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In this paper, an approach to analyze the observability and controllability of sandwich systems with backlash is proposed.
In this method, a non-smooth state-space function is used to describe the sandwich systems with backlash which are also
non-smooth non-linear systems. Then, a linearization method based on non-smooth optimization is proposed to derive
a linearized state-space function to approximate the non-smooth sandwich systems within a bounded region around the
equilibrium point that we are interested in. Afterwards, both observability and controllability matrices are constructed and
the methods to analyze the observability as well as controllability of sandwich system with backlash are derived. Finally,
numerical examples are presented to validate the proposed method.
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1. Introduction

Backlash is one of the non-differentiable non-linearities
with multi-valued mapping often existing in gear
transmissions, hydraulic control valves, ball screw in
mechanical transmission mechanisms, etc. (Nordin and
Gutman, 2002). The reason for the backlash phenomenon
is mainly the gaps existing in gearbox, hydraulic control
valves and ball screw, etc.

Usually, backlash does not solely exist in practical
systems but connects with other subsystems. For example,
in a positioning servo system, a work platform is driven
by a gearbox which is driven by a DC motor. This
positioning system can be considered a sandwich system
with backlash; i.e., the work platform is regarded as a
linear subsystem, and the gearbox can be denoted as
backlash while the DC motor can also be represented by a
linear subsystem. Thus, a sandwich system with backlash
is defined as the system where backlash is sandwiched
between two linear dynamic subsystems. However,
backlash existing in the gearbox of a transmission system
may lead to delay, oscillation, undesired steady-state
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errors and temporary motion loss due to the transversion
of gear teeth trapped in the clearance between mated gear
teeth. In this case, the investigation of the observability
and controllability of the system at hand should be
implemented for the requirement of system analysis and
controller design.

It is known that observability and controllability
are fundamental properties of a control system, which
have been intensively studied in textbooks and papers
(Kalman et al., 1969; Sussmann, 1979; van der Schaft,
1982; Isidori, 1989; Klamka, 1991). However, most of
these results only focus on smooth linear or non-linear
systems (Sontag, 1979; Jank, 2002; Klamka, 2013a; 1975;
2002; 2013b; Isidori, 1989; Herman and Krener, 1977;
Balachandran and Shanmugam, 2014; Karthikeyan and
Murugesan, 2015). Klamka (2013a) presented a review
of controllability problems for a wide class of dynamic
systems. Moreover, he also proved sufficient conditions
for constrained local controllability for second order
dynamical systems with time delay (Klamka, 2013b).
Karthikeyan and Murugesan (2015) proposed a method
for the analysis of controllability for non-linear stochastic
systems with time delays. Furthermore, Balachandran
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and Shanmugam (2014) analyzed the controllability of
non-linear implicit fractional integrodifferential systems.

Until today, there have only been several papers
considering those properties for non-smooth systems
(Koplon and Sontag, 1993; Mincheko and Sirotko, 2002;
Murphey and Burdick, 2002; Zhirabok and Shumsky,
2012). Koplon and Sontag (1993) proposed necessary and
sufficient conditions for the observability for discrete-time
systems with a sign function. On the other hand,
Mincheko and Sirotko (2002) proposed a sufficient
condition for the local controllability of non-smooth
discrete systems with time delay.

Compared with the above-mentioned non-smooth
dynamic systems, a sandwich system with backlash
contains not only linear dynamic subsystems, but
also a backlash non-smooth non-linearity embedded in
between. For an observability and controllability analysis
of non-linear smooth systems, linearization is one of
the options usually applied. However, as backlash
is a non-smooth non-linear function, the conventional
linearization approach might not be applicable at
non-smooth points of backlash non-linearity.

Although there have been some works (Murphey and
Burdick, 2002; Zhirabok and Shumsky, 2012) claiming
that the controllability and observability analysis methods
for linear systems can be extended to systems with
non-differentiable components, e.g., the sign function, or
friction functions, there is still a lack of a detailed analysis
or an investigation of the observability and controllability
properties of systems at non-smooth points. Nevertheless,
it is very important to know whether the system is
observable and controllable at non-smooth points for the
design of a proper optimal control strategy for sandwich
systems with backlash. Thus, it is indeed worthwhile to
solve such problems at non-smooth points of the system.
On the other hand, the analysis of the observability and
controllability of sandwich systems with backlash will
be even more complex since both the input and output
of the embedded non-smooth non-linear function are
unmeasurable directly. Therefore, it is a real challenge
to analyze observability and controllability for those
non-smooth sandwich systems.

In this paper, an analysis method for the observability
and controllability of sandwich systems with backlash is
proposed. Within a small neighborhood of an equilibrium
point, a generalized linearization is implemented. Thus,
a linearized state space model is constructed to
approximate the non-smooth system with backlash around
the equilibrium point. Through the investigation of
the derived observability and controllability matrices,
necessary and sufficient conditions for state observability
and controllability are obtained. However, the
observability and controllability of the obtained linearized
systems are only identical with the observable and
controllable subspaces of the sandwich system with

backlash within a deterministically local region.
The paper is organized as follows. In Section 2, an

input-output sandwich model of backlash is introduced.
Then, based on this model, the corresponding non-smooth
state-space equation to describe the sandwich system
with backlash is developed. Subsequently, a linearized
state-space model is derived by a method of generalized
gradient-based linearization. In Section 3, both
observability and controllability matrices of the linearized
system are constructed. Afterwards, observability and
controllability for the system based on the observability
and controllability matrices is analyzed in Section 4.
Then, numerical examples are presented in Section 5 to
validate the proposed method. Finally, conclusions are
given.

2. Description of the sandwich model with
backlash

The corresponding architecture of the so-called sandwich
system with backlash is shown in Fig. 1. In this
system, both L1 and L2 are the input and output linear
dynamic subsystems, respectively, and N(·) represents
the backlash subsystem embedded in between L1 and
L2. It is assumed that both u(k) and y(k), i.e., the
input and output of the system, are measurable while the
internal variables, i.e., h(k) and v(k), are unmeasureable
directly. Therefore, the mapping between u(k) and y(k)
is a composition mapping due to the involved internal
variables, i.e., h(k) and v(k).

Note that the backlash embedded in the sandwich
system shown in Fig. 1 is specified by the slopes m1 and
m2 as well as the absolute thresholds D1 and D2 , where
0 ≤ m1 ≤ +∞, 0 ≤ m2 ≤ +∞, 0 ≤ D1 ≤ +∞, and
0 ≤ D2 ≤ +∞. Hence, the discrete-time submodel of
backlash is described as

v(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1(h(k)−D1) if h(k) ≥ v(k − 1)

m1
+D1

and h(k) > h(k−1)

(increase zone),

v(k − 1) if
v(k − 1)

m2
−D2 < h(k)

<
v(k − 1)

m1
+D1

(memory zone),

m2(h(k) +D2) if h(k) ≤ v(k − 1)

m2
−D2

and h(k) < h(k−1)

(decrease zone).
(1)

For a convenient system description, the discrete-time
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Fig. 1. Structure of a sandwich system with backlash.

submodel of backlash can be rewritten as (Dong et al.,
2012)

m(k) = m1 + (m2 −m1)g(k),

τ(k) = m(k)(h(k) + g(k)h(k)

−D1g1(k) +D2g2(k)),

v(k) = τ(k) + [v(k − 1)− τ(k)]

× (g1(k)− 1)(g2(k)− 1),

(2)

where the switching functions g(k), g1(k), and g2(k) are,
respectively, defined as

g(k) =

{
0 if Δh(k) > 0,
1 if Δh(k) ≤ 0,

(3)

g1(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if h(k) >
v(k − 1)

m1
+D1 and

h(k) > h(k − 1),

0 otherwise,

(4)

g2(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if h(k) <
v(k − 1)

m2
−D2 and

h(k) < h(k − 1),

0 otherwise,

(5)

where Δh(k) = h(k)− h(k − 1).

Remark 1. The functions of (3)–(5) introduced into
the submodel of backlash are just used to represent the
change conditions in the operation zones of the backlash
subsystem.

Moreover, in this sandwich system, the linear
dynamic subsystems, i.e., L1and L2, are, respectively,
described by

L1 :

⎧
⎨

⎩

x1(k + 1) = A1x1(k) +B1u(k),

h(k) = C1x1(k)
(6)

and

L2 :

⎧
⎨

⎩

x2(k + 1) = A2x2(k) +B2v(k),

y(k) = C2x2(k)
(7)

where Ai ∈ R
ni×ni ,Bi ∈ R

ni×1, Ci ∈ R
1×ni , xi ∈

R
ni×1, u ∈ R

1×1, v ∈ R
1×1, h and y ∈ R

1×1.
Thus, (1)–(7) represent the model describing the

sandwich system with backlash. With them, we can obtain
the following state-space equations for the sandwich
system with backlash as:

∑
:

{
x1(k + 1) = A1x1(k) +B1u(k),

x2(k + 1) = A2x2(k) +B2v(h(k))
(8)

and

y(k) = ( 0 C2 )

(
x1(k)
x2(k)

)

. (9)

Suppose that there exists a steady state value of input
u∗, which can maintain the equilibrium point at (x∗

1 x∗
2)

T

with h∗ as the corresponding output value of L1. Then,
there exist the corresponding state-space equations at the
equilibrium point are

{
x∗
1(k + 1) = A1x

∗
1(k) +B1u

∗(k),
x∗
2(k + 1) = A2x

∗
2(k) +B2v(h

∗(k)).
(10)

Defining the incremental variables as

û = u− u∗,
x̂1 = x1 − x∗

1,

x̂2 = x2 − x∗
2,

ĥ = h− h∗

results in

{
x̂1(k + 1) = A1x̂1(k) +B1û(k),

x̂2(k + 1) = A2x̂2(k) +B2[v(h(k))− v(h∗(k))].
(11)

Consider the backlash function v(·) to be locally
Lipschitz continuous on an open set R. Then, based on
Dv, which denotes the set of all h where v admits a
Fréchet derivative v′(h) ∈ R, according to Rademacher’s
theorem (Rockafellar and Wets, 1998), R\Dv has zero
Lebesgue measure. Hence, the corresponding Clarke
generalized Jacobian ∂v(h) of v at h∗ is defined as

∂v(h∗) = conv{lim∇v(h) : h → h∗}, (12)

where ∂v(h∗) is a non-empty, convex and compact set for
any fixed h∗ (Clarke, 1983). Note that Qi and Sun (1993)
proved that

v(h(k)) = v(h∗(k)) + ∂∗v · ĥ+ o(||ĥ||) (13)

as ||ĥ|| → 0, where ∂∗v Δ
= a ∈ ∂v(h∗).
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By (1), we obtain

∂v(h∗)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{m1} in increase zones

but h∗ > v(k−1)
m1

+D1,

{0, m1} in increase zones

but h∗ = v(k−1)
m1

+D1,

{m2} in decrease zones

but h∗ < v(k−1)
m2

−D2,

{0, m2} in decrease zones

but h∗ = v(k−1)
m2

−D2,

{0} in memory zones

(14)

This suggests that in a small neighborhood of h∗(k) we
can approximate v(h(k)) − v(h∗(k)) by the generalized
gradient based linearization ∂∗v · ĥ. Actually, because
of the piecewise linear characteristic of backlash, this
approximation is accurate. That is,

∂∗vĥ = v(h(k))− v(h∗(k)). (15)

So, in terms of (11), we have

{
x̂1(k + 1) = A1x̂1(k) +B1û(k),

x̂2(k + 1) = A2x̂2(k) +B2∂
∗vĥ.

(16)

Since ĥ = C1(x1−x∗
1) = C1x̂1, the state-space equations

for the sandwich system with backlash by linearization are

∑
:

{
x̂1(k + 1) = A1x̂1(k) +B1û(k),

x̂2(k + 1) = A2x̂2(k) +B2∂
∗v · C1x̂1

(17)

and

ŷ(k) = ( 0 C2 )

(
x̂1(k)
x̂2(k)

)

. (18)

That is,

∑
:

{
x̂(k + 1) = Ax̂(k) +Bû(k),

ŷ(k) = Cx̂(k),
(19)

where

x̂(k + 1) =

(
x̂1(k + 1)
x̂2(k + 1)

)

∈ R
n×1,

A =

(
A1 O

B2∂
∗vC1 A2

)

∈ R
n×n,

B =

(
B1

O

)

∈ R
n×1,

C = ( 0 C2 ) ∈ R
1×n, n = n1 + n2.

3. Observability and controllability
matrices

It is well known that the analysis of observability and
controllability for a linearized system usually depends
upon the rank analysis of the corresponding observability
and controllability system matrices. For the linearized
state-space function of the sandwich system with
backlash, which is described by (19), the corresponding
observability and controllability matrices can be derived
as follows.

3.1. Controllability matrix. Define M as the
controllability matrix:

M = ( B AB A2B . . . An−1B )

=

(
B1 A1B1 A2

1B1 . . . An−1
1 B1

O H1 H2 . . . Hn−1

)

=

(
B1 A1B1 A2

1B1

O aB2C1B1 aB2C1A1B1 +A2H1

. . . An−1
1 B1

. . . aB2C1A
n−2
1 B1 +A2Hn−2

)

,

(20)

where Hi (i = 1, 2, . . . , n − 1) is the corresponding
subblock of M . Was have
{

Hi = aB2C1A
n−2
1 B1 +A2Hi−1 (i = 2, . . . , n− 1)

H1 = aB2C1B1.
(21)

Then we define

k1 = C1B1,

k2 = C1A1B1, . . . ,

kn−1 = C1A
n−2
1 B1.

Obviously, ki ∈ R
1×1 (i = 1, 2, . . . , (n− 1)). Thus,

M =

(
B1 A1B1 A2

1B1 . . . ,
O ak1B2 a(k2B2 + k1A2B2) . . .

An−1
1 B1

a(kn−1B2 + kn−2A2B2 + . . .+ k1A
n−2
2 B2)

)

=

(
B1 A1B1 A2

1B1 . . .
O a(k1E)B2 a(k2E + k1A2)B2 . . .

An−1
1 B1

a(kn−1E + kn−2A2 + . . .+ k1A
n−2
2 )B2

)

.

(22)
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Define function f as

f(x; i) = k0x
i−1 + k1x

i−2 + k2x
i−3 + k3x

i−4 + . . .

+ ki−3x
2 + ki−2x+ ki−1x

0,

(23)

and note that k0 = 0. Then

M =

(
B1 A1B1 A2

1B1

af(A2; 1)B2 af(A2; 2)B2 af(A2; 3)B2

. . . An−1
1 B1

. . . af(A2;n)B2

)

.

(24)

Remark 2. It is shown that the constant ki is determined
by matrices A1, B1, and C1. Consequently, f(A2; i) is
determined not only by A2, but also by A1, B1, and C1.
Then the controllability matrix M is related to AiBi (i =
1, 2) and C1 but is independent of C2, which is the output
matrix of the output linear subsystem L2.

3.2. Observability matrix. Similarly, the observa-
bility matrix of the system can be defined by:

N =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C
CA
CA2

...
CAn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O C2

G1 C2A2

G2 C2A
2
2

...
...

Gn−1 C2A
n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O C2

aC2B2C1 C2A2

G1A1 + aC2A2B2C1 C2A
2
2

...
...

Gn−2A1 + aC2A
n−2
2 B2C1 C2A

n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(25)
where Gi (i = 1, 2, . . . , n − 1) is the corresponding
subblock of N . This implies

{
Gi = Gi−1A1 + aC2A

n−2
2 B2C1 (i = 2, . . . , n− 1),

G1 = aC2B2C1.

(26)
Set li = C2A

i−1
2 B2 (i = 1, 2, . . . n− 1) and (li ∈ R

1×1).
Then

N =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O C2

al1C1 C2A2

a(l2C1 + l1C1A1) C2A
2
2

...
...

a(ln−1C1A
0
1 + . . .+ l1C1A

n−2
1 ) C2A

n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O C2

aC1(l1E) C2A2

aC1(l2E + l1A1) C2A
2
2

...
...

aC1(ln−1E + · · ·+ l1A
n−2
1 ) C2A

n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(27)

Defining the function ϕ as

ϕ(x; i) = l0x
i−1 + l1x

i−2 + l2x
i−3 + l3x

i−4 + . . .

+ li−3x
2 + li−2x+ li−1x

0

(28)

and noting l0 = 0 yield

N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aC1ϕ(A1; 1) C2

aC1ϕ(A1; 2) C2A2

aC1ϕ(A1; 3) C2A
2
2

...
...

aC1ϕ(A1;n) C2A
n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (29)

From the controllability (observability) theory for
linear systems, we have the following theorem.

Theorem 1. In a small neighborhood of an equilib-
rium point, the sandwich system with backlash Σ shown
in Fig. 1, is controllable (resp. observable) if and only if
its controllability (resp. observability) matrix M (resp. N )
has full rank.

Remark 3. It can be seen that the observability matrix
N is related to Ai, Ci is (i = 1, 2) and B2 but is
independent of B1, which is the input matrix of the linear
subsystem L1.

Remark 4. The duality between controllability and
observability in all linear systems holds also in the
linearized sandwich system with backlash. Note that the
sandwich system with backlash is Σ but its dual system
is Σd. Therefore, it is not difficult to deduce that a
realization of Σ is observable (resp. controllable) if and
only if the dual realization of Σd is controllable (resp.
observable).

4. Observability and controllability analysis

In this section, Mi and Ni (i = 1, 2) denote controllability
and observability matrices, respectively. Furthermore,
Σc (resp.Σo) is defined as the controllable (observable)
subspace of the sandwich system. Subsequently, Lc

i

and Lo
i (i = 1, 2) are defined as the controllable and

observable subspaces of the subsystems Li (i = 1, 2).
Based on those premises, we have the following analysis.
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Case 1: h∗ is in memory zones.
In this case, a = 0; then from (24) we obtain that

M =

(
B1 A1B1 A2

1B1 . . . An−1
1 B1

O O O . . . O

)

. (30)

Thus,

rankM = rank
(
B1 A1B1 A2

1B1 . . . An1−1
1 B1

. . . An−1
1 B1

)
.

(31)
Define the polynomial

P (λ)
Δ
= |λE−A1| =λn1 +an1−1λ

n1−1+ · · ·+a0 (32)

as the characteristic polynomial of A1. According to the
Cayley–Hamilton theorem, we have

An1
1 + an1−1A

n1−1
1 + · · ·+ a0E = 0.

Accordingly,

An1
1 B1 = −an1−1A

n1−1
1 B1 − an1−2A

n1−2
1 B1

− · · · − a0B1. (33)

This states that vector An1
1 B1 can be linearly represented

by column vectors B1, A1B1, . . ., An1−1
1 B1,

Furthermore, column vectors An1
1 B1 , An1+1

1 B1,
. . ., An−1

1 B1 can be linearly represented by column
vectors B1, A1B1, . . ., An1−1

1 B1.
In consequence, we have

rank(M) = rank
(
B1 A1B1 . . . An1−1

1 B1

)

= rank(M1). (34)

The expression (34) implies that in the case of h∗ ∈
(−D2, D1) the dimension of the controllable subspace of
the system Σ is the same as for the input controllable
subsystem L1 in a small neighborhood of h∗(k).
Equivalently, we can say that dim(Σc) = dim(Lc

1).
In the same way, from (29) we obtain that

rank(N) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

O C2

O C2A2

O C2A
2
2

...
...

O C2A
n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C2

C2A2

C2A
2
2

...
C2A

n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

(35)
Note the characteristic polynomial of A2 is

|λE −A2| =λn2 + bn2−1λ
n2−1 + · · ·+ b0. (36)

By using the Cayley–Hamilton theorem, it can be proved
that column vectors C2A

n2
2 , C2A

n2+1
2 , . . ., C2A

n−1
2 can

be linearly represented by column vectors C2, C2A2, . . .,
C2A

n2−1
2 .

Thus, we derive

rank(N) = rank

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C2

C2A2

C2A
2
2

...
C2A

n2−1
2
...

C2A
n−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= rank

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C2

C2A2

C2A
2
2

...
C2A

n2−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= rank(N2).

(37)

The expression (37) indicates that in the case when h∗

is in memory zones the dimension of the observable
subspace of the system Σ is the same as the output
observable subsystem L2 in a small neighborhood of
h∗(k). That is, dim(Σo) = dim(Lo

2).

Case 2: h∗ is in linear zones.
If h∗ is in increase zones, (14) implies that
a ∈ ∂v(h∗)= {m1} or {0,m1}; then, letting
a = m1 �= 0, from (14),

rank(M)

= rank

(
B1 A1B1

m1f(A2; 1)B2 m1f(A2; 2)B2

A2
1B1 . . . An−1

1 B1

m1f(A2; 3)B2 . . . m1f(A2;n)B2

)

= rank

(
B1 A1B1

f(A2; 1)B2 f(A2; 2)B2

. . . An−1
1 B1

. . . An−1
1 B1

)

≥ rank
(
B1 A1B1 A2

1B1 . . . An1−1
1 B1

)

= rank(M1),

(38)

that is, dim(Σc) ≥ dim(Lc
1).

If h∗ is in decrease zones, (14) implies
that a ∈ ∂v(h∗)= {m2} or {0,m2}. Then,
letting a = m2 �= 0, similarly, we can obtain
rank(M) ≥ rank(M1). Therefore, when h∗ is in
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Fig. 2. State response of subsystem L1.
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Fig. 3. State response of subsystem L2 without the affection of backlash.

decrease zones, dim(Σc) ≥ dim(Lc
1) holds. Similarly,

dim(Σo) ≥ dim(Lo
2).

Based on the above analysis, from (17)–(19), we
have the following lemma.

Lemma 1. As for the sandwich system with backlash Σ
shown in Fig. 1, the following inequalities are satisfied:

dim(Σc) ≥ dim(Lc
1) and dim(Σo) ≥ dim(Lo

2).

In particular, the equality holds if the equilibrium point is
in memory zones.

Based on the lemma, we can prove the following
theorem.

Theorem 2. For the sandwich system with backlash Σ
shown in Fig. 1,
(i) if the equilibrium point h∗ is in memory zones, Σ is
uncontrollable and unobservable;
(ii) if the equilibrium point h∗ is in linear zones, and if Σ is
controllable (observable) , then its input and output linear
subsystems Li (i = 1, 2) are all controllable (observable).

The proof can be found in Appendix.

Remark 5. In other cases the result is not true. In
other words, even if Li (i = 1, 2) are all controllable
(observable), we cannot guarantee that Li (i = 1, 2) are
all controllable (observable).

5. Numerical examples

In this section, the proposed approach is used to analyze
the observability and controllability of sandwich systems
with backlash. Two numerical examples will be presented.

Example 1. In this example, L1 and L2, the linear
dynamic subsystems, are respectively described by

L1 :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 =

⎛

⎝
0 0 −1
1 0 −3
0 1 −3

⎞

⎠x1 +

⎛

⎝
1
1
0

⎞

⎠u,

h =
(
1 0 −2

)
x1

(39)

and

L2 :

⎧
⎨

⎩

ẋ2 =

( −1 1
−1 0.5

)

x2 +

(
0
1

)

v,

y =
(
0 1

)
x2.

(40)

Suppose that the parameters of backlash in the
system are m1 = 0.3, m2 = 0.5, D1 = 0.4, D2 = 0.2 ,
Then, by (19), the state-space equations for the sandwich
system with backlash by linearization are

Σ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 −1 0 0
1 0 −3 0 0
0 1 −3 0 0
0 0 0 −1 1
a 0 −2a −1 0.5

⎞

⎟
⎟
⎟
⎟
⎠

x+

⎛

⎜
⎜
⎜
⎜
⎝

1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

u

y =
(
0 0 0 0 1

)
x.

(41)
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Based on (24) and (29),

M =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 −1 2 −3
1 1 −3 5 −7
0 1 −2 3 −4
0 0 1 −2.5a 3.75a
0 a −1.5a 1.25a −0.875a

⎞

⎟
⎟
⎟
⎟
⎠

, (42)

N =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 1
a 0 −2a −1 0.5

0.5a −2a 4a 0.5 −0.75
−2.75a 4a −5a 0.25 0.125
4.125a −5a 5.5a −0.375 0.3125

⎞

⎟
⎟
⎟
⎟
⎠

.

(43)
Obviously, the input linear subsystem L1 is

uncontrollable but observable, and the output linear
subsystem L2 is controllable and observable.

Suppose u = sin t and x1(0) = 0 if we take
the output of subsystem L1 as the input directly to
subsystem L2; the state responses of L1 and L2 are
shown in Figs. 2 and 3, and the dotted line denotes the
corresponding system response. Notice that x(j)

i means
the j-th component of state vector xi for Li. Moreover,
from the state equations of L2, we know that Fig. 3(b)
represents the output of the whole system Σ. Thus, both
Fig. 2 and Fig. 3 illustrate the system response without
the effect of backlash.

We now analyze the observability and controllability
of this sandwich system with backlash Σ.

In the following, two cases will be discussed.

(i) Equilibrium point h∗ is in linear zones.
In this case, a �= 0, rank(M) = 4, rank(N) = 4, and the
system

∑
is uncontrollable and unobservable.

Remark 6. In fact, from Theorem 2, Σ is obviously
uncontrollable, since L1 is uncontrollable.

(ii) Equilibrium point h∗ is in memory zones.
In this case, a = 0, and rank(M) = 2, rank(N) = 2, so
the system Σ is uncontrollable and unobservable.

Remark 7. With the use of Theorem 2, since the
equilibrium point h∗ is in memory zones of backlash,
Σ is inevitably uncontrollable (unobservable). Moreover,
though subsystems Li (i = 1, 2) are all observable, Σ is
unobservable when h∗ is in increase or decrease zones,
which shows that the observability of Σ is affected by
backlash.

In Fig. 4, both the input and output of backlash
are illustrated. The corresponding state response of
subsystem L2 is given in Fig. 5.

Remark 8. As can be seen in Fig. 4, while equilibrium
point is in memory zones, the peak output of v is cut to

flat. The state information of the input system L1 was
distorted by backlash.

Remark 9. By comparing Fig. 5 with Fig. 3, it
can be seen that the response of each state has changed
completely in the cases with and without the affection of
backlash. As the role played by the backlash, in Fig. 5, the
control input u cannot completely affect the state vector
x2 of the output linear subsystem, which demonstrates
non-smooth characteristic.

�
Example 2. Let us consider the following system:

L1 :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 =

⎛

⎝
0 0 −1
1 0 −3
0 1 −3

⎞

⎠x1 +

⎛

⎝
1
1
0

⎞

⎠u,

h =
(
0 1 −2

)
x1

(44)

and

L2 :

⎧
⎨

⎩

ẋ2 =

( −4 5
1 0

)

x2 +

( −5
1

)

v,

y =
(
1 −1

)
x2.

(45)

Obviously, both L1 and L2 are uncontrollable and
unobservable.

Suppose that the parameters of backlash in the
system are m1 = 0.7, m2 = 0.8, D1 = 0.5, D2 = 0.1.
Then, by (19), the state-space equations of the sandwich
system with backlash by linearization are

Σ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 −1 0 0
1 0 −3 0 0
0 1 −3 0 0
0 −5a 10a −4 5
0 a −2a 1 0

⎞

⎟
⎟
⎟
⎟
⎠

x

+

⎛

⎜
⎜
⎜
⎜
⎝

1
1
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

u,

y =
(
0 0 0 1 −1

)
x.

(46)

Suppose that u = sin t and x1(0) = 0 if we take the
output of L1 as the input directly to L2; the corresponding
response curve is shown in Figs. 6 and 7.

By (19), the state-space equations of the sandwich
system with backlash can be derived. Then we know
that the sandwich system Σ is uncontrollable and
unobservable. Figure 8 shows the input and output of
backlash while Fig. 9 presents the corresponding response
of L2.

Remark 10. By comparing Fig. 7 with Fig. 9, it is
known that, as for backlash, the control input u cannot
completely affect the state x2. Then, the output of L2 will
not be able to receive the complete information sent from
subsystem L1.

�
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Fig. 4. Input and output of L1 (a), output of backlash (b).

0 5 10 15 20 25 30
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

L
2
 : Response of x

2
(1)

Time (sec)

A
m

pl
itu

de

0 5 10 15 20 25 30
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

L
2
 : Response of x

2
(2)

Time (sec)

A
m

pl
itu

de

(a) (b)

Fig. 5. State response of subsystem L2 with the affection of backlash.
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Fig. 6. State response of subsystem L1.

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

L
2
 : Response of x

2
(1)

Time (sec)

A
m

pl
itu

de

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

L
2
 : Response of x

2
(2)

Time (sec)

A
m

pl
itu

de

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The output of L
2
 : y

Time (sec)

A
m

pl
itu

de

(a) (b) (c)

Fig. 7. State response of subsystem L2 without the affection of backlash.
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Fig. 8. Input and output of L1 (a), output of backlash (b).
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Fig. 9. State response of subsystem L2 with the affection of backlash.

6. Conclusion

In this paper, a non-smooth state-space function was
proposed for sandwich systems with backlash. In
order to analyze the observability and controllability of
sandwich systems with backlash, a linearization technique
based on non-smooth optimization was employed to
linearize non-smooth state-space function. This paper
gives not only a sufficient condition for sandwich
systems to be observable and controllable within a
bounded region around the equilibrium point, but also
a necessary condition. Moreover, this paper makes an
analysis of relationships between the dimension of the
observable and controllable spaces of sandwich systems
and their subsystems. Finally, numerical examples were
presented to intuitively analyze how observability and
controllability of the sandwich systems are influenced by
the existence of backlash.

The analysis of the controllability of sandwich
systems with backlash in this paper only concerns the
case when the control variable is unconstrained. However,
in control engineering, the control variable is often
constrained. In this case, the controllability problem
becomes whether sandwich systems with backlash and
input saturation are controllable. Obviously, it is an even
more complex and interesting topic to be investigated and
will be our research task in the future.
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Appendix

Observability and controllability analysis

In this appendix, the proof of Theorem 2 is given.

Consider the two cases below.
I. In the case of memory zones, by virtue of Lemma 1, it
holds that

r(M) = r(M1) ≤ n1 < n1 + n2 = n. (A1)

That is, r(M) < n, so Σ is uncontrollable.
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Similarly,

r(N) = r(N2) ≤ n2 < n1 + n2 = n, (A2)

so Σ is unobservable.

II. In the case of linear zones, if Σ is controllable,
by (22), we have

rank(M)

= rank

(
B1 A1B1 A2

1B1

O ak1B2 a(k2B2 + k1A2B2)

. . . An−1
1 B1

. . . a(kn−1B2 + kn−2A2B2 + . . .+ k1A
n−2
2 B2)

)

= n.

(A3)

Then

rank
(
B1 A1B1 A2

1B1 . . . An−1
1 B1

)
=n1.

(A4)
From (34), we then have

rank(M1) = rank(M) = n1; (A5)

that is, the input linear subsystem L1 is controllable.

On the other hand, we deduce that the output
subsystem L2 is also controllable: if Σ is controllable,
then

rank( 0 ak1B2 a(k2B2 + k1A2B2) . . .

a(kn−1B2 + kn−2A2B2 + . . .+ k1A
n−2
2 B2) )

= n2.
(A6)

Since the column vectors

0, ak1B2, a(k2B2 + k1A2B2), . . .

a(kn−1B2 + kn−2A2B2 + . . .+ k1A
n−2
2 B2)

can be linearly represented by the column vectors

B2, A2B2, A2
2B2, . . . , An−2

2 B2,

we derive

n2 ≤ rank(B2 A2B2 A2
2B2 . . . An−2

2 B2)

= rank(B2 A2B2 . . . A
(n2−1)+(n1−1)
2 B2).

(A7)

Define the polynomial

P (λ)
Δ
= |λE−A2| =λn2 +dn2−1λ

n2−1+ . . .+d0 (A8)

as the characteristic polynomial of A2. By using
the Cayley–Hamilton theorem, it can be proved that
the column vectors A

(n2−1)+1
2 B2, A

(n2−1)+2
2 B2, . . .,

A
(n2−1)+(n1−1)
2 B2 can be linearly represented by the

column vectors B2, A2B2, . . ., An2−1
2 B2.

In consequence, we can deduce that

n2 ≤ rank(B2 A2B2 . . . A
(n1−1)+(n2−1)
2 B2)

= rank(B2 A2B2 . . . A
(n2−1)
2 B2)

= rank(M2)

(A9)

because rank(M2) ≤ n2, which makes rank(M2)=n2.
That is, L2 is controllable.

Thus, it can be concluded that Li (i = 1, 2) are
controllable if Σ is controllable. Similarly, it can be
proved that Li (i = 1, 2) are observable if Σ is observable.
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Revised: 10 April 2015


	Introduction
	Description of the sandwich model with backlash
	Observability and controllability matrices
	Controllability matrix
	Observability matrix

	Observability and controllability analysis
	Numerical examples
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


