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The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor
continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of
continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems
are established. The discussion is illustrated with a numerical example.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial condition state
remains forever in the positive orthant for all nonnegative
inputs. An overview of the state of the art in positive
systems theory is given in the monographs of Farina and
Rinaldi (2000) as well as Kaczorek (2001), and in the
papers by Kaczorek (1997; 1998a; 2011a; 2014a; 2014b;
2015b). Models having positive behavior can be found
in engineering, economics, social sciences, biology and
medicine, etc.

Fractional systems were investigated by Kaczorek
(2012) and Ostalczyk (2016). Descriptor (singular)
linear systems were considered in many papers and
books (Gantmacher, 1959; Campbell et al., 1976; Van
Dooren, 1979; Kucera and Zagalak, 1988; Dai, 1989;
Fahmy and O’Reill, 1989; Kaczorek, 1997; 1998a;
Bru et al., 2000; 2003; Virnik, 2008; Dodig and
Stosic, 2009; Duan, 2010). Positive standard and
descriptor systems and their stability were analyzed by
Kaczorek (1998a; 2001; 2011b; 2014b; 2015b) and
Virnik (2008). Positive linear systems with different
fractional orders were addressed by Kaczorek (2011b;
2012), along with descriptor positive discrete-time and
continuous-time nonlinear systems (Kaczorek, 2014a),
the positivity and linearization of nonlinear discrete-time
systems by state feedbacks (Kaczorek, 2014b), or new
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stability tests of positive standard and fractional linear
systems (Kaczorek, 2011a). The stability and robust
stabilization of discrete-time switched systems were
analyzed by Zhang et al. (2014a; 2014b), while the
controllability of dynamical systems was investigated by
Klamka (2013).

Recently, a new definition of the fractional derivative
without a singular kernel has been proposed (Caputo and
Fabrizio, 2015; Losada and Nieto, 2015). Using this new
definition, the fractional descriptor continuous-time linear
systems will be investigated.

The paper is organized as follows. In Section 2,
the Weierstrass–Kronecker decomposition theorem is
applied and the solution of the state equation of
fractional descriptor continuous-time linear systems is
given. Necessary and sufficient conditions for positivity
are established in Section 3 and for asymptotic stability
in Section 4, where also tests for checking stability are
given. A numerical example is presented in Section 5.
Concluding remarks are given in Section 6.

The following notation will be used: R, the set of
real numbers; Rn×m, the set of n × m matrices; Rn×m

+ ,
the set of real n×m matrices with nonnegative entries and
R

n
+ = R

n×1
+ ; Mn, the set of n×n Metzler matrices (with

nonnegative off-diagonal entries); In, the n × n identity
matrix.
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2. Fractional descriptor continuous-time
linear systems

Consider the fractional descriptor continuous-time linear
system

ECFDαx(t) = Ax(t) +Bu(t), 0 < α < 1, (1a)

y(t) = Cx(t), (1b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, A ∈ R
n×n, B ∈ R

n×m, C ∈
R

p×n, D ∈ R
p×m, and

CFDαx(t)

=
dαx(t)

dtα

=
1

1− α

t∫

0

exp

(
− α

1− α
(t− τ)

)
ẋ(τ)dτ,

ẋ(τ) =
dx(τ)

dτ , t ≥ 0,

(2)

is the Caputo–Fabrizio fractional derivative of order α of
the state vector x(t) ∈ R

n (Caputo and Fabrizio, 2015;
Losada and Nieto, 2015).

It is assumed that detE = 0 and

det[Eλ−A] �= 0 (3)

for some λ ∈ C.
It is well-known (Kaczorek, 1998b) that if (3) holds

then there exists a pair of nonsingular matrices P,Q ∈
R

n×n such that

P [Eλ−A]Q =

[
In1 0
0 N

]
λ−

[
A1 0
0 In2

]
,

n1 + n2 = n,

(4)

where n1 = deg det[Eλ − A], A1 ∈ R
n1×n1 and

N ∈ R
n2×n2 is a nilpotent matrix with the index μ (i.e.,

Nμ = 0 and Nμ−1 �= 0). The matrices P , Q, A1 can be
found by the use of elementary row and column operations
(Kaczorek, 1998b).

Premultiplying (1a) by the matrix P ∈ R
n×n,

introducing the new state vector

x̄(t) = Q−1x(t) =

[
x̄1(t)
x̄2(t)

]
,

x̄1(t) =

⎡
⎢⎢⎢⎣

x̄11(t)
x̄12(t)
...
x̄1n1 (t)

⎤
⎥⎥⎥⎦ ,

x̄2(t) =

⎡
⎢⎢⎢⎣

x̄21(t)
x̄22(t)
...
x̄2n2 (t)

⎤
⎥⎥⎥⎦

(5)

and using (4), we obtain

dαx̄1(t)

dtα
= A1x̄1(t) +B1u(t), (6a)

N
dαx̄2(t)

dtα
= x̄2(t) +B2u(t), (6b)

where

PB =

[
B1

B2

]
, B1 ∈ R

n1×m, B2 ∈ R
n2×m. (7)

Theorem 1. The solution x̄1(t) of Eqn. (6a) for a given
initial condition x̄1(0) = x̄10 ∈ R

n1 and an input u(t) ∈
R

m, t ≥ 0, has the form

x̄1(t) = eÂ1t(ˆ̄x10 + B̂1u0)

+

t∫

0

eÂ1(t−τ)B̂1[βu(τ) + u̇(τ)] dτ,
(8a)

where

Â1 = α[In1 − (1− α)A1]
−1A1,

B̂1 = [In1 − (1 − α)A1]
−1(1− α)B1,

ˆ̄x10 = [In1 − (1− α)A1]
−1x̄10,

eÂ1t = L−1{In1s− Â1]
−1},

β =
α

1− α
, u̇(τ) =

du(τ)

dτ
, u(0) = u0.

(8b)

The proof is given by Kaczorek (2015a).

Theorem 2. The solution x̄2(t) of Eqn. (6b) for a given
initial condition x̄2(0) = x̄20 ∈ R

n2 and an input u(t) ∈
R

m, t ≥ 0, has the form

x̄2(t) = eN̂t(Ñ x̄20 + B̃2u0)

+

t∫

0

eN̂(t−τ)B̃2[βu(τ) + u̇(τ)] dτ ,
(9a)

where

N̂ = α[N − In2(1− α)]−1,

Ñ = [N − In2(1− α)]−1N,

B̃2 = [N − In2(1− α)]−1(1 − α)B2,

β =
α

1− α
.

(9b)

Proof. Using Laplace transform (L) in (6b) as well as the
convolution theorem, we obtain

NL
[
dαx̄2(t)

dtα

]

= N
1

1− α
L
⎡
⎣

t∫

0

exp

(
− α

1− α
(t− τ)

)
˙̄x2(τ) dτ

⎤
⎦

= L[x̄2(t)] +B2L[u(t)]
(10)
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and

N
1

1− α

{
1

s+ β
[sX̄2(s)− x̄20]

}
= X̄2(s) +B2U(s),

(11)
where

X̄2(s) = L[x̄2(t)] =

∞∫

0

x̄2(t)e
−st dt,

U(s) = L[u(t)],
β =

α

1− α
,

L[e−βt] =
1

s+ β
,

L
⎡
⎣

t∫

0

exp

(
− α

1− α
(t− τ)

)
˙̄x2(τ) dτ

⎤
⎦

=
1

s+ β
[sX̄2(s)− x̄20],

L[ ˙̄x2(t)] = sX̄2(s)− x̄20.

(12)

From (10), we have

{s[N − In2(1 − α)]− In2α}X̄2(s)

= Nx̄20 + (s+ β)B̄2U(s),
(13)

where B̄2 = (1 − α)B2.
Note that the matrix [N − In2(1 − α)] is invertible.

After premultiplication of (13) by [N−In2(1−α)]−1, we
obtain

[In2s− N̂ ]X̄2(s) = [N − In2(1 − α)]−1Nx̄20

+ (s+ β)[N − In2 (1− α)]−1B̄2U(s)

= Ñ x̄20 + βB̃2U(s) + B̃2[sU(s)− u0] + B̃2u0,

(14a)

where

N̂ = α[N − In2(1− α)]−1,

Ñ = [N − In2(1 − α)]−1N,

B̃2 = [N − In2(1 − α)]−1B̄2

(14b)

and

X̄2(s) = [In2s− N̂ ]−1Ñ x̄20

+ [In2s− N̂ ]−1B̃2u0

+ β[In2s− N̂ ]−1B̃2U(s)

+ [In2s− N̂ ]−1B̃2[sU(s)− u0].

(15)

Taking into account that

L−1{[In2s− N̂ ]−1} = eN̂t (16)

and using the inverse Laplace transform as well as the
convolution theorem, we obtain (9). �

From (8) and (9), we can see that both solutions have
a similar form, which is completely different from the
standard Caputo derivative, where the subsystem (6b) has
a strictly singular solution with Dirac impulses.

3. Positive fractional linear systems

In this section, the necessary and sufficient conditions
for the positivity of fractional descriptor continuous-time
linear systems described by Eqns. (1) will be established.

Definition 1. The fractional descriptor continuous-time
linear system (1) is called (internally) positive if and only
if x(t) ∈ R

n
+ and y(t) ∈ R

p
+, t ≥ 0, for any consistent

initial conditions x0 ∈ R
n
+ and all admissible inputs

u(t) ∈ R
m
+ , u̇(t) ∈ R

m
+ , t ≥ 0.

Definition 2. The matrix Q ∈ R
n×n
+ is called monomial

if in each row and column only one entry is positive and
the remaining entries are zero.

It is well known (Kaczorek, 2001) that Q−1 ∈ R
n×n
+

if and only if the matrix Q ∈ R
n×n
+ is monomial. It is

assumed that for the positive system (1) the decomposition
(4) is possible for the monomial matrix Q. In this case,
x(t) = Qx̄(t) ∈ R

n
+ if and only if x̄(t) ∈ R

n
+, t ≥ 0. It is

also well known that premultiplication of Eqn. (1) by the
matrix P does not change its solution x(t).

Lemma 1. Let Â1 ∈ Mn1 and 0 < α < 1. Then

eÂ1t ∈ R
n1×n1
+ for t ≥ 0. (17)

The proof is similar to the one given by Kaczorek
(2001).

Theorem 3. Let the decomposition (4) of the system
(1) be possible for a monomial matrix Q ∈ R

n×n
+ . The

subsystem (6a) for 0 < α < 1 is positive if and only if

Â1 ∈ Mn1 , B̂1 ∈ R
n1×m
+ . (18)

Proof.
(Sufficiency) If Â1 ∈ Mn1 and B̂1 ∈ R

n1×m
+ then from

(8) we have x̄1(t) ∈ R
n1
+ , t ≥ 0 since by Lemma 1 eÂ1t ∈

R
n1×n1
+ and x̄10 ∈ R

n1
+ , u(t) ∈ R

m
+ , u̇(t) ∈ R

m
+ , t ≥ 0.

(Necessity) Let u(t) = 0, t ≥ 0 and x̄10 = ei (the i-th
column of the identity matrix In1). The trajectory remains
in the orthant Rn

+ only if CFDαx̄1(0) = Â1ei ≥ 0, which
implies Â1 ∈ Mn1 . If x̄10 = 0, then CFDαx̄1(0) =
B̂1u(0) ≥ 0 and this implies B̂1 ∈ R

n1×m
+ since u(0) ∈

R
m
+ is arbitrary. �

Lemma 2. If λk, k = 1, . . . , n1, are the eigenvalues of
the matrix A1, then the eigenvalues of the matrix Â1 =
α[In1 − (1− α)A1]

−1A1 are given by

λ̂k = α[1− (1− α)λk]
−1λk. (19)
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Proof. It is well known (Gantmacher, 1959) that if f(λk)
is well defined on the spectrum λk , k = 1, . . . , n1, of
the matrix A1 then the eigenvalues of the matrix f(A) are
given by f(λk), k = 1, . . . , n1. In this case, f(Â) =
α[In1 − (1− α)A1]

−1A1. �

Lemma 3. The matrix Ā1 = (1 − α)A1 ∈ R
n1×n1

for 0 < α < 1 is asymptotically stable if and only if the
matrix A1 is asymptotically stable.

Proof. The eigenvalues λ̄k, k = 1, . . . , n1 of the matrix
Ā1 are related with the eigenvalues λk, k = 1, . . . , n1, of
the matrix A1 by

λ̄k = (1 − α)λk, k = 1, . . . , n1, (20)

since the characteristic polynomials of the matrices are
related by the equality

det[In1 λ̄k − Ā1] = det[In1 λ̄k − (1− α)A1]

= (1− α)n1 det

[
In1

λ̄k

1− α
−A1

]

= (1− α)n1 det[Inλk −A1].

(21)

Therefore, from (20) it follows that Re λ̄k < 0, k =
1, . . . , n1, if and only if Reλk < 0, k = 1, . . . , n1. �

Lemma 4. The matrix

Â1 = α[In1 − (1− α)A1]
−1A1 ∈ Mn1 (22)

is asymptotically stable if and only if the eigenvaluesλk =
−αk + jβk, k = 1, . . . , n1, of the matrix A1 satisfy the
condition

[1 + (1− α)αk]αk + (1− α)β2
k = n(k) > 0.

Proof. From (22) for λ̂k = −α̂k + jβ̂k and λk = −αk +
jβk, k = 1, . . . , n1, we have

λ̂k = −α̂k + jβ̂k = α[1 − (1− α)λk]
−1λk

= α[1− (1 − α)(−αk + jβk)]
−1(−αk + jβk)

= α
1 + (1− α)αk + j(1− α)βk

[1 + (1 − α)αk]2 + [(1− α)βk]2
(−αk + jβk)

= α

(−[1 + (1− α)αk]αk − (1 − α)β2
k

[1 + (1− α)αk]2 + [(1 − α)βk]2

+ j
[1 + (1 − α)αk]βk − (1− α)αkβk

[1 + (1− α)αk]2 + [(1− α)βk]2

)

(23)

and

α̂k = α

(
[1 + (1− α)αk]αk + (1 − α)β2

k

[1 + (1− α)αk]2 + [(1− α)βk]2

)

= α
n(k)

d(k)
, k = 1, . . . , n.

(24)

From (24) it follows that α̂k > 0, k = 1, . . . , n1, if and
only if n(k) > 0, k = 1, . . . , n1. �

Lemma 5. The matrices

Â1 = α[In1 − (1− α)A1]
−1A1 ∈ Mn1 ,

B̂ = [In1 − (1− α)A1]
−1(1− α)B1 ∈ R

n1×m
+

(25)

if A1 ∈ Mn1 is asymptotically stable and B1 ∈ R
n1×m
+ .

Proof. The matrix [In1 − (1 − α)A1]
−1 ∈ R

n1×n1
+ if

the matrix A1 ∈ Mn1 is asymptotically stable (Kaczorek,
2001). Therefore, by Lemma 3 and (1 − α)B1 ∈ R

n1×m
+

for 0 < α < 1, (24) holds if A1 ∈ Mn1 is asymptotically
stable. �

From Lemma 5 and Theorem 3, we have the
following.

Theorem 4. Let the decomposition (4) of the system
(1) be possible for a monomial matrix Q ∈ R

n×n
+ . The

subsystem (6a) for 0 < α < 1 is positive if A1 ∈ Mn1 is
asymptotically stable and B1 ∈ R

n1×m
+ .

From Theorem 4, we have stronger restrictions for
the positivity of the subsystem (6a) described by the
Caputo–Fabrizio derivative. In contrast to the standard
Caputo derivative, the matrix A1 must be asymptotically
stable. The subsystem (6b) also has an additional
condition which is proved in the following theorem.

Theorem 5. Let the decomposition (4) of the system
(1) be possible for a monomial matrix Q ∈ R

n×n
+ . The

subsystem (6b) for 0 < α < 1 is positive if and only if

−B2 ∈ R
n2×m
+ , v20 = Ñ x̄20 + B̃2u0 ∈ R

n2
+ . (26)

Proof.
(Sufficiency) Observe that the matrix [N − In2(1 − α)]
is asymptotically stable and −N̂ ∈ R

n2×n2
+ (Kaczorek,

2001). If v20 ∈ R
n2
+ , then eN̂tv0 ∈ R

n2
+ . By assumption,

u(τ)+ u̇(τ) ∈ R
n2
+ , t ≥ 0 and βu(τ)+ u̇(τ) ∈ R

n2
+ since

β > 0 and eN̂(t−τ)B̃2 ∈ R
n2
+ , t ≥ 0, since B̃2 ∈ R

n2
+ .

Therefore,

t∫

0

eN̂(t−τ)B̃2[βu(τ) + u̇(τ)] dτ ∈ R
n2
+ , t ≥ 0.

(Necessity) The proof of necessity is based on Eqn. (6b).
To simplify the notation, it is assumed that the matrix N
has the form

N =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

n2×n2 . (27)
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From (6b) and (27), we have
⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

dα

dtα

⎡
⎢⎢⎢⎣

x̄21(t)
x̄22(t)
...
x̄2n2(t)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

x̄21(t)
x̄22(t)
...
x̄2n2(t)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

B21

B22

...
B2n2

⎤
⎥⎥⎥⎦u(t)

(28)

and

x̄2n2(t) = −B2n2u(t),

x̄2n2−1(t) =
dαx̄2n2 (t)

dtα
− B2n2−1u(t),

...

x̄21(t) =
dαx̄22(t)

dtα
−B21u(t).

(29)

Assuming
dαx̄2n2

dtα
≥ 0,

the subsystem (6b) is positive if and only if the conditions
(26) are satisfied. �

The considerations can be easily extended to the case
when the matrix N in (6b) has the form

N = blockdiag[ N1 · · · Nq] , q > 1 (30)

and Nk for k = 1, 2, . . . , q has the form (27).

Theorem 6. Let the decomposition (4) of the system (1)
be possible for a monomial matrix Q ∈ R

n×n
+ . The system

(1) for 0 < α < 1 is positive if and only if

(i) the conditions of Theorem 4 and (26) are satisfied,

(ii) C ∈ R
p×n
+ .

Proof. By Theorems 3–5 the solutions of Eqns. (6a) and
(6b) are positive if and only if the conditions of Theorem
4 and (26) are met. From (1b) and (5), we have

y(t) = CQQ−1x(t) = C̄x(t), (31)

where C̄ = CQ.

For a monomial matrix Q ∈ R
n×n
+ , we have

C̄ ∈ R
p×n
+ if and only if C ∈ R

p×n
+ (32)

and
y(t) ∈ R

p
+ if and only if C ∈ R

p×n
+ . (33)

�

4. Stability of positive systems

Consider the positive fractional descriptor
continuous-time linear system (1) with u(t) = 0.
Note that x̄2 = 0 and the stability of the positive system
(1) depends only on the stability of the subsystem (6a)
described by the equation

dαx̄1(t)

dtα
= A1x̄1(t), x̄1(t) ∈ R

n1
+ , A1 ∈ Mn1 . (34)

Definition 3. The positive fractional descriptor
continuous-time linear system (1) is called asymptotically
stable if

lim
t→∞ x̄1(t) = 0 for all x̄10 ∈ R

n1
+ . (35)

Theorem 7. The positive fractional system (34) is
(asymptotically) stable if and only if one of the following
equivalent conditions is satisfied (the matrix Â1 is defined
by (8b)):

(i) All coefficients of the polynomial

det[In1s− Â1]

= sn + ân−1s
n−1 + · · ·+ â1s+ â0 (36)

are positive, i.e., âk > 0 for k = 0, 1, . . . , n1 − 1.

(ii) All principal minors Mk, k = 1, . . . , n1 of the matrix
−Â1 are positive, i.e.,

M1 = |−â11| > 0,

M2 =

∣∣∣∣ −â11 −â12
−â21 −â22

∣∣∣∣ > 0,

...

Mn = det[−Â1] > 0.

(37)

(iii) The diagonal entries of the matrices

Â
(k)
1,n−k for k = 1, . . . , n1 − 1 (38a)

are negative, where Â
(k)
1,n−k are defined as follows:

Â
(0)
1,n = Â1

=

⎡
⎢⎢⎣

â
(0)
11 · · · â

(0)
1,n

...
. . .

...

â
(0)
n,1 · · · â

(0)
n,n

⎤
⎥⎥⎦

=

[
â
(0)
11 b̂

(0)
n−1

ĉ
(0)
n−1 Â

(0)
1,n−1

]
,
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Â
(0)
1,n−1 =

⎡
⎢⎢⎣

â
(0)
22 · · · â

(0)
2,n

...
. . .

...

â
(0)
n,2 · · · â

(0)
n,n

⎤
⎥⎥⎦ , (38b)

b̂
(0)
n−1 = [ â

(0)
12 · · · â

(0)
1,n ],

ĉ
(0)
n−1 =

⎡
⎢⎢⎣

â
(0)
21

...

â
(0)
n,1

⎤
⎥⎥⎦

and

Â
(k)
1,n−k = Â

(k−1)
1,n−k −

ĉ
(k−1)
n−k b̂

(k−1)
n−k

â
(k−1)
k+1,k+1

=

⎡
⎢⎢⎣

â
(k)
k+1,k+1 · · · â

(0)
k+1,n

...
. . .

...

â
(0)
n,k+1 · · · â

(0)
n,n

⎤
⎥⎥⎦

=

[
â
(k)
k+1,k+1 b̂

(k)
n−k−1

ĉ
(k)
n−k−1 Â

(k)
n−k−1

]
,

Â
(k)
1,n−k−1 =

⎡
⎢⎢⎣

â
(k)
k+2,k+2 · · · â

(0)
k+2,n

...
. . .

...

â
(0)
n,k+2 · · · â

(0)
n,n

⎤
⎥⎥⎦ ,

b̂
(0)
n−k−1 = [ â

(k)
k+1,k+2 · · · â

(k)
k+1,n ],

ĉ
(k)
n−k−1 =

⎡
⎢⎢⎣

â
(k)
k+2,k+1

...

â
(k)
n,k+1

⎤
⎥⎥⎦ ,

(38c)

for k = 1, . . . , n1 − 1.

(iv) All diagonal entries of the upper (lower) triangular
matrix

Ã1,u =

⎡
⎢⎢⎢⎣

ã11 ã12 · · · ã1,n
0 ã22 · · · ã2,n
...

...
. . .

...
0 0 · · · ãn,n

⎤
⎥⎥⎥⎦ ,

Ã1,l =

⎡
⎢⎢⎢⎣

ã11 0 · · · 0
ã21 ã22 · · · 0
...

...
. . .

...
ãn,1 ãn,2 · · · ãn,n

⎤
⎥⎥⎥⎦

(39)

are negative, i.e.,

ãkk < 0 for k = 1, . . . , n1,

and matrices Ã1 have been obtained from the matrix
Â1 with the use of an elementary row operation.

(v) There exists a strictly positive vector

λ = [ λ1 · · · λn]
T ,

λk > 0, k = 1, . . . , n1

such that

Â1λ < 0. (40)

Proof. Substituting in (8) u(t) = 0, t ≥ 0, we obtain the
solution of Eqn. (34) in the form

x̄1(t) = eÂ1tx̄10. (41)

The system (34) is stable if and only if

lim
t→∞ eÂ1t = 0 for all x̄10 ∈ R

n
+. (42)

The condition (42) is satisfied if and only if Â1 ∈ Mn1 . In
the work of Kaczorek (2001), it is shown that the system
(34) with Â1 ∈ Mn1 is asymptotically stable if and only
if one of the conditions (1)–(4) is satisfied. If the system
is asymptotically stable then from the condition one we
have â0 = det[−Â1] > 0 and −Â−1

1 ∈ R
n×n
+ (Kaczorek,

2001). Then, using (40), we obtain (−Â−1
1 )(−Â1)λ >

0 and λ > 0 if and only if the system is asymptotically
stable. �

5. Numerical example

Consider the fractional descriptor continuous-time system
described by Eqn. (1a) for α = 0.5 and

E =

⎡
⎢⎢⎣

−0.4 0 −0.5 0
−0.2 0 0 0
0.4 1 0.5 0
0.2 0 0 0

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

−0.2 1.8 0.5 0
0.4 0.4 0 0
0.2 −1.8 −0.5 0.5
−0.4 0.6 0 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

−1 −3.6
0 −0.8
−1 2.6
0 −0.2

⎤
⎥⎥⎦ ,

u(t) =

[
u1(t)
u2(t)

]
=

[
1(t)

sin(t) + 1(t)

]
,

1(t) =

{
0 for t < 0,
1 for t ≥ 0.

(43)

The pencil is regular since

det[Eλ−A] = −0.05(λ+ 1)(λ+ 2) �= 0. (44)
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In this case,

P =

⎡
⎢⎢⎣

−1 3 0 1
0 −3 0 2
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ ,

Q =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 1
2 0 0 0
0 0 2 0

⎤
⎥⎥⎦

(45)

and

[
In1 0
0 N

]
= PEQ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

[
A1 0
0 In2

]
= PAQ =

⎡
⎢⎢⎣

−1 1 0 0
0 −2 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

[
B1

B2

]
= PB =

⎡
⎢⎢⎣

1 1
0 2
−2 −1
0 −1

⎤
⎥⎥⎦ .

(46)

The matrix

Â1 = α[I2 − (1− α)A1]
−1A1

=

[
1.5 −0.5
0 2

]−1 [ −0.5 0.5
0 −1

]

=

[ −0.3333 0.1667
0 −0.5

] (47)

is an asymptotically stable Metzler matrix since its
eigenvalues are λ1 = −0.3333, λ2 = −0.5.

Note that the matrix

B̂1 = [I1 − (1− α)A1]
−1(1− α)B1

=

[
1.5 −0.5
0 2

]−1 [
0.5 0.5
0 1

]

=

[
0.3333 0.5
0 0.5

] (48)

has positive entries.

Using the Sylvester theorem, we may find the matrix

eÂt = Z1e
λ1t + Z2e

λ2t,

Z1 =
Â− I2λ2

λ1 − λ2
, Z2 =

Â− I2λ1

λ2 − λ1
.

(49)

From (47) and (49), we obtain

eÂ1t =

[
1 1
0 0

]
e−0.3333t +

[
0 −1
0 1

]
e−0.5t

=

[
e−0.333t e−0.3333t − e−0.5t

0 e−0.5t

]
.

(50)

Using (8a) with (43), (47)–(50) and

x̄10 =

[
1
1

]
,

we can find the desired solution of the subsystem (6a):

x̄1(t) =

[
ξ1(t)
ξ2(t)

]
, (51)

where

ξ1(t) = −0.7333e−0.3333t − 0.2e−0.5t − 0.4 cos(t)

+ 0.6 sin(t) + 3,

ξ2(t) = 0.2e−0.5t − 0.2 cos(t) + +0.6 sin(t) + 1.

The solution (51) of the subsystem (6a) is shown in Fig. 1.

The matrices B̃2, N̂ and Ñ have the form

B̃2 = [N − I2(1− α)]−1(1− α)B2

=

[ −0.5 1
0 −0.5

]−1 [ −1 −0.5
0 −0.5

]
=

[
2 3
0 1

]
,

N̂ = α[N − I2(1 − α)]−1 = 0.5

[ −0.5 1
0 −0.5

]−1

=

[ −1 −2
0 −1

]
,

Ñ = [N − I2(1− α)]−1N

=

[ −0.5 1
0 −0.5

]−1 [
0 1
0 0

]
=

[
0 −2
0 0

]
.

(52)

From (52), we have B̃2 ∈ R
n2×m
+ since −B2 ∈ R

n2×m
+

and −N̂ ∈ R
n2×n2
+ . We can find the matrix eN̂t using the

inverse Laplace transform,

eN̂t = L−1{[In2s− N̂ ]−1}

= L−1

[ 1
s+1

−2
(s+1)2

0 1
s+1

]

=

[
e−t −2te−t

0 e−t

]
.

(53)

Using (9a) with (43), (52), (53) and

x̄20 =

[
1
1

]
,

we can find the desired solution of the subsystem (6b):

x̄2(t) =

[ −e−t + cos(t) + 2 sin(t) + 3
sin(t) + 1

]
. (54)

The solution (54) of the subsystem (6b) is shown in Fig. 2.

The fractional descriptor system (43) is positive
since the matrix Q defined by (45) is monomial and the
conditions of Theorem 6 are satisfied. The system (43) is
also asymptotically stable since the matrix Â1 is a Metzler
matrix with eigenvalues λ1 = −0.3333, λ2 = −0.5.
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Fig. 1. State vector of the subsystem (6a).

Fig. 2. State vector of the subsystem (6b).

6. Concluding remarks

The Weierstrass–Kronecker theorem on the
decomposition of the regular pencil was extended to
fractional descriptor continuous-time linear systems
described by the Caputo–Fabrizio derivative. The
solution to the state equation was given (Theorems 1 and
2). Necessary and sufficient conditions for the positivity
(Theorems 3, 4 and 5) and stability of the systems were
established. Tests for checking the asymptotic stability
of the systems (Theorem 7) were also presented. The
discussion was illustrated with a numerical example.
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