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The problem of detecting and isolating sensor faults (sensor fault detection and isolation—SFDI) on a general aviation
aircraft, in the presence of external disturbances, is considered. The proposed approach consists of an extended Kalman
observer applied to an augmented aircraft plant, where some integrators are added to the output variables subject to faults.
The output of the integrators should be ideally zero in the absence of model uncertainties, external disturbances and sensor
faults. A threshold-based decision making system is adopted where the residuals are weighted with gains coming from the
solution to an optimization problem. The proposed nonlinear observer was tested both numerically on a large database of
simulations in the presence of disturbances and model uncertainties and on input-output data recorded during real flights.
In this case, the possibility of successfully applying the proposed technique to detect and isolate faults on inertial and air
data sensors, modelled as step or ramp signals artificially added to the real measurements, is shown.
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1. Introduction

In the aircraft industry very stringent safety requirements
are requested in system design. For this reason, solutions
are typically based on physical redundancy, also named
hardware redundancy. For example, the Boeing 777 flight
system is a fly-by-wire system based on triple redundancy
for all hardware resources: the computing system, the
airplane electrical power, the hydraulic power and the
communication path (Yeh, 1996). The inertial and air data
sensors have a similar level of redundancy. Of course,
this approach has the drawback of increasing the system
weight, size and complexity. Moreover, the production
costs are extremely high. Approaches alternative to
hardware redundancy are being developed; the most
promising is the so-called analytical redundancy, where
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model-based and data-driven techniques are used to obtain
the redundant measurements, hence reducing the reliance
on physical redundancy. The use of analytical fault
detection and isolation (FDI) algorithms would represent
a significant change in the way this problem is tackled
by the aerospace industry. One critical aspect which is
presently slowing down this process is the need to certify
the airworthiness of safety-critical systems.

In order to achieve an analytical sensor redundancy
it is necessary to have at one’s disposal one or more
signal reconstruction modules, that is, one or more
algorithms able to estimate a given variable from the
knowledge of the inputs and the outputs of the system
under consideration. This paper focuses on sensor
failures on aircraft, which are not uncommon and may
be extremely critical for safety. Several techniques are
available in the literature to design state estimators for
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the solution of FDI problems (Chen and Patton, 1999;
Basseville and Nikiforov, 1993; Isermann, 1984; Gertler,
1998; Gustafsson, 2000), among which the best assessed
are those based on parity spaces (Gertler, 1997; Patton
and Chen, 1994; Simani et al., 2003), observer-based
methods (Clark et al., 1975; Wünnenberg and Frank,
1987), and approaches based on Kalman filters as well
as H2 or H∞ theories (Mehra and Peschon, 1971).
These approaches have been extended also to nonlinear
observers (see, e.g., Mattei et al., 2005).

Within the observer-based FDI approach, several
schemes have been proposed in the literature:

• Dedicated observer scheme (DOS) (Clark et al.,
1975): here, each observer is driven by a different
output. In the event of a fault, the corresponding
observer will produce inaccurate estimates, and
therefore fault detection and isolation are made
possible.

• Generalized observer scheme (GOS) (Wünnenberg
and Frank, 1987): this scheme, as the DOS, makes
use of a bank of observers. In this case, however,
each observer is driven by all outputs except one. In
this way, when an output is faulty, the estimates of all
the observers except one are inaccurate.

• Simplified detection scheme (Clark, 1978): this
scheme is a particular case of the DOS, and makes
use of only one observer driven by only one
measurement. Therefore, if any other measurement
is faulty, the corresponding residual is non-zero. Of
course, if the sensor used by the observer is faulty,
then all the residuals are non-zero and no information
can be gathered.

All these schemes can be used with Luenberger
observers (Luenberger, 1971), Kalman filters (Kalman,
1960), unknown input observers (UIOs) (Watanabe and
Himmelblau, 1982), or any other kind of state or output
observer.

In this paper we propose the use of an extended
Kalman filter approach for the detection and isolation
of sensor faults modeled as step signals (abrupt faults)
or ramp signals (incipient faults) added to the sensor
measurements. The aircraft model is augmented
introducing a bank of integrators, one on each variable
subject to a fault. This allows us to use only one
dynamic observer which is driven by all the outputs at
the same time. In the ideal case of the absence of model
uncertainties, external disturbances and sensor faults,
the additional integrators have null steady-state states.
When a fault on one variable occurs, the corresponding
integrator starts charging; in this way, as shown in the
paper, we are able not only to detect a fault, but also to
isolate it. The scheme is applied to both simulated and

experimental flight data of the general aviation aircraft
Tecnam P92 (see Fig. 1).

Fig. 1. Tecnam P92 aircraft.

The paper is organized as follows. In Section 2
the aircraft model is presented. In Section 3 the
proposed observer scheme is discussed. Section 4
contains some simulation results obtained in the presence
of model uncertainties, sensor noise and wind gusts.
In Section 5 the proposed observer is applied to some
flight experimental data and the faults are isolated using
a logical decision making process based on thresholds
obtained as solution of an optimization problem.

2. Aircraft model

The mathematical model of the GA aircraft under
consideration is a classical six-degrees-of-freedom
aircraft model.

In order to write the system equations in a compact
form, we introduce the state vector

x =
(
u v w p q r φ θ ψ x y z

)T
,

the input vector

u =
(
δe δa δr δf δT

)T
,

and the wind disturbance vector

w =
(
vT
Bwind v̇T

Bwind

)T
,

where

vBwind =
(
uBwind vBwind wBwind

)T
.

The symbols used are listed in Table 1.
The most significant external disturbances are

sudden wind gusts, atmospheric turbulence and sensor
noise. In the presence of atmospheric disturbances we
have

V = ‖vB − vBwind‖, (1a)

α = arctan [(w − wBwind)/(u− uBwind)] , (1b)

β = arcsin [(v − vBwind)/V ] , (1c)
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Table 1. List of symbols.
lc Reference length for aerodynamic moments
S Wing reference area
V True air speed
m Aircraft mass
vB Velocity vector in body axes: vB = (u v w)T

ω Angular velocity in body axes: ω = (p q r)T

Θ Euler angles: Θ = (φ θ ψ)T

ζ Position in inertial frame of reference: ζ = (x y z)T

vBwind Wind velocity vector in body axes
aB Acceleration in body axes: aB = (ax ay az)T

F Forces vector
J Inertia matrix
T Moments vector
RBE Transformation matrices from earth to body axes
α Angle of attack
β Sideslip angle
ρ Air density
δe, δa, δr Elevator, Ailerons, Rudder deflection (primary surfaces)
δf Flap deflection
δT Throttle command

with ‖ · ‖ denoting the Euclidean norm. The sensor
noise was modelled as Gaussian white noise with variance
determined based on registered flight data.

Using the symbols introduced above, we can write
the equations of motion in body axes in the form (see
Stevens and Lewis, 2003)

⎛

⎝
ẋ1
ẋ2
ẋ3

⎞

⎠ =
1

m

⎛

⎝−
⎛

⎝
x4
x5
x6

⎞

⎠×
⎛

⎝
x1
x2
x3

⎞

⎠+ F(x,u,w)

⎞

⎠ ,

(2a)
⎛
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ẋ4
ẋ5
ẋ6

⎞

⎠ = J−1

⎛

⎝−
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⎠× J
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(2b)
⎛

⎝
ẋ7
ẋ8
ẋ9

⎞

⎠ =

⎛

⎝
1 sinx7 tanx8 cosx7 tanx8
0 cosx7 − sinx7
0 sin x7

cosx8

cos x7

cos x8

⎞

⎠
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x5
x6

⎞

⎠ ,

(2c)
⎛

⎝
ẋ10
ẋ11
ẋ12

⎞

⎠ = R−1
BE(x7, x8, x9)

⎛

⎝
x1
x2
x3

⎞

⎠ . (2d)

In (2) the forces F and the moments T have the
following expressions:

F = FA + FE + FG, (3a)

T = TA +TE , (3b)

where FA (resp. TA) is the aerodynamic force (resp.
moment) vector, FE (resp. TE) is the engine force (resp.
moment) vector and FG is the gravity force. As for the

aerodynamic forces and moments, we have

FA =
1

2
ρV 2SCF (x,u,w) , (4a)

TA =
1

2
ρV 2SCT (x,u,w)lc, (4b)

where the force and moment coefficients CF (x,u,w)
and CT (x,u,w) are nonlinear functions of the system
state and of the surface deflections. These coefficients are
tuned on the basis of approximate semi-heuristic methods,
computational fluid dynamics, or an experimental wind
tunnel or flight database.

For what concerns the measured outputs, we assume
that we have at our disposal inertial sensors, such as
accelerometers and rate gyros, and air data sensors.
Therefore, the output vector is the following:

y =
(
V α β p q r ax ay az

)T
. (5)

Putting together (2) and (5), the aircraft equations can
be rewritten as

ẋ = f(x,u,w), (6a)

y = h(x,u,w) . (6b)

As is usually done, the output observer will be
designed on the basis of a model obtained by linearizing
the nonlinear model (6). Given a trim operation point
x̄ with a corresponding input ū, the linearized model
appears in the form

˙δx = Aδx+Bδu, (7a)

δy = Cδx+Dδu , (7b)

where the A, B, C and D matrices are given by

A =
∂f

∂x

∣
∣∣
∣
x=x̄
u=ū

, B =
∂f

∂u

∣
∣∣
∣
x=x̄
u=ū

,

C =
∂h

∂x

∣
∣
∣
∣
x=x̄
u=ū

, D =
∂h

∂u

∣
∣
∣
∣
x=x̄
u=ū

,

and δx, δu and δy indicate the variations in the states,
inputs and outputs, respectively, around the trim operation
point. The model (7) can be equivalently expressed in
terms of a transfer matrix in the form

δY(s) = G(s)δU(s) ,

with G(s) = C(sI−A)−1B+D.

3. Observer scheme

In this section we will describe the observer we designed
for SFDI. The driving criteria for our design were the
following:
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• the development of a scheme which makes use of
only one observer, so that possible implementation
would be much easier;

• the scheme should allow us not only to detect the
fault, but also to isolate it.

The scheme we propose is shown in Fig. 2. Starting
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Fig. 2. SFDI scheme: in the observer, the plant is augmented
with a bank of integrators, one on each variable subject
to a fault. The outputs yI of these integrators are used as
residuals. The observer gain K is constant.

from the system equations (6), we necessarily neglect the
unknown disturbances w. Hence, denoting by ym the
measured outputs, the estimates x̂ of the state x and ŷ
of the output ym would at this stage be given by

˙̂x = f(x̂,u) + z1, (8a)

ŷ = h(x̂,u), (8b)

z1 = K1(ŷ − ym). (8c)

Equations (8) describe a standard state observer, where
the gain K1 can be evaluated in different possible ways,
as discussed in Introduction. When using the observer (8),
the residual used to detect a fault is the estimation error

e := ŷ − ym.

In this paper we propose to modify the observer
equations (8) adding as many integrators to the state as the
number of outputs y. In this way the observer equations
are modified as follows:

˙̂x = f(x̂,u) + z1, (9a)

ẋI = z2, (9b)

ŷ = h(x̂,u), (9c)

yI = xI , (9d)
(
z1
z2

)
=

(
K1

K2

)
(ŷ + yI − ym). (9e)

Hence, with respect to the standard observer-based
designs for FDI, the novelty we propose is the adoption
of a bank of integrators, one on each variable subject to a
fault. In our scheme, as a residual we use the outputs yI

of the integrators.

The filter gain (KT
1 KT

2 )
T was designed as a Kalman

filter on the basis of a linearized model of the plant
in the form (7). Hence, the filter gain is fixed (i.e.,
time invariant), whereas in the observer equations (9a)
and (9c) we update the system dynamics according to the
true nominal nonlinear behavior, neglecting the external
disturbance w.

The adopted scheme meets our design criteria.
Indeed,

• a single observer is needed for all the possible faults,
and this observer is driven by all the system outputs;

• in the ideal case when the model is known without
uncertainties, and no disturbance w is present, the
integrator outputs yI are zero unless a sensor is
faulty. Moreover, since we add a bank of integrators,
when there is a fault on the i-th sensor, only the i-th
integrator starts charging. In this way also the fault
isolation can be achieved. This property is proven in
Appendix, under some simplifying assumptions.

4. Simulation results

The FDI scheme described in Section 3 was massively
tested in simulation in a significant number of scenarios.
These scenarios were classified on the basis of

• the flight condition in the flight envelope: this was
specified in terms of the operation point around
which the model (7) was derived and the simulation
started;

• the manoeuvre to be carried out;

• external disturbances and measurement noise;

• model uncertainties;

• the type of faults considered.

As far as the flight conditions are concerned, we
considered several situations of straight wing levelled
flight, at different altitudes and velocities. The
manoeuvres that were analysed are shown in Table 2.
As an external disturbance, we considered a continuous
moderate Von Karman turbulence and a discrete gust with
amplitude vBwind =

(
3.5 3.5 3.0

)
m/s and length(

120 120 80
)

m. To model system uncertainties,
in the simulation we modified the stability and control
derivatives in the model equations (6); finally, the types
of considered faults are shown in Table 3.

In the sequel, we show the results of two different
simulations; both were carried out in the most challenging
case, i.e., in the presence of external disturbances and
model uncertainties. Moreover, the measurements were
also corrupted by noise.
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Table 2. List of manoeuvres considered in the simulations.

M01 Elevator doublet: 5 deg for 2 s, −5 deg for 2 s
M02 Aileron doublet: 5 deg for 2 s, −5 deg for 2 s
M03 Rudder doublet: 2 deg for 2 s, −2 deg for 2 s
M04 Throttle variation of 0.1

Table 3. List of the faults considered.

Bias Drift
Accelerometers × ×

Gyro rates × ×
Air data sensors × ×

In Fig. 3 we show the residuals (i.e., the outputs of
the integrators) in the case of a fault on p consisting of a
slow drift of 2 deg/s2 summed at t = 5 s at the simulation
output.

In Fig. 4 we show the residuals in the case of a fault
on az consisting of a bias simulated as a step of 1 m/s2

occurring at t = 5 s. In both the cases, when the fault
occurs, the integrator linked to the faulty variable starts
charging significantly more than the integrators linked to
the other variables. These behaviours seem promising for
FDI, as will be shown in the next section, where we make
use of flight recorded data rather than simulated data.

4.1. Comparison with a standard FDI scheme. For
the sake of comparison, we implemented the standard FDI
scheme based on a Kalman filter, described by Eqns. (8)
and shown in Fig. 5. In this comparison, we considered
the case of a fault on p simulated as a step signal of 5 deg/s
occurring at t = 10 s. Figure 6 shows the behaviour of the
two observers, i.e., the standard Kalman filter (KF) and the
proposed one augmented with integrators (KFI). The latter
one performs much better since, as expected, it shows less
coupling between the residuals of a faulted variable and
the other ones.

5. Results using experimental flight data

In this section we test the proposed observer based SFDI
scheme on some flight data. In order to make the
implementation closer to that on a real aircraft, a sensor
FDI technique should be able to detect and isolate faults
in the presence of external disturbances, unmodelled
dynamics, and neglected nonlinearities. On the other
hand, an important feature is the minimization of missed
and false alarms, which will be dealt with a proper
threshold tuning technique based on an ad-hoc decision
making system, presented in Section 5.1.

We adopted the following procedure:
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Fig. 3. Simulation in the presence of a fault on p consisting of a
slow drift of 2 deg/s2 at t = 5 s. The two panels show
the state of the observer integrators. The residual linked
to p is significantly larger than the others.

• Starting from the experimental data, a time instant
when the angle of attack α and the velocity V are
constant was found to catch steady-state conditions.

• The nonlinear model (6) was trimmed at the
time instant determined before and the linearized
model (7) was derived.

• Based on this linearized model, a gain for the
observer derived from the Kalman filter was
calculated. This gain was kept constant in our
simulations.

• A simulation using the experimental data was carried
out in the presence of faults.

• The residuals, i.e., the output of the integrators, were
used to detect and isolate the fault.

For fault detection, we adopted the decision making
process described in the next section.



154 M. Ariola et al.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

[r
ad

/s
]

Weighted integrals on p, q e r

 

 
p
q
r

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

[m
2 /s

]

Weighted integrals on a
x
, a

y
 e a

z

 

 

a
x

a
y

a
z

Fig. 4. Simulation in the presence of a fault on az consisting of
a bias simulated as a step of 1 m/s2 occurring at t = 5 s.
The two panels show the state of the observer integrators.
The residual linked to az is significantly larger than the
others.

5.1. Decision making algorithm. The role of the
proposed decision-making algorithm is to decide if a
fault can be detected and isolated on the basis of the
residuals’ time histories. Due to the stochastic nature
of the process under consideration, which is subject to
unpredictable disturbances and uncertainties, the problem
must be approached stochastically and one has to fix an
acceptable level of false and/or missed alarm probabilities.
When the algorithm is based on a threshold logic, the
values of thresholds can be selected on the basis of
minimum false and missed alarm desired probabilities,
say PFAmin and PMAmin.

If we denote by ri(k) the value of the i-th residual,
which in our case is the output of the i-th integrator yI

in (9d), at time k, the mathematical problem to tune the
value γi of the threshold on measurement channel i is

• Prob(|r̄i(k)| > γi) ≤ PFAmin for all k when the i-th
measurement is not faulty,

• Prob(|r̄i(k)| ≤ γi) ≤ PMAmin for all k > kf +Δ,
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Fig. 5. Scheme of a standard observer-based FDI system.

where kf is the fault time and Δ is the allowed delay
detection time.

By r̄i(k) we indicate a filtered version of the signal ri(k),
obtained by means of a moving-average algorithm.

Let us denote by r̄NF i(k) the residual value function
restricted to the time instants when no faults occur and by
r̄Fi(k) the residual value function restricted to the time
instants when faults occur.

In Fig. 7, we show an ideal case where the PDFs
(probability density functions) of processes r̄NF i

(k) and
r̄Fi(k) are Gaussians. The PDF of r̄Fi(k) is replicated
for two different amplitudes of the faults. Let us call
them “weak” and “strong” faults. The two PDFs are well
separated if we consider the strong fault but they have a
non-negligible intersection in the weak fault case. Once
a threshold on the residual function value is decided, also
the probability of missed and false alarms (areas A and B
in Fig. 7, respectively) is fixed.

In our application, we decided to achieve the
probability of false alarms as low as possible. This choice
is acceptable if the category of faults which run the risk to
be masked by the FDI algorithm (missed alarms) can be
readily rejected by the control system or by the pilot. If
we want to completely avoid false alarms, PFAmin must
be fixed to as zero and the threshold tuning problem can
be then translated into the following constrained linear
minimization problem (Li = γ−1

i ):

min
Li

−Li

subject to
{
Li > 0,

Li|r̄i(k)| < 1 ∀k in the absence of faults.

(10)

The above optimization problem was solved using
experimental data extracted from flight recordings to build
r̄i(k). Two flights, each one lasting about 1800 s, were
used. These data were processed with a 10-point moving
average filter with a time step of 0.1 s. The fault is
detected when the threshold is exceeded for at least five
consecutive samples.
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Fig. 6. Comparison between residuals of a standard Kalman fil-
ter (KF) and the proposed scheme (KFI). The three plots
show the residuals in the presence of a fault on p, con-
sisting of a step of amplitude of 5 deg/s occurring at
t = 10 s. The residuals for the KFI scheme show less
coupling.

Figure 8 shows the experimental PDFs on the p
measurement channel when a bias fault is considered. The
residual distributions in the case of no-fault and biases
with an amplitude of 3 and 5 deg/s show that fixing a
threshold around 0.06 nullifies in practice the occurrence
of false alarms with a very low probability of having
missed alarms for a 5 deg/s bias, whereas a 3 deg/s bias
can be considered a rejectable offset. Figure 9 shows three
experimental residual PDFs for the following cases with
respect to the p measurement channel: (i) no fault, (ii)
a bias fault with an amplitude of 5 deg/s, (iii) a drift of
2 deg/s2. A threshold around 0.06, which is the output
of the proposed linear optimization problem, nullifies in
practice the occurrence of false alarms with a very low
probability of having missed alarms for the two fault
categories considered.

5.2. Discussion of the results. The observer-based
SFDI scheme was tested on recorded flight data to which

Threshold

B − False Alarm

No Fault
 PDF

Weak Fault
 PDF Strong Fault

 PDF

A − Missed
Alarm

Fig. 7. Example of an ideal residual PDF in the absence of
faults, and in the presence of weak and strong faults. The
value of the threshold for decision making determines
the probability of missed and false alarms (areas A and
B, respectively).

fault signals were artificially added. A total number of
12 faulty cases were considered for the inertial and air data
sensors.

Hereafter we present some of the results, both in
terms of residuals’ time histories, as well as of detection
and isolation of the faults, using the decision making
process described in the previous section.

The residuals, i.e., the outputs of the integrators,
were weighted by the coefficients Li solving the
optimization problem (10). In this way, if the threshold,
set to 1, is exceeded, the SFDI scheme gives a fault
detection alarm.

In Fig. 10 we show the weighted residuals in the
case of a fault on p consisting of a slow drift of 5 deg/s2

occurring at 630 s.
In Fig. 11 we show the weighted residuals in the case

of a fault on ax consisting of a bias simulated as a step of
5 m/s2 occurring at 630 s.

If we compare these results with those obtained in
Section 4, where simulated data were used, we can notice
that the residuals are more coupled in this case. The main
reason is that, since we are now using recorded flight data,
all the unmodelled dynamics and the model uncertainty
are causing the charging of the integrators.

Nevertheless, choosing the thresholds as discussed in
Section 5.1, we were able to detect and isolate the faults
in all the cases. Table 4 shows the time needed to detect
the faults in the twelve cases that were considered for the
inertial and air data sensors.

6. Conclusions

In this paper we presented a scheme for sensor fault
detection and isolation based on analytical redundancy.
The scheme consists of an observer designed using the
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Fig. 8. Residual PDFs computed by means of experimental data
in the absence of faults, and in the presence of weak and
strong biases on p measurements (3 and 5 deg/s2, respec-
tively).

Table 4. Delays in the detection and isolation of the faults for
the various cases considered.

Fault Detection delay [s]
Step on p of 5 deg/s 4.5

Drift on p of 5 deg/s2 2.8

Step on q of 5 deg/s 1.1

Drift on q of 5 deg/s2 2.9

Step on r of 5 deg/s 1.3

Drift on r of 5 deg/s2 1.7

Step on ax of 5 m/s2 6.5

Drift on ax of 2 m/s3 6.2

Step on ay of 5 m/s2 6.5

Drift on ay of 2 m/s3 6.1

Step on az of 5 m/s2 3.6

Drift on az of 2 m/s3 4.5

Kalman filter approach, applied to the nominal nonlinear
plant augmented with a bank of integrators, one for each
sensor that is subject to faults.

One advantage of the proposed scheme is the fact
that it needs only one observer, which is driven by all
the system outputs. If a fault occurs on a generic sensor,
the corresponding integrator starts charging; therefore, the
states of the integrators are assumed as residuals for the
FDI.

The proposed approach was tested both using
simulated data, assuming the presence of noise, external
disturbances and model uncertainties, and using recorded
flight data. It was shown that it can be effectively used to
detect and isolate faults on inertial sensors or on air data
sensors.

Future extensions of the present work will cover the

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0
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2500

3000
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Bias 5 deg/s

Drift 2 deg/s2

Fig. 9. Residual PDFs computed by means of experimental data
in the absence of faults, and in the presence of biases and
drifts on p measurements (amplitudes of 5 deg/s and 2
deg/s2, respectively).

following issues: the behaviour of the observer scheme in
the presence of uncertainties and optimization of the filter
taking into account the presence of wind.
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Appendix

In this appendix we show that, considering a linearized
model of the aircraft, the SFDI scheme proposed in
Section 3 guarantees detection and isolation.

Let us consider the scheme shown in Fig. A1, which
is described by the following equations:

δŷ = G(s)δu+H(s)z1, (A1a)

δym = G(s)δu, (A1b)

yI =
I

s
z2, (A1c)

(
z1
z2

)
=

(
K1

K2

)
(δŷ + yI − δym − d). (A1d)

We are interested in calculating the DC gain of the

Fig. A1. Linearized version of the SFDI scheme.

transfer matrix linking d to yI . Solving Eqn. (A1d) for
z2, we obtain

z2 = K2

[
H(s)(I−K1H(s))−1K1 + I

]
(yI − d)

= K2

[
H(s)K1(I−H(s)K1)

−1 + I
]
(yI − d)

= K2(I−H(s)K1)
−1(yI − d). (A2)

Now, using (A1c), Eqn. (A2) becomes

syI = K2(I−H(s)K1)
−1(yI − d) . (A3)

After some manipulations, assuming that K2 is invertible,
Eqn. (A3) can be solved for yI , which yields

yI = (I− s(I−H(s)K1)K
−1
2 )−1d .

Hence, assuming that the system is asymptotically stable
and letting s = 0, we have that at steady state the DC gain
is equal to the identity matrix I. Therefore, in the case of
faults modelled as step variations, isolation of the fault at
steady state is guaranteed.
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