗(L + M)
aa∗dN

, (72)

for p(0) = pN (0) = e0,

|E0(t) − E0,N (t)| ≤ 4LRR∗(L + M)
aa∗dNW

, (73)

where gN = (δN − 1)/(δ − 1).
Moreover, Theorem 4 is valid for both sequences

{di} and {d∗i }. Hence we obtain the following theorem.

Theorem 7. The following bounds of truncation for the
queue-length process of the Mt/Mt/S queue hold:

‖p(t, k) − pN (t, 0)‖

≤ 8Rgke
−at +

8LRR∗(L + M)
aa∗dN

, (74)

‖p(t, k) − pN (t, 0)‖

≤ 8R∗g∗ke−a∗t +
8LRR∗(L + M)

aa∗dN
, (75)
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where p(0, k) = ek, pN (0, 0) = e0,

|Ek(t) − E0,N (t)|

≤ 4Rgk

W
e−at +

4LRR∗(L + M)
aa∗dNW

, (76)

|Ek(t) − E0,N (t)|

≤ 4R∗g∗k
W ∗ e−a∗t +

4LRR∗(L + M)
aa∗dNW

, (77)

gN =
δN − 1
δ − 1

, g∗N =
δ2N − 1
δ2 − 1

.

Consider the case of 1-periodic arrival and service
rates in greater detail. In this case, the conditions
(64)–(67) appear substantially simpler. Namely, let the
following assumption hold:

∫ 1

0

(Sμ(t) − λ(t)) dt > 0. (78)

Then ∫ 1

0

Sμ(t) dt >

∫ 1

0

λ(t) dt. (79)

Hence, for a sufficiently small η > 0,
∫ 1

0

Sμ(t) dt > (1 + η)
∫ 1

0

λ(t) dt. (80)

Therefore, setting δ2
0 = (1 + η) > 1, we have

∫ 1

0

(
Sμ(t) − δ2

0λ(t)
)

dt > 0. (81)

Then ∫ 1

0

(Sμ(t) − δ0λ(t)) dt > 0, (82)

and we can choose

θ∗0(t) = Sμ(t) − δ2
0λ(t), (83)

and
θ0(t) = Sμ(t) − δ0λ(t). (84)

Therefore, we obtain

α0(t) =
(
1 − δ−1

0

)
θ0(t), a0 =

∫ 1

0

α0(t) dt,

R0 = eK0 , K0 = sup
|t−s|≤1

∫ t

s

α0(u) du. (85)

Similarly, we have

α∗
0(t) =

(
1 − δ−2

0

)
θ∗0(t), a∗

0 =
∫ 1

0

α∗
0(t) dt,

R∗
0 = eK∗

0 , K∗
0 = sup

|t−s|≤1

∫ t

s

α∗
0(u) du. (86)

Theorem 8. Let the arrival and service rates in the
Mt/Mt/S queue be 1-periodic, and let (78) hold. Then
there exist a limiting 1-periodic probability distribution
π(t), say, and the respective limiting 1-periodic mean
φ(t) for the queue-length process X(t), and the follow-
ing bounds hold:

‖π(t) − pN (t, 0)‖

≤ 4LR2
0

a0
e−a0t +

8LR0R
∗
0(L + M)

a0a∗
0dN

, (87)

‖π(t) − pN (t, 0)‖

≤ 4LR∗
0
2

a∗
0

e−a∗
0t +

8LR0R
∗
0(L + M)

a0a∗
0dN

, (88)

and

|φ(t) − E0,N (t)|

≤ 4LR2
0

a0W
e−a0t +

4LR0R
∗
0(L + M)

a0a∗
0dNW

, (89)

|φ(t) − E0,N (t)|

≤ 4LR∗
0
2

a∗
0W

∗ e−a∗
0t +

4LR0R
∗
0(L + M)

a0a∗
0dNW

. (90)

5. Examples

5.1. Example 1. Let X = X(t), t ≥ 0 be a
queue-length process for a concrete Mt/Mt/S with S =
2, λ(t) = 1 + sin 0.02πt, μ(t) = 4 + 2 cos 0.02πt. This
example of a queueing system with periodical intensity
functions with a sufficiently large period T = 100 was
considered by Zeifman et al. (2006). Now we can obtain
essentially more accurate bounds.

Remark 2. This example deals with the situation
that can happen if the intensities of arrivals and services
have different periods. As this is so if these periods
are commensurable, the limit characteristics will also be
periodic, although with a rather large period. Here L = 2,
M = 6.

Set δ0 =
√

2. Then d0,k = 2
k−1
2 and d∗0,k = 2k−1.

We have

W = inf
i≥1

di

i
=

2
3
,

W ∗ = inf
i≥1

d∗i
i

= 1,

gN =
2N/2 − 1√

2 − 1
, g∗N = 2N − 1.

Further,

α0(t) =
(
1 − 1/

√
2
)(

2μ(t) −
√

2λ(t)
)

,
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a0 = 9 − 5
√

2 > 1.5,

α∗
0(t) = 0.5 (2μ(t) − 2λ(t))

= 3 + 2 cos 0.02πt− sin 0.02πt,

a∗ = 3.

Hence we obtain

K0 = sup
|t−s|≤100

∫ t

s

α0(u) du =
100(3 −√

2)
π

,

and

R0 = exp
100(3 −√

2)
π

< e60.

Similarly,

K∗
0 = sup

|t−s|≤100

∫ t

s

α∗
0(u) du =

300
π

,

and
R∗

0 ≤ e
300
π < e100.

Therefore the inequalities (74) and (76) of Theorem 7
imply the following statement.

Proposition 1. The following bounds hold:

‖p(k, t) − pN (0, t)‖

≤ 24+k/2 · e60−1.5t +
e160

10 · 2 N−17
2

, (91)

and

|Ek(t) − E0,N (t)|

≤ 1 +
√

2
2

‖p(k, t) − pN (0, t)‖

< 2
k+9
2 · e60−1.5t +

e160

10 · 2 N−18
2

,

(92)

for any k, N and any t ≥ 0.

Further, we can apply Theorem 8.

Proposition 2. The queue-length process for the model
has a limiting 1-periodic probability distribution π(t), the
respective limiting 1-periodic mean φ(t), and the follow-
ing bounds hold:

‖π(t) − pN (0, t)‖

≤ 16 · e119−1.5t +
e160

10 · 2 N−17
2

, (93)

and

|φ(t) − E0,N (t)| ≤ 8 · e120−1.5t +
e160

10 · 2 N−18
2

,

for any N and any t ≥ 0.

These bounds can be used for the study and
construction of limiting characteristics of the queue, as
was firstly shown by Zeifman et al. (2006).

Particularly, for N ≥ 550, t ≥ 150 and the initial
conditions k ≤ 400, we obtain error bounds for all
characteristics less than 10−10.

Note that the best of previously known estimates (see
Zeifman et al., 2006, Example 2(iii)) give us (even for k =
0) significantly poorer estimates N = 945 and interval
[418, 518], and the error bound 10−8.

The behaviour of probabilistic characteristics of the
queue-length process is shown in the figures below.

Remark 3. All the characteristics mentioned above
(state probabilities, mathematical expectations, etc.) are
found in one and the same way, namely, by solving the
Cauchy problem with an appropriate initial condition for
the truncated Kolmogorov system by the Runge–Kutta
method of the fourth order of accuracy. Moreover, as was
shown, the dimensionality of the corresponding system
appears to be rather moderate. Further, if the figure
depicts a characteristic on the interval [a, a + T ], then the
Cauchy problem is solved on [0, a + T ]. Furthermore,
the figures show that the rate of convergence to the
corresponding limit characteristics is sufficiently large so
that the parameter a can be chosen not so large.

t

p0

Fig. 1. Probability Pr (X(t) = 0|X(0) = k) of an empty
queue for k = 0 and t ∈ [70, 170].

t

p0

Fig. 2. Probability Pr (X(t) = 0|X(0) = k) of an empty
queue for k = 400 and t ∈ [70, 170].
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t

p0

Fig. 3. Probability Pr (X(t) = 0|X(0) = k) of an empty
queue for k = 0 and t ∈ [150, 250].

t

p0

Fig. 4. Probability Pr (X(t) = 0|X(0) = k) of an empty
queue for k = 400 and t ∈ [150, 250].

t

p1

Fig. 5. Probability Pr (X(t) = 1|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p2

Fig. 6. Probability Pr (X(t) = 2|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p3

Fig. 7. Probability Pr (X(t) = 3|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p4

Fig. 8. Probability Pr (X(t) = 4|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p5

Fig. 9. Probability Pr (X(t) = 5|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p6

Fig. 10. Probability Pr (X(t) = 6|X(0) = k) for k = 0 and
t ∈ [150, 250].
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Remark 4. One can see in Figs. 3 and 4 that they give us
very good approximations of the real limiting probability
of an empty queue.

Remark 5. In Figs. 5–10 one can see the limiting
probability of the corresponding length of the queue.

t

�

Fig. 11. Mathematical expectation of the length of the queue
E400(t), k = 400 and t ∈ [0, 100].

t

�

Fig. 12. Mathematical expectation of the length of the queue
E0(t), k = 0 and t ∈ [70, 170].

t

�

Fig. 13. Mathematical expectation of the length of the queue
E400(t), k = 400 and t ∈ [70, 170].

Remark 6. In Figs. 14 and 15 one can see that they
give us very good approximation of the real limiting mean
(mathematical expectation) of the length of a queue.

5.2. Example 2. Let X = X(t), t ≥ 0 be now
a queue-length process for Mt/Mt/S with S = 1012,

t

�

Fig. 14. Mathematical expectation of the length of the queue
E0(t), k = 0 and t ∈ [150, 250].

t

�

Fig. 15. Mathematical expectation of the length of the queue
E400(t), k = 400 and t ∈ [150, 250].

λ(t) = 1 + sin 2πt, μ(t) = 3 + 2 cos 2πt. This
example and its analogue for a queueing system with
group services was considered by Zeifman et al. (2013b).

Now we consider only an ordinary “classic”
queueing model and obtain its main limiting
characteristics. Here L = 2, M = 5 · 1012. Put
δ0 =

√
2. Then d0,k = 2

k−1
2 and d∗0,k = 2k−1. We have

W = inf
i≥1

di

i
=

2
3
,

W ∗ = inf
i≥1

d∗i
i

= 1,

gN =
2N/2 − 1√

2 − 1
,

g∗N = 2N − 1.

Further,

α0(t) = μ(t) −
(√

2 − 1
)

λ(t),

a0 = 4 −
√

2 > 2,

α∗
0(t) = μ(t) − λ(t), a∗ = 2.

Hence we obtain

K0 = sup
|t−s|≤100

∫ t

s

α0(u) du =
1 +

√
2

π
,
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and

R0 = exp
(1 +

√
2

π

)
< e.

Similarly,

K∗
0 = sup

|t−s|≤100

∫ t

s

α∗
0(u) du =

3
π

,

and R∗
0 ≤ e

3
π < e.

Therefore, the inequalities (74) and (76) of
Theorem 7 imply the following statement.

Proposition 3. The following bounds hold:

‖p(k, t) − pN (0, t)‖ ≤ 2k/2 · e4−2t +
e2 · 1013

2
N−3

2

(94)

and

|Ek(t) − E0,N (t)| ≤ 2(k+2)/2 · e4−2t +
3e2 · 1013

2
N−1

2

(95)

for any k, N and any t ≥ 0.

Further, Theorem 8 implies the following statement.

Proposition 4. A queue-length process for the model has
a limiting 1-periodic probability distribution π(t), the re-
spective limiting 1-periodic mean φ(t), and the following
bounds hold:

‖π(t) − pN (0, t)‖ ≤ 4 · e2−2t +
e2 · 1013

2
N−3

2

(96)

and

|φ(t) − E0,N (t)| ≤ 6 · e2−2t +
3e2 · 1013

2
N−1

2

(97)

for any N and any t ≥ 0.

Here for N ≥ 170, t ≥ 85, and the initial
conditions k ≤ N = 170 we obtain error bounds for all
characteristics less than 10−10.

t

p0

Fig. 16. Probability Pr (X(t) = 0|X(0) = k) of an empty
queue for k = 0 and t ∈ [3, 5].

t

p0

Fig. 17. Probability Pr (X(t) = 0|X(0) = k) of an empty
queue for k = 170 and t ∈ [3, 5].

t

�

Fig. 18. Mathematical expectation of the length of the queue
Ek(t), k = 0 and t ∈ [1, 3].

t

�

Fig. 19. Mathematical expectation of the length of the queue
Ek(t), k = 170 and t ∈ [1, 7].

t

�

Fig. 20. Mathematical expectation of the length of the queue
Ek(t), k = 170 and t ∈ [2, 7].
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t

�

Fig. 21. Mathematical expectation of the length of the queue
Ek(t), k = 0 and t ∈ [3, 5].

t

�

Fig. 22. Mathematical expectation of the length of the queue
Ek(t), k = 170 and t ∈ [3, 5].

t

p0

Fig. 23. Approximation of the limiting probability of an empty
queue Pr (X(t) = 0|X(0) = k) for k = 0 and t ∈
[85, 86].

t

p1

Fig. 24. Approximation of the limiting probability
Pr (X(t) = 1|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p2

Fig. 25. Approximation of the limiting probability
Pr (X(t) = 2|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p3

Fig. 26. Approximation of the limiting probability
Pr (X(t) = 3|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p4

Fig. 27. Approximation of the limiting probability
Pr (X(t) = 4|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p5

p 0
+
p 1
+
p 2
+
p 3

Fig. 28. Approximation of the limiting probability
Pr (X(t) ≤ 3|X(0) = k) for k = 0 and t ∈ [85, 86].
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t

�

Fig. 29. Approximation of the limiting mathematical expecta-
tion of the length of the queue φ(t) by Ek(t), k = 0
and t ∈ [85, 86].

6. Conclusion

In this paper, we investigated a class of weakly ergodic
inhomogeneous birth and death processes and obtained
uniform (in time) error bounds of truncation. Our
approach also guarantees that we can find limiting
characteristics approximately with an arbitrary fixed error,
see the detailed discussion by Zeifman et al. (2006).
Moreover, we can find the limiting characteristics for
any number of servers S; see the respective example for
S = 1012 by Zeifman et al. (2013b). Arbitrary intensity
functions instead of periodic ones can be considered in
the same manner. Finally, we would like to remark that
all of our results can be applied to birth and death process
with catastrophes; see perturbation bounds in the work of
Zeifman and Korotysheva (2012) and the bounds on the
rate of convergence given by Zeifman et al. (2013a).
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