
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 4, 769–785
DOI: 10.1515/amcs-2015-0055

THE NON–SYMMETRIC S–STEP LANCZOS ALGORITHM: DERIVATION OF
EFFICIENT RECURRENCES AND SYNCHRONIZATION–REDUCING

VARIANTS OF BICG AND QMR

STEFAN FEUERRIEGEL a,∗, H. MARTIN BÜCKER b

aChair for Information Systems Research
University of Freiburg, Platz der Alten Synagoge, 79098 Freiburg, Germany

e-mail: stefan.feuerriegel@is.uni-freiburg.de

bChair for Advanced Computing
Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany

e-mail: martin.buecker@uni-jena.de

The Lanczos algorithm is among the most frequently used iterative techniques for computing a few dominant eigenvalues
of a large sparse non-symmetric matrix. At the same time, it serves as a building block within biconjugate gradient (BiCG)
and quasi-minimal residual (QMR) methods for solving large sparse non-symmetric systems of linear equations. It is well
known that, when implemented on distributed-memory computers with a huge number of processes, the synchronization
time spent on computing dot products increasingly limits the parallel scalability. Therefore, we propose synchronization-
reducing variants of the Lanczos, as well as BiCG and QMR methods, in an attempt to mitigate these negative performance
effects. These so-called s-step algorithms are based on grouping dot products for joint execution and replacing time-
consuming matrix operations by efficient vector recurrences. The purpose of this paper is to provide a rigorous derivation
of the recurrences for the s-step Lanczos algorithm, introduce s-step BiCG and QMR variants, and compare the parallel
performance of these new s-step versions with previous algorithms.

Keywords: synchronization-reducing, s-step Lanczos, s-step BiCG, s-step QMR, efficient recurrences.

1. Rethinking algorithm design

Current large-scale computer systems are sophisticated
architectures based on multi- or manycore technology,
with deep memory hierarchies and possible heterogeneity
in the form of graphic or other coprocessors. For scientific
and engineering applications, it is therefore currently
challenging to achieve a high performance using these
systems. Unfortunately, future extreme-scale computer
systems are likely to become even more complex and so
it will become increasingly hard to achieve a sustained
performance that is somewhere near peak performance.
It is widely recognized that there are various intricate
challenges for future large-scale computing. Today, there
is only a vague idea of how these future platforms will
actually be built and how they will be programmed
efficiently. Rather than summarizing this ongoing

∗Corresponding author

discussion (Cappello et al., 2009; Davis et al., 2012; Duff,
2012; Shalf et al., 2011), we focus on novel algorithmic
techniques that will be required to fully exploit current
large-scale and future exascale systems.

Existing technology trends indicate that algorithm
designers will have to pay crucial attention in order
to reduce data movement at various memory levels
and to reduce synchronization at various system levels.
While the communication costs associated with data
movement have become an important issue in today’s
parallel algorithm design, the cost associated with
synchronization does not currently receive adequate
consideration. However, synchronization costs will
soon outweigh communication costs as the degree of
parallelism increases further. In fact, synchronization
dictates the overall performance of various algorithms
on current large-scale and, in particular, future exascale
systems. Therefore, we address the problem of designing

stefan.feuerriegel@is.uni-freiburg.de
martin.buecker@uni-jena.de

770 S. Feuerriegel and H.M. Bücker

synchronization-reducing variants of popular iterative
Krylov subspace methods that are based on the Lanczos
algorithm (Lanczos, 1950).

The contribution of the present paper is to derive a
new variant of the s-step Lanczos algorithm (Kim and
Chronopoulos, 1992) with a normalization scheme that
improves numerical stability. In contrast to previous
publications, which all lack details on how to obtain
the different underlying recurrences, this paper provides
a thorough derivation. Based on this s-step Lanczos
algorithm, we then introduce synchronization-reducing
variants of two Krylov methods for the solution of large
sparse non-symmetric systems of linear equations. More
precisely, we propose new synchronization-reducing
variants of the biconjugate gradient (BiCG) method
(Fletcher, 1976) and the quasi-minimal residual (QMR)
one (Freund and Nachtigal, 1994), and assess their
numerical stability and parallel scalability. This
publication is an extended version of our previous
conference papers (Feuerriegel and Bücker, 2013a;
2013b) with additional details on the derivation of the
recurrences underlying the s-step Lanczos algorithm. We
also present some new computational experiments.

In this article, we use the following notation. Given
two vectors, their dot product vTw is denoted by 〈v,w〉.
The zero vector of dimension n is given by 0n. The
symbols 0n,m and In,m are used for n × m zero and
identity matrices, respectively. Concatenation of scalar
entries that form a row vector is denoted by [x1, . . . , xn].
Concatenation of vectors or matrices that form a (block)
matrix is indicated by [v1 ‖ . . . ‖ vn].

The paper is organized as follows. After describing
related work in Section 2, we review the classical Lanczos
method in Section 3. In Section 4, we introduce a novel
normalization scheme and the resulting normalized s-step
Lanczos algorithm. The derivation of the new underlying
recurrences is summarized in Section 5 and detailed in
Appendix. Section 6 utilizes the s-step Lanczos algorithm
to derive new synchronization-reducing variants of BiCG
and QMR. In Section 7, the three s-step variants are
compared to their classical versions in terms of both
numerical stability and parallel performance.

2. Parallel Krylov methods

Non-symmetric eigenvalue problems arising from
computational science and engineering are often large
and sparse. When only a few dominant eigenvalues are
required, Krylov subspace methods enter the picture. The
Lanczos algorithm (Lanczos, 1950) is an archetype of
this class of iterative methods. At the same time, it is an
important building block of Krylov subspace methods for
the solution of large sparse systems of linear equations.

When parallelizing the Lanczos or other Krylov
subspace methods on message-passing architectures,

naı̈ve approaches proceed by parallelizing each
underlying linear algebra operation individually.
However, the resulting parallel performance of such
approaches is known to be limited by communication
and synchronization. To overcome this impediment to
parallel scalability, significant research effort is spent
in designing new Krylov algorithms specifically for
parallel computers. The long history of these methods
is described in several surveys (Saad, 1989; van der
Vorst, 1990; Demmel et al., 1993; Duff and van der
Vorst, 1999; Bücker, 2002). A broad classification of
these parallel iterative methods is as follows:

i. Communication-overlapping algorithms aim to
reduce the impact of a communication event by
overlapping it with computation and/or other
communication (Ghysels et al., 2013; Ghysels and
Vanroose, 2014).

ii. Communication-avoiding algorithms rely on
blocking to reduce the volume of communication
(Mohiyuddin et al., 2009; Hoemmen, 2010;
Gustafsson et al., 2012a; Carson et al., 2014).

iii. Synchronization-free algorithms (Fischer and Freund,
1994) do not involve any global synchronization
points (GSPs), defined as the locations of an
algorithm at which all information local to a process
has to be globally available for all processes in order
to continue the computation.

iv. Synchronization-organizing algorithms orchestrate
synchronization in an attempt to curtail the negative
effects caused by global synchronization, for
instance, by handling synchronization hierarchically
(Curfman McInnes et al., 2014) or using
non-blocking all-reduce operations (Kandalla
et al., 2012).

v. Synchronization-reducing algorithms try to minimize
the number of GSPs (Meurant, 1986; Van Rosendale,
1983; Bücker and Sauren, 1996; 1997; 1999; Zuo et
al., 2010; Zhu et al., 2014).

While communication-avoiding algorithms
successfully reduce the communication volume
between processes, they do not directly focus on
the synchronization between processes. However,
synchronization will increasingly dominate the total
execution time of future extreme-scale computer
systems, in which the number of processes will be huge.
Therefore, we focus on a novel synchronization-reducing
Krylov algorithm. Here, a GSP is enforced by
dot product-like operations involving a reduction
operation on all participating processes. When
only a single GSP is enforced for s iterations
of the corresponding classical algorithm, this

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 771

synchronization-reducing algorithm is referred to as
an s-step method (Chronopoulos, 1986; Chronopoulos
and Gear, 1989; Chronopoulos and Swanson, 1996).
The s-step Lanczos procedure was originally introduced
for symmetric matrices (Kim and Chronopoulos, 1991)
and later extended to non-symmetric ones (Kim and
Chronopoulos, 1992).

3. Classical Lanczos method

The classical Lanczos algorithm (Lanczos, 1950) reduces
a non-symmetric N × N matrix A to a tridiagonal
form TN . At the same time, it also produces two matrices,

VN := [v1 ‖ . . . ‖ vN] ∈ R
N×N (1)

and
WN := [w1 ‖ . . . ‖wN] ∈ R

N×N , (2)

whose columns vn and wn are called Lanczos vectors.
For the sake of notational simplicity, we assume here that
the iteration proceeds up to step N whereas, in practice, it
should stop after significantly fewer steps.

Definition 1. (Classical Lanczos algorithm) For a
given non-symmetric matrix A ∈ R

N×N , the Lanczos
algorithm generates a tridiagonal matrix TN ∈ R

N×N and
matrices VN ∈ R

N×N and WN ∈ R
N×N such that

WT
NVN = IN,N (biorthonormality), (3)

AVN = VNTN , (4)

ATWN = WNT T
N . (5)

The classical Lanczos algorithm summarized in
pseudocode in Algorithm 1 is based on three-term
recurrences. That is, the execution of n iterations of this
algorithm generates the tridiagonal matrix,

Tn :=

⎡
⎢⎢⎢⎢⎣

α1 β2

γ2 α2
. . .

. . .
. . . βn

γn αn

⎤
⎥⎥⎥⎥⎦
, (6)

which is the n × n leading principle submatrix of TN .
Thus, (4) indicates that the next Lanczos vector, vn+1,
involves a matrix-vector product with the matrix A
and computations dependent solely on the two previous
Lanczos vectors, vn and vn−1. The resulting three-term
recurrences are given in Step 4 of this algorithm.

In this algorithm, there are two dot products
in Steps 3 and 5, both of which enforce a GSP.
In other words, each iteration requires two separate
synchronizations of all processes that execute this
algorithm. In particular, the result of the first GSP, αn,
needs to be available before the computation of the second
GSP begins.

Algorithm 1. Classical Lanczos algorithm.

Input: Non-symmetric matrix A ∈ R
N×N , as well as

starting vectors v1,w1 ∈ R
N , with wT

1 v1 = 1.
Output: After n iterations, the algorithm returns a

tridiagonal matrix Tn = tridiag(γ, α, β) ∈ R
n×n

with diagonals γ = (γ2, . . . , γn), α = (α1, . . . , αn),
and β = (β2, . . . , βn), as well as the Lanczos basis
Vn = [v1 ‖ . . . ‖ vn] ∈ R

N×n.

1: Initialize vectors v0 ← 0N and w0 ← 0N and set
scalars β1 ← 0 and γ1 ← 0.

2: for n = 1 until Convergence do
3: Compute αn = wT

nAvn with global synchroniza-
tion.

4: Compute

ṽn+1 = Avn − αnvn − βnvn−1,

w̃n+1 = ATwn − αnwn − γnwn−1.

5: Choose γn+1 and βn+1 such that

γn+1βn+1 = w̃T
n+1ṽn+1

with global synchronization.
6: Scale the Lanczos basis via

vn+1 =
1

γn+1
ṽn+1 and wn+1 =

1

βn+1
w̃n+1.

7: end for

In practice, different versions of the classical
Lanczos algorithm are typically preferred over
Algorithm 1. One of the reasons is that Algorithm 1
allows the scaling of only one of the sequences of
Lanczos vectors, either vn or wn. However, to control
the numerical stability, one would like to scale both to,
say,

‖vn‖2 = 1 and ‖wn‖2 = 1. (7)

This is accomplished by replacing the identity in (3) by
a diagonal matrix whose nonzero elements are used to
scale the second sequence of Lanczos vectors. In addition,
there is another version of this algorithm that involves an
LU decomposition of the tridiagonal matrix (6) leading to
coupled two-term recurrences (Gutknecht, 1997).

4. s-Step Lanczos method

A single block iteration of the non-symmetric s-step
Lanczos algorithm introduced by Kim and Chronopoulos
(1992) generates s iterations of the classical Lanczos
algorithm using only a single GSP. Rather than computing
a pair of individual Lanczos vectors vk and wk, the k-th
block iteration of the s-step Lanczos algorithm computes

772 S. Feuerriegel and H.M. Bücker

a pair of blocks of s Lanczos vectors denoted by

V k :=
[
v1
k ‖ . . . ‖ vs

k

] ∈ R
N×s (8)

and
W k :=

[
w1

k ‖ . . . ‖ws
k

] ∈ R
N×s. (9)

After presenting an overview of the algorithm, we
introduce a normalization scheme and present the results
of the underlying orthogonalization process.

4.1. High-level overview. The s-step Lanczos method
proceeds in two steps. First, relaxed Lanczos vectors are
computed in a block-wise fashion. In each block iteration,
a new block containing s of these vectors as columns is
computed. Second, a back transformation is applied to
these vectors. The overall structure of the algorithm is
schematically depicted as follows:

A T̈n, V̈n

Tn, Vn

relaxation via
s-step Lanczos

classical
Lanczos

back transformation
with LU decomposition

The following definition summarizes important
facts of the s-step Lanczos algorithm using the block
formulation of the Lanczos vectors (8) and (9), as well
as a corresponding block notation for matrices.

Definition 2. (s-Step Lanczos algorithm) Let n = sk
with 1 ≤ n ≤ N . For a given non-symmetric matrix A ∈
R

N×N , the s-step Lanczos algorithm generates an upper
Hessenberg matrix T̈n ∈ R

n×n, as well as two additional
matrices V̈n ∈ R

N×n and Ẅn ∈ R
N×n, such that

ẄT
n V̈n = block biorthogonal, (10)

AV̈n = V̈nT̈n + fk+1v
1
k+1 [0, . . . , 0, 1] , (11)

AT Ẅn = ẄnT̈n + fk+1w
1
k+1 [0, . . . , 0, 1] . (12)

The upper Hessenberg matrix T̈n is block tridiagonal,

T̈n :=

⎡
⎢⎢⎢⎢⎣

G1 E2

F 2 G2
. . .

. . .
. . . Ek

F k Gk

⎤
⎥⎥⎥⎥⎦
∈ R

n×n, (13)

with a nonzero in the upper right corner of the block,

F i =

[
fi
]
∈ R

s×s, (14)

while each Ei is a dense s×s matrix, and each Gi ∈ R
s×s

is in upper Hessenberg form. The block-wise grouping of
the relaxed Lanczos vectors is given by

V̈n :=
[
V 1 ‖ . . . ‖V k

] ∈ R
N×n, (15)

Ẅn :=
[
W 1 ‖ . . . ‖W k

] ∈ R
N×n. (16)

When implemented, the s-step Lanczos algorithm
iterates k = n/s block iterations yielding both T̈n and V̈n.
It then turns T̈n and V̈n into the matrices Tn and Vn from
the classical Lanczos procedure. This back transformation
is sketched in the following theorem.

Theorem 1. Let ẄT
n V̈n be a non-singular matrix and let

ẄT
n V̈n = L̈nÜn (17)

denote its LU decomposition. Then, T̈n, V̈n and Ẅn can
be transformed into Tn, Wn and Vn, originating from the
classical Lanczos method in the absence of breakdowns:

Tn = ÜnT̈nÜ
−1
n , (18)

Vn = V̈nÜ
−1
n , (19)

WT
n = L̈−1

n ẄT
n . (20)

Proof. See the work of Kim and Chronopoulos (1992).
�

4.2. Normalization scheme. The original s-step
Lanczos algorithm (Kim and Chronopoulos, 1992)
implemented in double precision floating-point arithmetic
can involve a numerical overflow. More precisely, we
observed that the floating-point values in ẄT

n V̈n can grow
rapidly. To reduce the possibility of numerical overflow,
we introduce the normalization scheme

ṽ1
k+1 := fk+1v

1
k+1, (21)

w̃1
k+1 := fk+1w

1
k+1, (22)

where

fk+1 :=
√∣∣〈w̃1

k+1, ṽ
1
k+1〉

∣∣. (23)

Thus, we have

〈w1
k+1,v

1
k+1〉 = ±1. (24)

This differs from the version of Kim and Chronopoulos
(1992), in which any normalization is avoided,
corresponding to fk+1 := 1 in the new scheme. In
addition to this normalization scheme, it turns out that it
is also convenient to normalize ṽj

k+1 and w̃j
k+1, such that

〈wj
k+1,v

j
k+1〉 = ±1 for j = 2, . . . , s (25)

holds. Therefore, we scale the Lanczos vectors by

vj
k+1 = σj

k+1ṽ
j
k+1 for j = 2, . . . , s (26)

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 773

wj
k+1 = σj

k+1w̃
j
k+1 for j = 2, . . . , s, (27)

where the scaling factors are given by

σj
k+1 := |〈w̃j

k+1, ṽ
j
k+1〉|

− 1
2 for j = 2, . . . , s. (28)

This normalization scheme requires a new derivation
of the underlying recurrences in Section 5 since these
differ from the recurrences of Kim and Chronopoulos
(1992). The resulting s-step Lanczos algorithm is
depicted in Algorithm 2. Here, each block iteration k
generates two blocks of s Lanczos vectors. The first
Lanczos vector in each block is computed by a recurrence
involving Lanczos vectors from the two previous blocks
shown in (30) and (31). The remaining s − 1 Lanczos
vectors in each block are computed in (32) and (33).
The computation of the Lanczos vectors involves the
coefficient vectors gs

k, esk and t2k, t
3
k, . . . , t

s
k that need to

be chosen to satisfy the block biorthogonality condition
(10). The LU decomposition in Step 16, as well as
the back transformation in Step 17, workS on the data
from the current block iteration. For instance, since by
(10) the matrix ẄT

skV̈sk is block diagonal, only an LU
decomposition of the s× s matrix

Mk := W
T

k V k (29)

has to be carried out in Step 16.
Finally, consider a block iteration of Algorithm 2 that

computes a pair of s Lanczos vectors. We emphasize that
each block iteration requires only a single GSP in Step 7.

4.3. Orthogonalizing the s-step Lanczos basis. The
coefficient vectors esk, gi

k, and tjk are chosen to satisfy the
biorthogonality (10). This is achieved by solving systems
of linear equations with the coefficient matrix (29) that is
assumed to be non-singular. The following theorem states
the properties of the coefficient vectors.

Theorem 2. The vectors eik, gi
k and tjk with i = 1, . . . , s

and j = 2, . . . , s are given by the solutions of the follow-
ing s× s systems of linear equations:

Mk−1e
i
k = cik,

where

cik :=
[〈w1

k−1, Av
i
k〉, . . . , 〈ws

k−1, Av
i
k〉
]T

, (34)

Mkg
i
k = di

k,

where

di
k :=

[〈w1
k, Av

i
k〉, . . . , 〈ws

k, Av
i
k〉
]T

, (35)

Mkt
j
k = bjk,

where

bjk :=
[〈w1

k, A
j−1v1

k+1〉, . . . , 〈ws
k, A

j−1v1
k+1〉

]T
. (36)

Algorithm 2. Synchronization-reducing s-step Lanczos.

Input: Non-symmetric matrix A ∈ R
N×N , starting vectors

v1
1,w

1
1 ∈ R

N with v1
1 = w1

1 and parameter s.
Output: After k = n/s block iterations, return a tridiagonal

matrix Tn ∈ R
n×n and Lanczos basis Vn ∈ R

N×n.
1: Initialize V 0 ← 0N,s and W 0 ← 0N,s and compute

V 1 ←
[
v1
1 ‖Av1

1 ‖ . . . ‖As−1v1
1

]
,

W 1 ←
[
w1

1 ‖ATw1
1 ‖ . . . ‖ (AT)

s−1
w1

1

]
.

2: Compute dot products 〈w1
1, A

jv1
1〉 for j = 0, . . . , 2s − 1.

3: for k = 1 until Convergence do
4: Compute M

i,j
k , csk and di,j

k for i = 1, . . . , s and j =
1, . . . , s using efficient recurrences from Theorem 3.

5: Solve Mk−1e
s
k = csk and Mkg

s
k = ds

k.
6: Orthogonalize ṽ1

k+1 against W k and w̃1
k+1 against V k

by

ṽ1
k+1 ← Avs

k − V k−1e
s
k − V kg

s
k, (30)

w̃1
k+1 ← ATws

k −W k−1e
s
k −W kg

s
k. (31)

7: Compute 2 s dot products 〈w̃1
k+1, A

j ṽ1
k+1〉 for j =

0, . . . , 2s − 1 with global synchronization.
8: Compute normalization coefficient

fk+1 ←
√∣∣〈w̃1

k+1, ṽ
1
k+1〉

∣∣.

9: Carry out normalization

v1
k+1 ← ṽ1

k+1/fk+1 and w1
k+1 ← w̃1

k+1/fk+1.

10: Normalize, for j = 0, . . . , 2s− 1, via

〈w1
k+1, A

jv1
k+1〉 ← 〈w̃1

k+1, A
j ṽ1

k+1〉
/

f2
k+1.

11: Compute bjk for j = 2, . . . , s + 1 using efficient recur-
rences from Theorem 3.

12: Solve Mkt
j
k = bjk for j = 2, . . . , s.

13: Orthogonalize
[
Av1

k+1 ‖ . . . ‖As−1v1
k+1

]
against

W k and the block
[
ATw1

k+1 ‖ . . . ‖ (AT)
s−1

w1
k+1

]

against V k by

ṽj
k+1 ← Aj−1v1

k+1 − V kt
j
k, j = 2, . . . , s (32)

w̃j
k+1 ← (AT)

j−1
w1

k+1 −W kt
j
k, j = 2, . . . , s. (33)

14: Compute normalization coefficients σj
k+1 for j =

2, . . . , s using efficient recurrences from Theorem 3.
15: Normalize, for j = 2, . . . , s, via

vj
k+1 ← ṽj

k+1σ
j
k+1 and wj

k+1 ← w̃j
k+1σ

j
k+1.

16: Update LU decomposition of L̈skÜsk ← Ẅ T
skV̈sk.

17: Update back transformation

Tsk ← ÜskT̈skÜ
−1
sk , Vsk ← V̈skÜ

−1
sk ,

W T
sk ← L̈−1

sk Ẅ T
sk.

18: end for

774 S. Feuerriegel and H.M. Bücker

Proof. Given by Feuerriegel and Bücker (2013a), as well
as Kim and Chronopoulos (1992). �

The solution of these small and dense linear
systems is computationally affordable. The next section
summarizes the implementation details for setting up the
coefficient matrices and the right-hand sides.

5. Deriving efficient recurrence equations

Computing the right-hand side vectors bjk, cjk, dj
k and the

coefficient matrix Mk explicitly for all relevant j’s is not
only a computationally expensive task, but also involves
a considerable number of dot products. In fact, the
evaluation of these dot products would destroy the benefits
of the s-step approach instantly. Fortunately, there is
a remedy to this problem which consists in retrieving
these products recursively from the 2 s dot products
〈w1

k,v
1
k〉, 〈w1

k, Av
1
k〉, . . . , 〈w1

k, A
2s−1v1

k〉, as stated in
the following theorem. These dot products introduce the
only GSP per block iteration.

Throughout this article, the symbols bi,jk , ci,jk , di,j
k ,

gi,j
k and ti,jk denote the i-th element of the vectors bjk, cjk,

dj
k, gj

k and tjk, respectively. The symbol M
i,j

k denotes the
matrix element of Mk at row i and column j.

Theorem 3. (Efficient recurrences) The scaling factors
(28), as well as the coefficient matrices and the right-hand
sides involved in Theorem 2, are given as follows, where
we define σ1

k := 1 and use the indices i = 1, . . . , s:

σj
k = |〈w1

k, A
2j−2v1

k〉 − (tjk−1)
T
Mk−1t

j
k−1|−

1
2

for j = 2, . . . , s,

M
i,j

k = σi
kσ

j
k

[〈w1
k, A

i+j−2v1
k〉 −

(
tik−1

)T
Mk−1t

j
k−1

]

for j = 1, . . . , s,

bi,jk =
σi
k

σs
k

[
〈fk+1w

1
k+1, A

i+j−s−2v1
k+1〉

+

s∑
ι=2s

+3−i−j

σι
kg

ι,s
k bi−s+ι−1,j

k

σi−s+ι−1
k

]
for j = 2, . . . , s+ 1,

cj,sk = 0 for j = 1, . . . , s− 1,

cs,sk = σs
k

[
bs,s+1
k−1 −

[
ds,1
k−1, . . . ,d

s,s
k−1

]
tsk−1

]
,

di,j
k = σi

kσ
j
k

[
〈w1

k, A
i+j−1v1

k〉
− (

ti+1
k−1

)T
Mk−1t

j
k−1 −

(
tik−1

)T
Mk−1t

j+1
k−1

+
(
tik−1

)T [
d1
k−1 ‖ . . . ‖ds

k−1

]
tjk−1

]

for j = 1, . . . , s.

Proof. See Appendix. �

Table 1 compares the main computational cost for
n = sk iterations of the classical Lanczos algorithm,

Algorithm 1, and k block iterations of two s-step variants.
The first s-step variant is the one without normalization
introduced by Kim and Chronopoulos (1992), while the
second is the one proposed in Algorithm 2. Recall that
the latter requires only a single GSP per block iteration.
This table reports the number of operations, as well as
vector storages of size N , neglecting all corresponding
costs of vectors of dimension s. Though the s-step
variants slightly raise the computational cost, they reduce
the number of GSPs by a factor of O (s).

6. s-Step BiCG and QMR methods

The Lanczos algorithm is now used to design Krylov
subspace methods for the solution of linear systems.
The aim of this section is to derive new synchro-
nization-reducing s-step variants of BiCG and QMR.

6.1. Solving linear systems using the Lanczos basis.
The Lanczos basis Vn ∈ R

N×n generated by any Lanczos
algorithm can be used to iteratively solve non-symmetric
systems of linear equations,

Ax = b,

where x, b ∈ R
N . Given an initial guess x0 to the exact

solution x, the current approximation is given by

xn = x0 + Vnzn, (37)

where the coefficient vector zn ∈ R
n needs to be

determined. For reasons of numerical stability, we will
also use another basis,

Pn = [p1 ‖ . . . ‖pn] ∈ R
N×n,

defined by
Vn = PnUn.

Here, Un is the n×n unit upper triangular factor from the
LU decomposition of the (n+ 1)× n tridiagonal matrix,

Tn :=

[
Tn

0 . . . 0 γn+1

]
,

which is obtained from appending another row at the
bottom of the tridiagonal matrix Tn defined in (6). This
LU decomposition,

LnUn

=

⎡
⎢⎢⎢⎢⎢⎢⎣

τ1

ω2 τ2
. . .

. . .
ωn τn

ωn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 μ2

1
. . .
. . . μn

1

⎤
⎥⎥⎥⎥⎦
,

(38)

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 775

Table 1. Comparison of cost for n = sk iterations of the classical Lanczos algorithms and k block iterations of the synchronization-
reducing s-step Lanczos variants.

Operation/Storage Classical Unnormalized s-step Normalized s-step
(Algorithm 1) (Kim and Chronopoulos, 1992) (Algorithm 2)

Dot products (of length N) 2 sk 2 sk 2 sk
Vector updates (of length N) 6 sk 2 s(s− 1)k + 4 sk 2 s(s− 1)k + 8 sk − k
Matrix-vector products 2 sk 2 sk + k 2 sk + k
Synchronization points O (sk) k k
Back transformations — 2k 2k
Vector storage (of length N) 4 4 s 4 s

is computed for n ≥ 2 via

ωn = γn, (39)

μn = βn/τn−1, (40)

τn = αn − ωnμn with τ1 := α1. (41)

Recall from Section 3 that this LU decomposition is the
basic building block of the Lanczos variant based on
coupled two-term recurrences. We will use this variant
in the remainder of the paper because it has a better
reputation in terms of numerical stability.

From the structure of Un according to (38), we find

pn = vn − μnpn−1. (42)

Furthermore, the relation of this formulation based on
coupled-two term recurrences to the corresponding one
based on three-term recurrences is given by

APn = Vn+1Ln. (43)

Now, we replace the vector zn in (37) by the
n-dimensional coefficient vector

yn := Unzn

and arrive at
xn = x0 + Pnyn. (44)

The residual vector defined by

rn := b−Axn

is then, using (43), transformed into

rn = r0 −APnyn = ω1v1 − Vn+1Lnyn

= Vn+1

(
[ω1, 0, . . . , 0]

T − Lnyn

)
, (45)

where v1 := r0/ω1 with a scaling factor ω1 := ‖r0‖2.

6.2. Synchronization-reducing s-step biconjugate
gradient algorithm. The idea of BiCG (Fletcher, 1976)
is to determine the coefficient vector yn by zeroing out the
first n entries of the vector in parentheses in (45). More

precisely, if the symbol • denotes an arbitrary value in the
(n + 1)-th component of that vector, we require that this
vector satisfy

[ω1, 0, . . . , 0]
T − Lnyn = [0, . . . , 0, •]T . (46)

Let yn = [κ1, . . . , κn]
T denote the entries of the

coefficient vector. Inserting this ansatz into (45) gives

rn = Vn+1[0, . . . , 0,−ωn+1κn]
T

= −ωn+1κnvn+1.

Assuming that (46) is fulfilled in the first n − 1
components, we find for the (n− 1)-th component of (46)
that

0 = −ωnκn−1 − τnκn.

Hence

κn = −ωnκn−1

τn
with κ0 := −1. (47)

The process of fixing yn is easily updated in each
iteration step because yn−1 coincides with the first n− 1
components of yn; more precisely,

yn =

[
yn−1

κn

]
.

Thus, from (44), the n-th approximation is obtained via

xn = x0 + Pn−1yn−1 + κnpn = xn−1 + κnpn. (48)

We now let Algorithm 2 generate the Lanczos
basis Vn and put together (39)–(41), (42), (47), and (48).
The pseudocode of the resulting synchronization-reducing
s-step BiCG is presented in Algorithm 3. The k-th
block iteration of the s-step BiCG algorithm computes s
Lanczos vectors and updates the LU decomposition of Tn

from (38) with n = sk. Throughout the s-step BiCG
algorithm, the call to the s-step Lanczos method in Step 3
introduces the only GSP per block iteration.

6.3. Synchronization-reducing s-step quasi-minimal
residual algorithm. The idea of QMR (Freund and
Nachtigal, 1991; 1994) is to find the coefficient vector

776 S. Feuerriegel and H.M. Bücker

Algorithm 3. Synchronization-reducing s-step BiCG.

Input: Non-symmetric matrix A ∈ R
N×N , right-hand

side b ∈ R
N , initial guess x0 ∈ R

N and parameter s.
Output: After k = n/s block iterations, the algorithm

returns an approximation xn to the solution A−1b.
1: Initialize vectors r0 ← b − Ax0, v1 ← r0/ ‖r0‖2,

p1 ← v1 and set scalars κ0 ← −1, ω1 ← ‖r0‖2,
μ1 ← 0, and τ1 ← α1 where α1 is taken from the
Lanczos process initialized with w1

1 ← v1
1.

2: for k = 1 until Convergence do
3: Compute next s Lanczos vectors vs(k−1)+1,

. . ., vsk as well as next entries in T sk, i.e.,
αs(k−1)+1, . . . , αsk, βs(k−1)+1, . . . , βsk,
γs(k−1)+1, . . . , γsk.

4: for n = s(k − 1) + 1 to sk do
5: Update LU decomposition of T sk via ωn ← γn,

μn ← βn/τn−1, τn ← αn − ωnμn.
6: Compute vector pn ← vn − μnpn−1.
7: Set κn ← −ωnκn−1/τn and compute

approximation xn ← xn−1 + κnpn.
8: end for
9: end for

yn by minimizing the Euclidean norm of the vector
in parentheses in (45). To solve these least-squares
problems, we follow Sauren and Bücker (1998) as stated
in the subsequent Theorem 4.

Theorem 4. The unique solution of

yn := arg min
y∈Rn

∥∥∥[ω1, 0, . . . , 0]
T − Lny

∥∥∥
2

(49)

is given by the recurrences

yn =

[
yn−1

0

]
+ gn, (50)

gn = θn

[
gn−1

0

]
+ [0, . . . , 0, ξn]

T , n ≥ 2, (51)

with y1 = g1 = [ξ1], where

θn =
|τn|2 (1− σn)

σn |τn|2 + |ωn+1|2
, (52)

ξn = − ωnτnξn−1

σn |τn|2 + |ωn+1|2
, ξ0 = −1, (53)

σn+1 =
σn |τn|2

σn |τn|2 + |ωn+1|2
, σ1 = 1. (54)

The current approximation is given by

xn = xn−1 + dn, (55)

where dn = θndn−1 + ξnpn.

Again, we let Algorithm 2 generate the Lanczos
basis Vn and put together the equations from Theorem 4.
The resulting s-step QMR algorithm is given by the
pseudo-code in Algorithm 4. Once more, the invocation

Algorithm 4. Synchronization-reducing s-step QMR.

Input: Non-symmetric matrix A ∈ R
N×N , right-hand

side b ∈ R
N , initial guess x0 ∈ R

N and parameter s.
Output: After k = n/s block iterations, the algorithm

returns an approximation xn to the solution A−1b.
1: Initialize vectors r0 ← b − Ax0, v1 ← r0/ ‖r0‖2,

p1 ← v1, d0 ← 0N and set scalars ξ0 ← −1, σ1 ←
1, ω1 ← ‖r0‖2, μ1 ← 0, and τ1 ← α1, where α1 is
taken from the Lanczos process initialized withw1

1 ←
v1
1.

2: for k = 1 until Convergence do
3: Compute next s Lanczos vectors vs(k−1)+1,

. . . ,vsk, as well as next entries in T sk, i. e.,
αs(k−1)+1, . . . , αsk , βs(k−1)+1, . . . , βsk,
γs(k−1)+1, . . . , γsk.

4: for n = s(k − 1) + 1 to sk do
5: Update LU decomposition of T sk via

ωn ← γn, μn ← βn/τn−1, τn ← αn−ωnμn.
6: Compute vector pn ← vn − μnpn−1.

7: θn ← |τn|2(1−σn)

σn|τn|2+|ωn+1|2 ,

ξn ← − ωnτnξn−1

σn|τn|2+|ωn+1|2 ,

σn+1 ← σn|τn|2
σn|τn|2+|ωn+1|2 .

8: Compute dn ← θndn−1 + ξnpn and
approximation xn ← xn−1 + dn.

9: end for
10: end for

of the s-step Lanczos subroutine in Step 3 represents the
only GSP per block iteration.

7. Numerical experiments

This section compares classical and synchronization-
reducing s-step variants of Lanczos, BiCG and QMR in
terms of numerical accuracy and parallel performance,
using an example by Freund and Nachtigal (1991). We
consider the differential equation

−Δu+ 40 (xux + yuy + zuz)− 250 u = f (56)

on Ω = (0, 1) × (0, 1) × (0, 1) with u = 0 on the
boundary. Using first-order centered differences and 3

√
N

discretization points in each direction, we arrive at a linear
system of order N . The right-hand side f(x, y, z) is
determined such that the vector of all ones is the exact
solution. The initial guess is set to x0 := 0N .

To this end, we carried out a parallel implementation
of the Lanczos algorithm using PETSC (Balay et al.,
1997) and included it as an additional eigenvalue solver

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 777

16 32 64 128 256 512

0

2

4

6

·10−4

0.22

1.61

3.38

4.94

5.97

7.26

Number of processes p

B
ar

ri
er

tim
e

in
s

Fig. 1. Barrier time versus number of processes on the Nehalem-based cluster.

inside SLEPC (Hernandez et al., 2005). Both s-step
BiCG and QMR are implemented in parallel using
PETSC 3.0 and compared to their classical variants
implemented in PETSC. We use a block Jacobi
preconditioner and choose N = 224 since PETSC

recommends at least 10 000 to 20 000 unknowns per
process. All computations are performed on a Ne-
halem-based cluster1 whose barrier times measured via
PETSC are given in Figure 1. A synchronization
with a reduction operation accounts for an average of
5.97× 10−4 s with 256 processes and 7.26× 10−4 s with
512 processes.

7.1. Synchronization-reducing s-step Lanc-
zos algorithm. Figure 2 compares the Lanczos
implementations. All algorithms are started with

v1
1 = w1

1 = [1, . . . , 1]T . (57)

The diagram shows the convergence history of the error
of the biorthogonality property of A. The deviation of the
unnormalized 2-step variant exceeds 100 from iteration 6
onwards and the algorithm breaks down at iteration 45
with a numerical overflow. The normalized 2-step variant
competes well until iteration 35 with a deviation below
100. However, when increasing s to s = 5, the divergence
of the normalized variant already starts around iteration 33
with a deviation above 100. The tendency for growing
numerical instabilities when s is increased is well known
(Carson and Demmel, 2014; Kim, 2010).

Previous research (Gustafsson et al., 2012b; Kim and
Chronopoulos, 1992; Kim and Kim, 2005) has already
demonstrated that, compared with the classical algorithm,
execution time is reduced by the unnormalized s-step
algorithm. As a result, we excluded the unnormalized
s-step method from the analysis and only remark that

1Each node of this cluster at RWTH Aachen University, Germany,
consists of 2 sockets, each equipped with Intel Xeon X5570 quadcore
processors running at 2.93GHz. Each core has a separate L1 and L2
cache, while 4 cores share an L3 cache of size 8 MB. So each node of
this cluster is made up of 8 cores called processes hereafter. The nodes
are connected by a quad data rate InfiniBand network.

the parallel performance characteristics of the normalized
and unnormalized variants are almost identical. The
focus is instead upon the parallel performance of the
normalized s-step Lanczos algorithm. We compared
the new normalized s-step variant to the classical one
implemented in SLEPC. When spurious eigenvalues
are present, the Lanczos process can converge to wrong
values. This behavior appears at the same time as when
the Lanczos vectors start to lose biorthogonality. As a
possible remedy, one can apply so-called reorthogonaliza-
tion, which is supported by our SLEPC implementation;
see the work of Feuerriegel and Bücker (2013a) for more
details.

Figure 3 compares the relative (left) and absolute
(right) time savings per iteration when using the
normalized s-step variant instead of the classical
algorithm. Here, reorthogonalization is not used. The
s-step algorithm performs slower than the classical
algorithm for p = 8 and p = 16 processes. However,
in this case it performs faster for both p = 32 and
p = 64 processes. With 64 processes, for instance,
the corresponding time saving per iteration accounts for
0.0042 s or 16.39%, respectively.

7.2. Numerical accuracy of synchronization-reducing
linear solvers. In exact arithmetic, the s-step variants
and their classical counterparts are mathematically
equivalent. However, their numerical behavior can differ
in finite-precision arithmetic. The relative residual norm
for BiCG is plotted against the iteration number in
Figure 4. The corresponding convergence behavior for
QMR is shown in Figure 5. The findings are as follows:
(i) the relative residual norms for classical and s-step
algorithms are similar, (ii) an increasing iteration index n
augments the numerical discrepancy between s-step and
classical solvers, (iii) numerical instabilities grow with
an increase in step size s—as the s-step Lanczos basis
becomes more unstable, it can even result in the possibility
of a breakdown.

778 S. Feuerriegel and H.M. Bücker

0 10 20 30 40 50 60 70 80 90 100
10−16

10−3

1010

100

Iteration index n

∥ ∥ ∥
W

T n
V
n

−
Id

e
n
t
it
y
∥ ∥ ∥
2

Classical
Unnormalized 2-step
Normalized 2-step
Normalized 5-step

Fig. 2. Convergence history of the biorthogonality property for the classical algorithm, as well as for the unnormalized and the nor-
malized s-step Lanczos variant.

−60

−40

−20

0

20

p
=

8

p
=

1
6

p
=

3
2

p
=

6
4Ti

m
e

Sa
vi

ng
s

fr
om

s
-s

te
p

L
an

cz
os

in
%

−2

0

2

4

·10−3

p
=

8

p
=

1
6

p
=

3
2

p
=

6
4

Ti
m

e
Sa

vi
ng

s
fr

om
s

-s
te

p
L

an
cz

os
in

s

Fig. 3. Relative (left) and absolute (right) time savings per iteration, when using the normalized s-step variant instead of the classical
algorithm. We choose N = 4096, s = 2 and vary the number of processes p.

7.3. Parallel performance of synchronization-
reducing linear solvers. Figure 6 compares the ratio
of the total time that is spent on various linear algebra
operations. Due to barrier operations arising from GSPs,
one would expect a gradual increase in the proportional
influence of inner products. For the classical BiCG, the
percentage of the total time resulting from inner products
grows from around 12% for 64 processes to almost 47%
for 512 processes. For the 2-step BiCG, however, there is
only a moderate rise from approximately 8% to 13% when
varying the processes from 64 to 512. As almost half of
the total computation time using 512 processes is spent on
the evaluation of inner products, the scalability to a large
number of processes is limited for the classical BiCG. The
2-step BiCG variant scales significantly better.

Figure 7 compares the same linear algebra operations
in terms of their absolute time consumption. The overall
runtime of the classical BiCG is affected by inner products
to a large extent. In contrast, the 2-step BiCG computes
all inner products in less time. With 512 processes,
the classical BiCG needs 0.76 s for computing all inner
products, whereas the 2-step BiCG needs only 0.17 s.

In Fig. 8, the average speedup for a single iteration

is depicted. With an increasing number of processes, the
speedup of both s-step solvers, BiCG and QMR, ascends
more linearly when compared to the classical variants
that begin to flatten out. Measurements for step sizes
s > 2 are unavailable for more than 256 processes due
to breakdowns. As a trend, however, we conclude that,
given a network with a relatively time-consuming barrier
operation, the scalability of the new s-step variants is
significantly improved in comparison with the classical
algorithms.

8. Concluding remarks

The purpose of s-step methods is to reduce the number
of global synchronization points on distributed-memory
computers by a factor of O (s). Rather than carrying
out s separate iterations of a traditional method, these
methods rely on using a single block iteration that is
equivalent in increasing the dimension of the Krylov
subspace, i.e., by restructuring the original algorithms
in such a way that multiple inner products are grouped
for joint execution. We derive a new s-step Lanczos
algorithm with normalization of the underlying Krylov

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 779

0 10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

101

‖b
−

A
x

n
‖ 2

‖b
−

A
x

0
‖ 2

Classical BiCG
2-step BiCG
3-step BiCG
4-step BiCG
5-step BiCG

0 10 20 30 40 50

10−2

10−1

100

101

Iteration index n

‖b
−

A
x

n
‖ 2

‖b
−

A
x

0
‖ 2

Fig. 4. Comparison of the classical BiCG method and s-step variants across different step sizes without (top) and with block Jacobi
(bottom) preconditioning using two processes.

0 10 20 30 40 50 60 70 80
10−2

10−1

100

‖b
−

A
x

n
‖ 2

‖b
−

A
x

0
‖ 2

Classical QMR
2-step QMR
3-step QMR
4-step QMR
5-step QMR

0 10 20 30 40

10−2

10−1

100

Iteration index n

‖b
−

A
x

n
‖ 2

‖b
−

A
x

0
‖ 2

Fig. 5. Comparison of the classical QMR method and s-step variants across different step sizes without (top) and with block Jacobi
(bottom) preconditioning using two processes.

basis using efficient recurrences. Numerical experiments
indicate that this new normalized s-step variant—like
the previous unnormalized s-step one—is more scalable
than the traditional Lanczos algorithm. In addition,
this new normalized variant exhibits improved numerical
accuracy compared to a previous unnormalized variant.
Consequently, this s-step Lanczos algorithm shows a
possible path to advance parallel scalability on current
large-scale and future extreme-scale supercomputers.

However, there is still room for further improvement.
Most notably, the numerical stability tends to decrease
with an increase in s. Future work is necessary to
investigate promising remedies, such as the use of a
basis that is different from the monomial basis (Carson
et al., 2014). Another viable alternative is to introduce
residual replacement strategies (Carson and Demmel,
2014; van der Vorst and Ye, 2000). The techniques

addressed by Gustafsson et al. (2012a) might also further
improve the numerical stability. In addition, look-ahead
techniques (Freund and Nachtigal, 1991; 1994; Freund
and Hochbruck, 1991; 1992) are advantageous in
preventing breakdowns.

Acknowledgment

Parts of this research were conducted while the
authors were in residence at the Institute for Scientific
Computing, the Center for Computational Engineering
Science, and the Aachen Institute for Advanced Study
in Computational Engineering Science at RWTH Aachen
University, Germany. Financial support from Deutsche
Forschungsgemeinschaft (German Research Foundation)
through the grant GSC 111 is gratefully acknowledged.

780 S. Feuerriegel and H.M. Bücker

64 128 256 512
0

20

40

60

80

100

11.7

21.9

32.5

47.0

Number of processes p

Pr
op

or
tio

na
lt

im
e

in
%

64 128 256 512
0

20

40

60

80

100

64
7.9

128
9.2

256
8.8 0

13.0

〈v,w〉 v + w Av & AT v

Classical BiCG 2-step BiCG

Fig. 6. Proportional time spent in linear algebra operations measured across 200 iterations including initialization for the classical
BiCG (left) and the s-step BiCG method (right).

64 128 256 512
0

2

4

6

8

0
1.2

128
0.9

256
0.8

512
0.8

Number of processes p

C
om

pu
ta

tio
n

tim
e

in
s

64 128 256 512
0

5

10

1.0
0.5 0.2

0
0.2

〈v,w〉 v + w Av & AT v

Classical BiCG 2-step BiCG

Fig. 7. Total time spent in linear algebra operations measured across 200 iterations including initialization for the classical BiCG (left)
and the s-step BiCG method (right).

References
Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F. (1997).

Efficient management of parallelism in object oriented
numerical software libraries, in E. Arge et al. (Eds.), Mod-
ern Software Tools in Scientific Computing, Birkhäuser
Press, Boston, MA, pp. 163–202.

Bücker, H.M. (2002). Iteratively solving large sparse linear
systems on parallel computers, in J. Grotendorst, D. Marx
and A. Muramatsu (Eds.), Quantum Simulations of Com-
plex Many-Body Systems: From Theory to Algorithms,
NIC Series, Vol. 10, John Von Neumann Institute for
Computing, Jülich, pp. 521–548.

Bücker, H.M. and Sauren, M. (1996). A parallel version of the
quasi-minimal residual method based on coupled two-term
recurrences, in J. Waśniewski et al. (Eds.), Applied Paral-
lel Computing, Lecture Notes in Computer Science, Vol.
1184, Springer, Berlin, pp. 157–165.

Bücker, H.M. and Sauren, M. (1997). A variant of the
biconjugate gradient method suitable for massively parallel
computing, in G. Bilardi et al. (Eds.), Solving Irregu-
larly Structured Problems in Parallel, Lecture Notes in
Computer Science, Vol. 1253, Springer, Berlin, pp. 72–79.

Bücker, H.M. and Sauren, M. (1999). Reducing global
synchronization in the biconjugate gradient method, in
T. Yang (Ed.), Parallel Numerical Computations with Ap-
plications, Kluwer Academic Publishers, Norwell, MA,
pp. 63–76.

Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B. and
Snir, M. (2009). Toward exascale resilience, Interna-

tional Journal of High Performance Computing Applica-
tions 23(4): 374–388.

Carson, E. and Demmel, J. (2014). A residual replacement
strategy for improving the maximum attainable accuracy
of s-step Krylov subspace methods, SIAM Journal on Ma-
trix Analysis and Applications 35(1): 22–43.

Carson, E., Knight, N. and Demmel, J. (2014). Avoiding
communication in nonsymmetric Lanczos-based Krylov
subspace methods, SIAM Journal on Scientific Computing
35(5): S42–S61.

Chronopoulos, A.T. (1986). A class of parallel iterative
methods implemented on multiprocessors, Technical re-
port UIUCDCS-R-86-1267, Department of Computer
Science, University of Illinois, Urbana, IL.

Chronopoulos, A.T. and Gear, C.W. (1989). s-Step iterative
methods for symmetric linear systems, Journal of Compu-
tational and Applied Mathematics 25(2): 153–168.

Chronopoulos, A.T. and Swanson, C.D. (1996). Parallel iterative
s-step methods for unsymmetric linear systems, Parallel
Computing 22(5): 623–641.

Curfman McInnes, L., Smith, B., Zhang, H. and Mills,
R.T. (2014). Hierarchical Krylov and nested Krylov
methods for extreme-scale computing, Parallel Computing
40(1): 17–31.

Davis, N.E., Robey, R.W., Ferenbaugh, C.R., Nicholaeff,
D. and Trujillo, D.P. (2012). Paradigmatic shifts for
exascale supercomputing, Journal of Supercomputing
62(2): 1023–1044.

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 781

0

200

400

Sp
ee

du
p
S

Classical BiCG
2-step BiCG
5-step BiCG

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

Number of processes p

Sp
ee

du
p
S

Classical QMR
2-step QMR
5-step QMR

Fig. 8. Average speedup S = Tpar(1)/Tpar(p) for a single iteration of BiCG (top) and QMR (bottom) averaged across 200 iterations
excluding initialization time.

Demmel, J., Heath, M. and van der Vorst, H. (1993). Parallel
numerical linear algebra, Acta Numerica 2(1): 111–197.

Duff, I.S. (2012). European exascale software initiative:
Numerical libraries, solvers and algorithms, in
D. Hutchison et al. (Eds.), Euro-Par 2011: Parallel
Processing Workshops, Lecture Notes in Computer
Science, Vol. 7155, Springer, Berlin, pp. 295–304.

Duff, I.S. and van der Vorst, H.A. (1999). Developments and
trends in the parallel solution of linear systems, Parallel
Computing 25(13–14): 1931–1970.

Feuerriegel, S. and Bücker, H.M. (2013a). A normalization
scheme for the non-symmetric s-step Lanczos algorithm,
in J. Kolodziej et al. (Eds.), ICA3PP, Part II, Lecture
Notes in Computer Science, Vol. 8286, Springer, Berlin,
pp. 30–39.

Feuerriegel, S. and Bücker, H.M. (2013b). Synchronization-
reducing variants of the biconjugate gradient and the
quasi-minimal residual methods, in J. Kolodziej et al.
(Eds.), ICA3PP, Part I, Lecture Notes in Computer
Science, Vol. 8285, Springer, Berlin, pp. 226–235.

Fischer, B. and Freund, R. (1994). An inner product-free
conjugate gradient-like algorithm for Hermitian positive
definite systems, in J. Brown et al. (Eds.), Cornelius
Lanczos International Centenary Conference, SIAM,
Philadelphia, PA, pp. 288–290.

Fletcher, R. (1976). Conjugate gradient methods for indefinite
systems, in G. Watson (Ed.), Numerical Analysis, Lecture
Notes in Computer Science, Vol. 506, Springer, Berlin,
pp. 73–89.

Freund, R. and Nachtigal, N. (1991). QMR: A quasi-minimal
residual method for non-Hermitian linear systems, Nu-
merische Mathematik 60(1): 315–339.

Freund, R.W. and Hochbruck, M. (1991). A biconjugate
gradient type algorithm on massively parallel architectures,
in R. Vichnevetsky and J.J.H. Miller (Eds.), IMACS’91,
Criterion Press, Dublin, pp. 720–721.

Freund, R.W. and Hochbruck, M. (1992). A biconjugate
gradient-type algorithm for the iterative solution of
non-Hermitian linear systems on massively parallel
architectures, in C. Brezinski and U. Kulisch (Eds.),
IMACS’91, North Holland, Amsterdam, pp. 169–178.

Freund, R.W. and Nachtigal, N.M. (1994). An implementation
of the QMR method based on coupled two-term
recurrences, SIAM Journal on Scientific Computing
15(2): 313.

Ghysels, P., Ashby, T.J., Meerbergen, K. and Vanroose, W.
(2013). Hiding global communication latency in the
GMRES algorithm on massively parallel machines, SIAM
Journal on Scientific Computing 35(1): C48–C71.

Ghysels, P. and Vanroose, W. (2014). Hiding global
synchronization latency in the preconditioned conjugate
gradient algorithm, Parallel Computing 40(7): 224–238.

Gustafsson, M., Demmel, J. and Holmgren, S. (2012a).
Numerical evaluation of the communication-avoiding
Lanczos algorithm, Technical Report 2012-001,
Department of Information Technology, Uppsala
University, Uppsala.

Gustafsson, M., Kormann, K. and Holmgren, S. (2012b).
Communication-efficient algorithms for numerical
quantum dynamics, in K. Jónasson (Ed.), Applied Parallel
and Scientific Computing, Lecture Notes in Computer
Science, Vol. 7134, Springer, Berlin, pp. 368–378.

Gutknecht, M.H. (1997). Lanczos-type solvers for
nonsymmetric linear systems of equations, Acta Nu-
merica 6(1): 271–397.

Hernandez, V., Roman, J.E. and Vidal, V. (2005). SLEPc: A
scalable and flexible toolkit for the solution of eigenvalue
problems, ACM Transactions on Mathematical Software
31(3): 351–362.

Hoemmen, M.F. (2010). Communication-avoiding Krylov
Subspace Methods, Ph.D. thesis, EECS Department,
University of California, Berkeley, CA.

782 S. Feuerriegel and H.M. Bücker

Kandalla, K., Yang, U., Keasler, J., Kolev, T., Moody, A.,
Subramoni, H., Tomko, K., Vienne, J., De Supinski, B. and
Panda, D. (2012). Designing non-blocking allreduce with
collective offload on InfiniBand clusters: A case study with
conjugate gradient solvers, Proceedings of the 2012 IEEE
26th International Parallel Distributed Processing Sympo-
sium (IPDPS), Shanghai, China, pp. 1156–1167.

Kim, S.K. (2010). Efficient biorthogonal Lanczos algorithm
on message passing parallel computer, in C.H. Hsu
and V. Malyshkin (Eds.), MTPP 2010, Lecture Notes
in Computer Science, Vol. 6083, Springer, Berlin,
pp. 293–299.

Kim, S.K. and Chronopoulos, A. (1991). A class of Lanczos-like
algorithms implemented on parallel computers, Parallel
Computing 17(6–7): 763–778.

Kim, S.K. and Chronopoulos, A.T. (1992). An efficient
nonsymmetric Lanczos method on parallel vector
computers, Journal of Computational and Applied
Mathematics 42(3): 357–374.

Kim, S.K. and Kim, T.H. (2005). A study on the efficient
parallel block Lanczos method, in J. Zhang, J.-H. He
and Y. Fu (Eds.), Computational and Information Science,
Lecture Notes in Computer Science, Vol. 3314, Springer,
Berlin/Heidelberg, pp. 231–237.

Lanczos, C. (1950). An iteration method for the solution of
the eigenvalue problem of linear differential and integral
operators, Journal of Research of the National Bureau of
Standards 45(4): 255–282.

Meurant, G. (1986). The conjugate gradient method on
supercomputers, Supercomputer 13: 9–17.

Mohiyuddin, M., Hoemmen, M., Demmel, J. and Yelick, K.
(2009). Minimizing communication in sparse matrix
solvers, Conference on High Performance Computing
Networking, Storage and Analysis, Portland, OR, USA,
pp. 36:1–36:12.

Saad, Y. (1989). Krylov subspace methods on supercomputers,
SIAM Journal on Scientific and Statistical Computing
10(6): 1200–1232.

Sauren, M. and Bücker, H.M. (1998). On deriving
the quasi-minimal residual method, SIAM Review
40(4): 922–926.

Shalf, J., Dosanjh, S. and Morrison, J. (2011). Exascale
computing technology challenges, in D. Hutchison et al.
(Eds.), High Performance Computing for Computational
Science, VECPAR 2010, Lecture Notes in Computer
Science, Vol. 6449, Springer, Berlin, pp. 1–25.

van der Vorst, H. (1990). Iterative methods for the solution of
large systems of equations on supercomputers, Advances
in Water Resources 13(3): 137–146.

van der Vorst, H.A. and Ye, Q. (2000). Residual replacement
strategies for Krylov subspace iterative methods for the
convergence of true residuals, SIAM Journal on Scientific
Computing 22(3): 835–852.

Van Rosendale, J. (1983). Minimizing inner product data
dependencies in conjugate gradient iteration, NASA
Contractor Report NASA-CR-172178, NASA Langley
Research Center, Hampton, VA.

Zhu, S.-X., Gu, T.-X. and Liu, X.-P. (2014). Minimizing
synchronizations in sparse iterative solvers for distributed
supercomputers, Computers & Mathematics with Applica-
tions 67(1): 199–209.

Zuo, X., Gu, T.-X. and Mo, Z. (2010). An improved GPBi-CG
algorithm suitable for distributed parallel computing, Ap-
plied Mathematics and Computation 215(12): 4101–4109.

Stefan Feuerriegel graduated from the Aachen Institute for Advanced
Study in Computational Engineering Science (AICES) at RWTH Aachen
University in 2011. Since then, he has been a Ph. D. student at the Chair
of Information Systems Research of the University of Freiburg with a
focus on big data analytics and text mining.

H. Martin Bücker is currently a full professor in the Department of
Mathematics and Computer Science, Friedrich Schiller University Jena,
Germany. Prior to this, he was a researcher at Forschungszentrum Jülich,
a visiting scientist at Argonne National Laboratory, and a senior re-
searcher at RWTH Aachen University. His research focuses on parallel
algorithms, high-performance computing, combinatorial scientific com-
puting, and automatic differentiation.

Appendix

Deriving efficient recurrence equations

Recurrence for the normalization factor. Recall from
Section 4.2 that the normalization scheme guarantees
〈wj

k,v
j
k〉 = ±1 by simply scaling the vectors ṽj

k and w̃j
k

by scalars σj
k. We formally define σ1

k := 1. For all other
j = 2, . . . , s, this normalization factor can be rewritten as

σj
k = |〈w̃j

k, ṽ
j
k〉|

− 1
2 (29)

=

∣∣∣∣∣
σj
kσ

j
k

M
j,j

k

∣∣∣∣∣

1
2

(A5)
=

∣∣∣∣〈w1
k, A

2j−2v1
k〉 −

(
tjk−1

)T

Mk−1t
j
k−1

∣∣∣∣
− 1

2

.

Defining auxiliary variables Ωi,j
k , Ξi,j

k and Ψ i,j
k .

To simplify the subsequent derivation of the recurrence
relations, we introduce three auxiliary variables. The first
variable is given by

Ωi,j
k = 〈w1

k, A
i−1V k−1t

j
k−1〉

= 〈(AT)
i−1

w1
k, V k−1t

j
k−1〉

(32)
= 〈w̃i

k +W k−1t
i
k−1, V k−1t

j
k−1〉

(10)
= 〈W k−1t

i
k−1, V k−1t

j
k−1〉

(29)
=

(
tik−1

)T
Mk−1t

j
k−1.

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 783

In addition, we let the second variable be

Ξi,j
k = 〈W k−1t

i
k−1, A

j−1v1
k〉

(33)
= 〈W k−1t

i
k−1, ṽ

j
k + V k−1t

j
k−1〉

(10)
=

(
tik−1

)T
Mk−1t

j
k−1.

Finally, the third auxiliary variable is given by

Ψ i,j
k = (gs

k)
T 〈W k, A

i+j−s−2v1
k+1〉

=

s∑
ι=1

gι,s
k 〈wι

k, A
i+j−s−2v1

k+1〉

(33)
=

s∑
ι=1

σι
kg

ι,s
k

〈(AT)
ι−1

w1
k −W k−1t

ι
k−1, A

i+j−s−2v1
k+1〉

(32)
=

s∑
ι=1

σι
kg

ι,s
k

[
〈w1

k, A
i+j−s−3+ιv1

k+1〉

− 〈W k−1t
ι
k−1, ṽ

i+j−s−1
k+1 + V kt

i+j−s−1
k 〉︸ ︷︷ ︸

=0

]

(A3)
=

s∑
ι=1

σι
kg

ι,s
k bi−s+ι−1,j

k

σi−s+ι−1
k

=

s∑
ι=2s

+3−i−j

σι
kg

ι,s
k bi−s+ι−1,j

k

σi−s+ι−1
k

. (A1)

Here, we entered in the last step the non-zero pattern
of bi,jk from Eqn. (A2) in order to adjust the summation.
In order to access only non-zero entries, the sum of both
indices in bi−s+ι−1,j

k must be greater than or equal to s+
2, i.e.,

(i − s+ ι− 1) + j ≥ s+ 2 ⇔ ι ≥ 2s+ 3− i− j.

Recurrence for bi,jk . The following recurrence holds:

bi,jk = 〈wi
k, A

j−1v1
k+1〉

(33)
= σi

k〈(AT)
i−1

w1
k, A

j−1v1
k+1〉

− σi
k〈W k−1t

i
k−1, A

j−1v1
k+1〉

(32)
= σi

k〈w1
k, A

i+j−2v1
k+1〉

− σi
k 〈W k−1t

i
k−1, ṽ

j
k+1 + V kt

j
k〉︸ ︷︷ ︸

=0

= σi
k〈w1

k, A
i+j−2v1

k+1〉

= σi
k〈(AT)

s−1
w1

k, A
i+j−s−1v1

k+1〉

(33)
=

σi
k

σs
k

〈ws
k +W k−1t

s
k−1, A

i+j−s−1v1
k+1〉

(32)
=

σi
k

σs
k

〈ws
k, A

i+j−s−1v1
k+1〉

+
σi
k

σs
k

〈W k−1t
s
k−1, ṽ

i+j−s
k+1 + V kt

i+j−s
k 〉︸ ︷︷ ︸

=0

=
σi
k

σs
k

〈ATws
k, A

i+j−s−2v1
k+1〉

(30)
=

σi
k

σs
k

〈w̃1
k+1 +W k−1e

s
k

+W kg
s
k, A

i+j−s−2v1
k+1〉

=
σi
k

σs
k

〈w̃1
k+1, A

i+j−s−2v1
k+1〉

+
σi
k

σs
k

〈W k−1e
s
k, A

i+j−s−2v1
k+1〉

+
σi
k

σs
k

(gs
k)

T 〈W k, A
i+j−s−2v1

k+1〉
cf. Step 13 in Algorithm 2

(32)
=

σi
k

σs
k

〈w̃1
k+1, A

i+j−s−2v1
k+1〉

+
σi
k

σs
k

〈W k−1e
s
k, ṽ

i+j−s−1
k+1 + V kt

i+j−s−1
k 〉︸ ︷︷ ︸

=0

+
σi
k

σs
k

Ψ i,j
k

(A1)
=

σi
k

σs
k

[
〈fk+1w

1
k+1, A

i+j−s−2v1
k+1〉

+
s∑

ι=2s
+3−i−j

σι
kg

ι,s
k bi−s+ι−1,j

k

σi−s+ι−1
k

]

and then the matrix bk features the following structure:

bk =

⎡
⎢⎢⎢⎢⎣

0 0
. . . 0 β1

0
. . .

...
0 β1 · · · βs−1

⎤
⎥⎥⎥⎥⎦
. (A2)

First, the anti-diagonal shape origins from the above
equation:

bi,jk = σi
k〈w1

k, A
i+j−2v1

k+1〉, (A3)

with i+ j = const, as the sum i+ j determines the values
on the anti-diagonals in Eqn. (A2). Second, the non-zero

784 S. Feuerriegel and H.M. Bücker

pattern comes from

bi,jk = 〈wi
k, A

j−1v1
k+1〉 = 〈(AT)

j−1
wi

k,v
1
k+1〉

= σi
k〈(AT)

j−1
w̃i

k,v
1
k+1〉

(33)
= σi

k〈(AT)
j−1

[
(AT)

i−1
w1

k −W k−1t
i
k−1

]
,v1

k+1〉

= σi
k〈(AT)

j+i−2
w1

k − (AT)
j−1

W k−1t
i
k−1,v

1
k+1〉

(33)
= σi

k〈w̃i+j−1
k +W k−1t

i+j−1
k−1

− (AT)
j−1

W k−1t
i
k−1,v

1
k+1〉

= σi
k

[
〈w̃i+j−1

k ,v1
k+1〉+ 〈W k−1t

i+j−1
k−1 ,v1

k+1〉︸ ︷︷ ︸
=0

− 〈(AT)
j−1

W k−1t
i
k−1,v

1
k+1〉

]

= σi
k

[
〈w̃i+j−1

k ,v1
k+1〉 − 〈W k−1t

i
k−1, A

j−1v1
k+1〉

]

(32)
= σi

k

[
〈w̃i+j−1

k ,v1
k+1〉

− 〈W k−1t
i
k−1, ṽ

j
k+1 + V kt

j
k〉︸ ︷︷ ︸

=0

]

= σi
k · 0 = 0 for i+ j − 1 ≤ s.

Recurrence for ci,jk . The matrix ck, whose entries are
the elements ci,jk , features the following non-zero pattern:

ck =

⎡
⎢⎣

...
...

0 · · · 0

cs,1k · · · cs,sk

⎤
⎥⎦ . (A4)

We prove the above structure by induction. If c0 := 0s,s,
then it is sufficient to focus on the induction step from
k − 1 to k. Assuming the structure holds for ci,jk , we
derive

ci,jk = 〈wi
k−1, Av

j
k〉 = 〈ATwi

k−1,v
j
k〉

= σi
k−1〈AT w̃i

k−1,v
j
k〉

(33)
= σi

k−1〈AT
[
(AT)

i−1
w1

k−1 −W k−2t
i
k−2

]
,vj

k〉

= σi
k−1〈(AT)

i
w1

k−1 −ATW k−2t
i
k−2,v

j
k〉

(33)
= σi

k−1

[〈w̃i+1
k−1 +W k−2t

i+1
k−2,v

j
k〉

− 〈ATW k−2t
i
k−2,v

j
k〉
]

= σi
k−1

[〈w̃i+1
k−1,v

j
k〉+ 〈W k−2t

i+1
k−2,v

j
k〉︸ ︷︷ ︸

=0

− 〈W k−2t
i
k−2, Av

j
k〉
]

(32)
= σi

k−1

[
〈w̃i+1

k−1,v
j
k〉

− σj
k〈W k−2t

i
k−2, A

[
Aj−1v1

k − V k−1t
j
k−1

]〉
]

(32)
= σi

k−1

[
〈w̃i+1

k−1,v
j
k〉 − σj

k〈W k−2t
i
k−2,

vj+1
k + V k−1t

j+1
k−1 −AV k−1t

j
k−1〉

]

= σi
k−1〈w̃i+1

k−1,v
j
k〉

− σi
k−1σ

j
k 〈W k−2t

i
k−2,v

j+1
k + V k−1t

j+1
k−1〉︸ ︷︷ ︸

=0

+ σi
k−1σ

j
k〈W k−2t

i
k−2, AV k−1t

j
k−1〉

(34)
= σi

k−1

[
〈w̃i+1

k−1,v
j
k〉+ σj

k

(
tik−2

)T
ck−1t

j
k−1

]

= σi
k−1 · 0 = 0

for i < s by induction hypotheses ci,jk−1 = 0 for all i < s.
Furthermore,

cs,jk = 〈ws
k−1, Av

j
k〉

(32)
= σj

k〈ws
k−1, A

[
Aj−1v1

k − V k−1t
j
k−1

]
〉

(35), (36)
= σj

k

[
bs,j+1
k−1 − ds,•

k−1t
j
k−1

]

holds where ds,•
k−1 denotes the s-th row of dk−1. When

computing cs,jk recursively, the additional value of bs,s+1
k−1

is unavoidably required, but which we also determine in
the above recursive fashion.

Recurrence for di,j
k . Next, we find

di,j
k = 〈wi

k, Av
j
k〉

= σi
kσ

j
k

[〈
(AT)

i−1
w1

k

−W k−1t
i
k−1, A

[
Aj−1v1

k − V k−1t
j
k−1

] 〉]

= σi
kσ

j
k

[〈
(AT)

i−1
w1

k

−W k−1t
i
k−1, A

jv1
k −AV k−1t

j
k−1

〉]

(35)
= σi

kσ
j
k

[
〈w1

k, A
i+j−1v1

k〉

−Ωi+1,j
k − Ξi,j+1

k +
(
tik−1

)T
dk−1t

j
k−1

]
.

The non-symmetric s-step Lanczos algorithm: Derivation of efficient recurrences. . . 785

We notice that the given expressions

Ωi,j
k =

(
tik−1

)T
Mk−1t

j
k−1,

Ξi,j
k =

(
tik−1

)T
Mk−1t

j
k−1

cannot be evaluated for both Ωs+1,j
k and Ξi,s+1

k as the
variable ts+1

k−1 is undefined. Therefore, we need to derive

alternative recursions for the special cases Ωs+1,j
k and

Ξi,s+1
k as follows:

Ωs+1,j
k := 〈w1

k, A
sV k−1t

j
k−1〉

= 〈(AT)
s−1

w1
k, AV k−1t

j
k−1〉

(33)
= 〈w

s
k

σs
k

+W k−1t
s
k−1, AV k−1t

j
k−1〉

=
1

σs
k

(
V

T

k−1A
Tws

k

)T

tjk−1

+ 〈W k−1t
s
k−1, AV k−1t

j
k−1〉

=
1

σs
k

(
W

T

k−1Av
s
k

)T

tjk−1

+ 〈W k−1t
s
k−1, AV k−1t

j
k−1〉

after Kim and Chronopoulos (1992, p. 366). Then, using
(34) and (35), we arrive at

Ωs+1,j
k =

(
c•,sk

)T
tjk−1

σs
k

+
(
tsk−1

)T
dk−1t

j
k−1,

where c•,sk is the s-th column of ck. Using (A4), we finally
find

Ωs+1,j
k =

cs,sk ts,jk−1

σs
k

+
(
tsk−1

)T
dk−1t

j
k−1.

Similarly, we derive

Ξi,s+1
k := 〈W k−1t

i
k−1, A

sv1
k〉

(32)
= 〈W k−1t

i
k−1, A

[
vs
k

σs
k

+ V k−1t
s
k−1

]
〉

=
〈W k−1t

i
k−1, Av

s
k〉

σs
k

+ 〈W k−1t
i
k−1, AV k−1t

s
k−1〉

(34), (35)
=

(
tik−1

)T
c•,sk

σs
k

+
(
tik−1

)T
dk−1t

s
k−1

(A4)
=

ts,ik−1c
s,s
k

σs
k

+
(
tik−1

)T
dk−1t

s
k−1.

Recurrence for M
i,j

k . Finally, we have

M
i,j

k = 〈wi
k,v

j
k〉

= σi
kσ

j
k

〈
(AT)

i−1
w1

k

−W k−1t
i
k−1, A

j−1v1
k − V k−1t

j
k−1

〉

= σi
kσ

j
k

[
〈w1

k, A
i+j−2v1

k〉
− 〈w1

k, A
i−1V k−1t

j
k−1〉

− 〈W k−1t
i
k−1, A

j−1v1
k〉

+ 〈W k−1t
i
k−1, V k−1t

j
k−1〉

]

(29)
= σi

kσ
j
k

[
〈w1

k, A
i+j−2v1

k〉 −Ωi,j
k

− Ξi,j
k +

(
tik−1

)T
Mk−1t

j
k−1

]

= σi
kσ

j
k

[
〈w1

k, A
i+j−2v1

k〉

− (
tik−1

)T
Mk−1t

j
k−1

]
, (A5)

where the last equation follows from

Ωi,j
k = Ξi,j

k =
(
tik−1

)T
Mk−1t

j
k−1. (A6)

Received: 15 April 2014
Revised: 17 October 2014

	Rethinking algorithm design
	Parallel Krylov methods
	Classical Lanczos method
	s-Step Lanczos method
	High-level overview
	Normalization scheme
	Orthogonalizing the s-step Lanczos basis

	Deriving efficient recurrence equations
	s-Step BiCG and QMR methods
	Solving linear systems using the Lanczos basis
	Synchronization-reducing s-step biconjugate gradient algorithm
	Synchronization-reducing s-step quasi-minimal residual algorithm

	Numerical experiments
	Synchronization-reducing s-step Lanczos algorithm
	Numerical accuracy of synchronization-reducing linear solvers
	Parallel performance of synchronization-reducing linear solvers

	Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

