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MINIMUM ENERGY CONTROL OF FRACTIONAL DESCRIPTOR POSITIVE
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Necessary and sufficient conditions for the positivity and reachability of fractional descriptor positive discrete-time linear
systems are established. The minimum energy control problem for descriptor positive systems is formulated and solved.
Sufficient conditions for the existence of a solution to the minimum energy control problem are given. A procedure for
computation of optimal input sequences and a minimal value of the performance index is proposed and illustrated by a
numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains
forever in the positive orthant for all nonnegative inputs.
Overviews of the state of the art in positive systems
theory were made by Farina and Rinaldi (2000) as well
as Kaczorek (2001). A variety of models having positive
behavior can be found in engineering, economics, social
sciences, biology and medicine, etc.

Mathematical fundamentals of fractional calculus
are given by Oldham and Spanier (1974), Ostalczyk
(2008) as well as Podlubny (1999). Positive fractional
linear systems were investigated by Kaczorek
(2008a; 2011b; 2011c; 2012). The stability of fractional
linear 1D discrete-time and continuous-time systems
was investigated by Busłowicz (2008), Dzieliński and
Sierociuk (2008) as well as Kaczorek (2012), who also
characterized the stability of 2D fractional positive linear
systems (Kaczorek, 2009) and introduced the notion
of practical stability of positive fractional discrete-time
linear systems (Kaczorek, 2008b). Some recent interesting
results in fractional systems theory and its applications
can be found in the works of Dzieliński et al. (2009),
Kaczorek (2011a; 2008c), Radwan et al. (2009),Tenreiro
Machado and Ramiro Barbosa (2006) or Vinagre et
al. (2002). The minimum energy control problem for
standard linear systems was formulated and solved by
Klamka (1991; 1983; 1976) and for 2D linear systems

with variable coefficients by Kaczorek and Klamka
(1986). The controllability and minimum energy control
problems of fractional discrete-time linear systems
were investigated by Klamka (2010), while minimum
energy control of fractional positive continuous-time
linear systems was addressed by Kaczorek (2013a), who
also discussed its counterpart for descriptor positive
discrete-time linear systems (Kaczorek, 2013b).

In this paper, necessary and sufficient conditions
for the positivity and reachability of fractional descriptor
systems will be established, and the minimum energy
control problem will be formulated and solved.

The paper is organized as follows. In Section 2,
the reduction of fractional descriptor linear systems
to an equivalent standard system by the use of the
shuffle algorithm is addressed. In Section 3, the
solution to the standard equivalent fractional system
is given, and conditions for the positivity of the
fractional descriptor system are established. Necessary
and sufficient conditions for the reachability of positive
fractional descriptor systems are given in Section 4.
The minimum energy control problem is formulated and
solved in Section 5. Concluding remarks are given in
Section 6.

The following notation will be used: R, the set of real
numbers; R

n×m, the set of n × m real matrices; R
n×m
+ ,

the set of n × m matrices with nonnegative entries and
R

n
+ = R

n×1
+ ; xT , the transpose of the vector x; In, the
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n × n identity matrix.

2. Reduction of fractional descriptor
systems to standard systems

Consider the descriptor discrete-time linear system

EΔαxi+1 = Axi + Bui,

0 < α < 1, i ∈ Z+ = {0, 1, . . .}, (1)

where

Δαxi =
i∑

j=0

cjxi−j , cj = (−1)j

(
α

j

)
,

(
α

j

)

=

⎧
⎪⎨

⎪⎩

1 for j = 0,

α(α − 1) . . . (α − j + 1)
j!

for j = 1, 2, . . . ,

(2)

is the α-th order fractional difference of the state vector,
xi ∈ R

n and ui ∈ R
m are respectively the state and input

vectors, E, A ∈ R
n×n, B ∈ R

n×m.
It is assumed that detE = 0 and the pencil Ez − A

is regular, i.e.,

det[Ez − A] �= 0 for some z ∈ C. (3)

Substitution of (2) into (1) yields

Exi+1 = Aαxi − Ec2xi−1 − Ec3xi−2 − · · · − Ecix1

− Eci+1x0 + Bui, i ∈ Z+, (4)

where Aα = A + Eα.

Theorem 1. If the pencil of the fractional descriptor sys-
tem (1) is regular (i.e., (3) holds), then the system can be
reduced to the standard equivalent form with the use of
the shuffle algorithm:

xi+1 = Āixi + Āi−1xi−1 + · · · + Ā0x0 + B̄0ui

+ B̄1ui+1 + · · · + B̄qui+q, (5a)

where

Āk ∈ R
n×n
+ , k = 0, 1, . . . , i,

B̄j ∈ R
n×m
+ , k = 0, 1, . . . , q, (5b)

and q is the number of the shuffles.

Proof. The following elementary row operations will be
used (Kaczorek, 1992; 2011):

1. Multiplication of the i-th row by a real number c.
This operation will be denoted by L[i × c].

2. Addition to the i-th row of the j-th row multiplied by
a real number c. This operation will be denoted by
L[i + j × c].

3. Interchange of the i-th and j-th rows. This operation
will be denoted by L[i, j].

Performing elementary row operations on the array

[ E Aα −Ec2 . . . −Eci+1 B ] (6)

or, equivalently, on (4), we get
[

E1 Aα1 −E1c2 . . . −E1ci+1 B1

0 Aα2 0 . . . 0 B2

]
(7)

and

E1xi+1 = Aα1xi − E1c2xi−1 − E1c3xi−2

− · · · − E1ci+1x0 + B1ui, (8a)

0 = Aα2xi + B2ui. (8b)

Substituting i in (8b) by i + 1, we obtain

− Aα2xi+1 = B2ui+1. (9)

Equations (8a) and (9) can be written in the form
[

E1

−Aα2

]
xi+1 =

[
Aα1

0

]
xi +

[ −E1c2

0

]
xi−1

+ · · · +
[ −E1ci+1

0

]
x0 +

[
B1

0

]
ui

+
[

0
B2

]
ui+1.

(10)

The array
[

E1 Aα1 −E1c2 . . . −E1ci+1 B1 0
−Aα2 0 0 . . . 0 0 B2

]

(11)
can be obtained from (7) by performing a shuffle.

If the matrix [
E1

−Aα2

]

is nonsingular, then solving (10) we obtain the standard
system

xi+1 =
[

E1

−Aα2

]−1 ( [
Aα1

0

]
xi +

[ −E1c2

0

]
xi−1

+ · · · +
[ −E1ci+1

0

]
x0 +

[
B1

0

]
ui

+
[

0
B2

]
ui+1

)
.

(12)
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If the matrix is singular, then performing elementary
row operations on (11) we obtain

[
E2 Aα2 −E2c2 . . . −E2ci+1 B2 B4

0 Aα3 0 . . . 0 B3 B5

]
,

(13)
where E2 has full row rank and rankE2 ≥ rankE1.

Substituting i in 0 = Aα3xi + B3ui + B5ui+1 by
i + 1, we obtain

− Aα3xi+1 = B3ui+1 + B5ui+2. (14)

The equations

E2xi+1 = Aα2xi − E2c2 − · · · − E2ci+1

+ B2ui + B4ui+1

and (14) can be written down as
[

E2

−Aα3

]
xi+1

=
[

Aα2

0

]
xi +

[ −E2c2

0

]
xi−1

+ · · · +
[ −E2ci+1

0

]
x0 +

[
B2

0

]
ui

+
[

B4

B3

]
ui+1 +

[
0

B5

]
ui+2.

(15)

The array
[

E2 Aα2 −E2c2 . . .
−Aα3 0 0 . . .

−E2ci+1 B2 B4 0
0 0 B3 B5

]
(16)

can be obtained from (13) by performing a shuffle.
If

det
[

E2

−Aα3

]
�= 0,

we can find xi+1 from (15). Otherwise, we repeat the
procedure for (16). If the pencil is regular, then after q
steps we obtain a nonsingular matrix

[
Eq

−Aαq+1

]

and the desired equation (5). �
Example 1. Consider the fractional descriptor system (1)
with α = 0.5 and the matrices

E =

⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ ,

A =

⎡

⎣
1 0 0
0 0.5 0
0 0 −1

⎤

⎦ ,

B =

⎡

⎣
0 1
1 0
1 1

⎤

⎦ . (17)

To reduce the descriptor system to an equivalent
standard system using elementary row operations, we
reduce the array

[
E Aα −Ec2 ... −Eci+1 B

]

=

⎡

⎣
1 0 0 1.5 0 0 −c2 0
0 1 0 0 1 0 0 −c2

0 0 0 0 0 −1 0 0

0 . . . −ci+1 0 0 0 1
0 . . . 0 −ci+1 0 1 0
0 . . . 0 0 0 1 1

⎤

⎦

(18)

to the form (7). In this case, the array (18) has already the
desired form (7) with

E1 =
[

1 0 0
0 1 0

]
,

Aα1 =
[

1.5 0 0
0 1 0

]
,

E1c2 =
[

c2 0 0
0 c2 0

]
,

...

E1ci+1 =
[

ci+1 0 0
0 ci+1 0

]
,

Aα2 = [ 0 0 −1 ],

B1 =
[

0 1
1 0

]
,

B2 = [ 1 1 ]. (19)

Performing the shuffle, we obtain

[
E1 Aα1 −E1c2 . . . −E1ci+1 B1 0

−Aα2 0 0 . . . 0 0 B2

]

=

⎡

⎣
1 0 0 1.5 0 0 −c2 0 0 . . .
0 1 0 0 1 0 0 −c2 0 . . .
0 0 1 0 0 0 0 0 0 . . .

−ci+1 0 0 0 1
0 −ci+1 0 1 0
0 0 0 0 0

0 0
0 0
1 1

⎤

⎦

(20)

and the equivalent standard system

xi+1 = Āixi + Āi−1xi−1 + · · · + Ā0x0

+ B̄0ui + B̄1ui+1, i ∈ Z+, (21a)

where

Āi =

⎡

⎣
1.5 0 0
0 1 0
0 0 0

⎤

⎦ ,
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Āi−1 =

⎡

⎣
−c2 0 0
0 −c2 0
0 0 0

⎤

⎦ ,

...

Ā0 =

⎡

⎣
−ci+1 0 0

0 −ci+1 0
0 0 0

⎤

⎦ ,

B̄0 =

⎡

⎣
0 1
1 0
0 0

⎤

⎦ , (21b)

B̄1 =

⎡

⎣
0 0
0 0
1 1

⎤

⎦ .

In this case, the number of shuffle is q = 1. �

3. Solution for the standard equivalent
system and the positivity of fractional
descriptor systems

To find a solution xi of the standard discrete-time linear
system (5), we shall apply the Z-transform method.

Let X(z) be the Z-transform of xi defined by

Z[xi] =
∞∑

i=0

xiz
−i. (22)

Taking into account that

Z[xi−p] = z−pX(z) + z−p

−p∑

j=−1

xjz
−j, (23a)

Z[xi+p] = zpX(z) −
p−1∑

l=0

xlz
p−l, (23b)

p = 1, 2, . . . and applying the Z-transform to Eqn. (5),
we obtain

Z[xi+1] =
i∑

k=0

ĀkZ[xi−k] +
q∑

j=0

B̄jZ[ui+j]

(24a)

and

zX(z)− zx0 =
i∑

k=0

Ākz−kX(z)

+
q∑

j=0

B̄jz
q

[
U(z) −

q−1∑

l=0

ulz
−l

]
,

(24b)

where U(z) = Z[ui] and xj = 0, j = −1, . . . ,−k.

Multiplying (24b) by z−1 and solving with respect to
X(z), we obtain

X(z) =

[
In −

i∑

k=0

Ākz−(k+1)

]−1

×
⎡

⎣x0 +
q∑

j=0

B̄jz
q−1

[
U(z) −

q−1∑

l=0

ulz
−l

]⎤

⎦ .

(25)

Substitution of the expansion
[
In −

i∑

k=0

Ākz−(k+1)

]−1

=
∞∑

j=0

Φjz
−j (26)

into (25) yields

X(z)

=
∞∑

j=0

Φjz
−j

×
⎡

⎣x0 +
q∑

j=0

B̄jz
q−1

[
U(z) −

q−1∑

l=0

ulz
−l

]⎤

⎦ . (27)

From definition of the inverse matrix, we have

[
In −

i∑

k=0

Ākz−(k+1)

] ⎡

⎣
∞∑

j=0

Φjz
−j

⎤

⎦

=

⎡

⎣
∞∑

j=0

Φjz
−j

⎤

⎦
[
In −

i∑

k=0

Ākz−(k+1)

]
= In. (28)

Comparison of the coefficients at the same powers of z−k,
k = 0, 1, . . . from (28) yields

Φ0 = In, Φ1 = Ā0,

Φ2 = Ā0Φ1 + Ā1, Φ3 = Ā0Φ2 + Ā1Φ1 + Ā2

and, in general,

Φk = Ā0Φk−1 + Ā1Φk−2 + · · · + Āk−1Φ0

= Φk−1Ā0 + Φk−2Ā1 + · · · + Φ0Āk−1,

k = 1, 2, . . . . (29)

Applying the inverse Z-transform and the
convolution theorem (Kaczorek, 2012) to (27), we
obtain the desired solution

xi = Φix0

+
i∑

k=0

Φi−k−1

⎛

⎝
q∑

j=0

B̄juj+k

⎞

⎠ , i ∈ Z+.
(30)

Thus, the following theorem has been proved.
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Theorem 2. The solution of Eqn. (5) has the form (30),
where the matrices Φk are given by (29).

Definition 1. The fractional discrete system (1) is called
(internally) positive if xi ∈ R

n
+ for every consistent x0 ∈

R
n
+ and all inputs ui ∈ R

m
+ , i ∈ Z+.

Theorem 3. The fractional descriptor system (1) is posi-
tive if and only if the matrices of the equivalent standard
system (5) satisfy the conditions

Āk ∈ R
n×n
+ , k = 0, 1, . . . , i

and

B̄j ∈ R
n×m
+ , j = 0, 1, . . . , q. (31)

Proof. It is well known that the state vectors of the
descriptor system (1) and the equivalent standard system
(5) are the same. By Definition 1, the descriptor system
(1) is positive if and only if the standard system (5) is
positive. From (30) it follows that xi ∈ R

n
+, i ∈ Z+

if the conditions (31) are met and x0 ∈ R
n
+, ui ∈ R

m
+ .

The necessity of the condition (31) follows from the fact
that xi ∈ R

n
+ for every consistent x0 ∈ R

n
+ and arbitrary

ui ∈ R
m
+ , i ∈ Z+ (Kaczorek, 2012). �

Example 2. (Continuation of Example 1) Check the
positivity of the fractional descriptor system (1) with α =
0.5 and the matrices (17). In Example 1 it was shown that
the equivalent standard system has the matrices given by
(21a) and (21b). The matrices have nonnegative entries
since

c2 =
α(α − 1)

2!
< 0 for α = 0.5

and

ck+1 = (−1)k+1 α(α − 1) . . . (α − k + 1)(α − k)
(k + 1)!

= ck
k − α

k + 1
< 0, k = 2, 3, . . . . (32)

Therefore, the fractional descriptor system (1) with
α = 0.5 and (17) is positive. �

4. Reachability of positive fractional
descriptor systems

Consider the positive fractional descriptor discrete-time
system (1). It is called reachable in n steps if and only if
the equivalent standard system (5) is reachable in n steps.

Definition 2. The positive system (5) is called reachable
in n steps if for any given xf ∈ R

n
+ there exists an input

sequence uk ∈ R
m
+ for k = 0, 1, . . . , h − 1, h = n + q,

which steers the state of the system from x0 = 0 to xf ∈
R

n
+, i.e., xn = xf .

Theorem 4. The positive system (5) is reachable in n
steps if and only if the reachability matrix

Rn = [ Φn−1B̄0 Φn−2B̄1 . . .

Φn−q−2B̄q−1 Φn−q−1B̄q ]
(33)

contains n linearly independent monomial columns.

Proof. Using (30) for i = n and x0 = 0, we obtain

xf = xn

= [ Φn−q−1B̄q Φn−q−2B̄q−1 . . .

Φn−2B̄1 Φn−1B̄0 ]

⎡

⎢⎢⎢⎣

un+q

un+q−1

...
u0

⎤

⎥⎥⎥⎦

= Rn

⎡

⎢⎢⎢⎣

u0

u1

...
uh+q

⎤

⎥⎥⎥⎦ ,

(34)

where Rn is defined by (33).
From (34) it follows that there exists an input

sequence uk ∈ R
m
+ for k = 0, 1, . . . , i + q if and only if

the matrix (33) contains n linearly independent monomial
columns. �

Remark 1. Assuming that the components of the input
sequence which do not correspond to the chosen linear
independent monomial columns are zero, we obtain a
different input sequence which steers the state vector from
x0 = 0 to xn = xf .

Example 3. (Continuation of Examples 1 and 2) Check
the reachability of the positive fractional descriptor
system (1) with α = 0.5 and the matrices (17), and
compute an input sequence that steers in two steps the
state vector of the system from x0 = [ 0 0 0 ]T to
xf = [ 1 1 1 ]T . In this case, the reachability matrix
(33) has the form

R4 = [ B̄1 B̄0 + Ā1B̄1 Ā1B̄0 ]

=

⎡

⎣
0 0 0 1 0 1.5
0 0 1 0 1 0
1 1 0 0 0 0

⎤

⎦ .
(35)

The matrix (35) contains three linearly independent
monomial columns, and by Theorem 4 the positive
fractional descriptor system is reachable in two steps.
Choosing as linearly independent monomial columns the
fifth, fourth and first column of the matrix (35), we obtain

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦

⎡

⎣
u21

u12

u01

⎤

⎦ =

⎡

⎣
1
1
1

⎤

⎦ ,
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⎡

⎣
u21

u12

u01

⎤

⎦ =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦
−1 ⎡

⎣
1
1
1

⎤

⎦ =

⎡

⎣
1
1
1

⎤

⎦

and

⎡

⎣
u2

u1

u0

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

u21

u22

u11

u12

u01

u02

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
1
0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (36)

If we choose as linearly independent monomial columns
the second, third and last ones of the matrix (35), then we
obtain

⎡

⎣
u21

u12

u01

⎤

⎦ =

⎡

⎣
0 0 1.5
0 1 0
1 0 0

⎤

⎦
−1 ⎡

⎣
1
1
1

⎤

⎦ =

⎡

⎣
1
1
10
15

⎤

⎦

and

⎡

⎣
u2

u1

u0

⎤

⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎣

u21

u22

u11

u12

u01

u02

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
0
0
1
0
10
15

⎤

⎥⎥⎥⎥⎥⎥⎦
. (37)

�

5. Minimum energy control problem

Consider the fractional descriptor positive system (1)
reduced to the form (2). In Section 4 it was shown that
if the positive system is reachable then there exist many
input sequences which steer the state of the system from
x0 = 0 to the given final state xf ∈ R

n
+. Among

these input sequences we are looking for a sequence
uk ∈ R

m
+ for k = 0, 1, . . . , n + q − 1 that minimizes

the performance index

I(u) =
h−1∑

i=0

uT
i Qui, (38)

where Q ∈ R
m×m
+ is a symmetric positive definite matrix

such that
Q−1 ∈ R

m×m
+ , (39)

and h = n + q is the number of steps in which the state
of the system is transferred from x0 = 0 to the given final
state xf ∈ R

n
+.

The minimum energy control problem for the
fractional descriptor positive discrete-time linear system
(1) can be stated as follows.

Given the matrices E, A, B of the descriptor positive
system (1), the number of steps h, the final state xf ∈ R

n
+

and the matrix Q ∈ R
n×n
+ of the performance index (38)

satisfying the condition (39), find a sequence of inputs

uk ∈ R
m
+ for k = 0, 1, . . . , h − 1 that steers the state

of the system from x0 = 0 to xf ∈ R
n
+ and minimizes the

performance index (38).
To solve the problem, we define the matrix

Wh = RhQ−1
h RT

h ∈ R
n×n
+ , (40)

where Rh ∈ R
n×hm
+ is given by (33) and

Q−1
h = block diag [Q−1, . . . , Q−1] ∈ R

hm×hm
+ . (41)

The matrix (40) is non-singular if the positive system is
reachable in h steps.

For a given xf ∈ R
n
+, we may define the input

sequence

û =

⎡

⎢⎢⎢⎣

ûh−1

ûh−2

...
û0

⎤

⎥⎥⎥⎦ = Q−1
h RT

h W−1
h xf , (42)

where Q−1
h , Wh and Rh are defined by (41), (40) and (33),

respectively.
Note that û ∈ R

hm
+ if

W−1
h ∈ R

n×n
+ , (43)

and this holds if the condition (39) is met.

Theorem 5. Let the fractional descriptor positive system
(1) be reachable in h steps and the conditions (39) and
(43) be satisfied. Moreover, let

ū =

⎡

⎢⎢⎢⎣

ūh−1

ūh−2

...
ū0

⎤

⎥⎥⎥⎦ ∈ R
hm
+ , (44)

be an input sequence that steers the state of the system
from x0 = 0 to xf ∈ R

n
+. Then the input sequence (42)

also steers the state of the system from x0 = 0 to xf ∈ R
n
+

and minimizes the performance index (38), i.e.,

I(û) ≤ I(ū). (45)

The minimal value of the performance index (38) is
given by

I(û) = xT
f W−1

h xf . (46)

Proof. If the conditions (39) and (43) are met and the
system is reachable in h steps, then the input sequence
(42) is well defined and û ∈ R

n
+. We shall show that the

input sequence (42) steers the state of the system from
x0 = 0 to xf ∈ R

n
+. Using (35) and (42), we obtain

xh = Rhû = RhQ−1
h RT

h W−1
h xf = xf , (47)
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since, by (40), RhQ−1
h RT

h = Wh. Hence, xf = Rhû =
Rhū or

Rh[û − ū] = 0. (48)

The transposition of (48) yields

[û − ū]T RT
h = 0. (49)

Postmultiplying the equality (49) by W−1
h xf , we

obtain
[û − ū]T RT

h W−1
h xf = 0. (50)

From (42), we have Qhû = RT
h W−1

h xf . Substitution of
this equality into (50) yields

[û − ū]T Qhû = 0, (51)

where Qh = block diag [Q, . . . , Q] ∈ R
hm×hm
+ .

From (51), it follows that

ūT Qhū = ûT Qhû + [ū − û]T Qh[ū − û], (52)

since, by (51), ūT Qhû = ûT Qhû = ûT Qhū.
From (52) it follows that (45) holds since [ū −

û]T Qh[ū − û] ≥ 0. To find the minimal value of the
performance index (38), we substitute (42) into (38) and
obtain

I(û) =
h−1∑

i=0

ûT
i Qûi = ûT Qhû

= [Q−1
h RT

h W−1
h xf ]T Qh[Q−1

h RT
h W−1

h xf ]

= xT
f W−1

h RhQ−1
h RT

h W−1
h xf

= xT
f W−1

h xf ,

(53)

since, by, (40) W−1
h RhQ−1

h RT
h = In. �

From the above discussion we have the following
procedure for computation of the optimal input sequence
and the minimal value of the performance index (42).

Procedure 1.
Step 1. Knowing E, A, B, compute Āk for k = 0, 1, . . . , i
and B̄l for l = 0, 1, . . . , q.

Step 2. Using (33), compute Rh.

Step 3. For given Q, using (41), compute Q−1
h .

Step 4. Using (40), compute Wh and W−1
h .

Step 5. For given xf ∈ R
n
+, using (42), compute û.

Step 6. Using (46), compute the minimal value of the
performance index I(û).

Example 4. (Continuation of Examples 1–3) For the
fractional descriptor system (1) with α = 0.5 and (17),
compute the optimal input sequence that steers the system

from x0 = [ 0 0 0 ]T to xf = [ 1 1 1 ]T , and
minimize the performance index (38) for

Qh = diag [2, 2, 2, 2]. (54)

Using Procedure 1 and results of Example 3, we obtain
the following.

Step 1. The desired matrices Āk for k = 0, 1, . . . , i and
B̄l for l = 0, 1 are given by (21).

Step 2. The matrix R4 is given by (35).

Step 3. Using (41) and (54), we obtain

Q−1
4 = diag [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]. (55)

Step 4. Using (40) and (55), we obtain

W4 = R4Q
−1
4 RT

4

=

⎡

⎣
0 0 0 1 0 1.5
0 0 1 0 1 0
1 1 0 0 0 0

⎤

⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

⎤

⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 1 0
1 0 0
0 1 0

1.5 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎣
1.625 0 0

0 1 0
0 0 1

⎤

⎦ (56a)

and

W−1
4 =

⎡

⎣
0.6154 0 0

0 1 0
0 0 1

⎤

⎦ . (56b)

Step 5. Using (42), (55) and (56b), we obtain

û =

⎡

⎣
û2

û1

û0

⎤

⎦ = Q−1
4 RT

4 W−1
4 xf

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

⎤

⎥⎥⎥⎥⎥⎥⎦
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×

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 0 1
0 1 0
1 0 0
0 1 0

1.5 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
0.6154 0 0

0 1 0
0 0 1

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0.5
0.4615

0.5
0.3077

0.5
0.5

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(57)

Step 6. Using (46) and (56b), we obtain

I(û) = xT
f W−1

4 xf

= [ 1 1 1 ]

⎡

⎣
0.6154 0 0

0 1 0
0 0 1

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦

= 2.6154.

(58)

Note that the optimal input sequence (58) is different
from the input sequences (36) and (37). �

6. Concluding remarks

Necessary and sufficient conditions for the positivity and
reachability of fractional descriptor positive discrete-time
linear systems have been established (Theorems 1
and Theorem 3). The transformation of the fractional
descriptor system to an equivalent standard one with
the use of the shuffle algorithm has been addressed.
The minimum energy control problem for fractional
descriptor positive systems has been formulated and
solved (Theorem 5). A procedure for computation of
optimal input sequences and a minimal value of the
performance index has been proposed (Procedure 1). The
procedure has been demonstrated on a numerical example.

An open problem is the extension of these
deliberations to fractional positive descriptor 2D
continuous-discrete linear systems.
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