
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 3, 543–553
DOI: 10.1515/amcs-2016-0038

RECURSIVE SET MEMBERSHIP ESTIMATION FOR OUTPUT–ERROR
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This paper presents a new formulation for set-membership parameter estimation of fractional systems. In such a context,
the error between the measured data and the output model is supposed to be unknown but bounded with a priori known
bounds. The bounded error is specified over measurement noise, rather than over an equation error, which is mainly
motivated by experimental considerations. The proposed approach is based on the optimal bounding ellipsoid algorithm for
linear output-error fractional models. A numerical example is presented to show effectiveness and discuss results.
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1. Introduction

Over the past years, fractional differentiation has
successfully been used for the description of memory
and hereditary properties of some physical phenomena
with non-exponential type decay like in fluid flow,
rheology, diffusive transport, electrical networks and
electromagnetic theory. The reader can refer to the work
of Machado et al. (2011) and the references therein for
more details. This great interest is motivated by the
compact system representation obtained when modelling
such phenomena using fractional models.

To deal with fractional modeling, parameter
estimation theory using fractional models is often used to
obtain a better system representation. A number of results
are available for parameter estimation, mainly using
different conventional approaches. For details, the reader
can refer to the works of Narang et al. (2011), Victor
et al. (2013) and Yakoub et al. (2015), and the references
therein. The conventional approaches are relevant when
a priori knowledge of statistical assumptions about
measurement noises is available. However, this is not
always the case in practice, and it is often more natural to
assume that disturbances are unknown but bounded with
a priori known bounds. In this context, the identification
approach is called set-membership or bounded-error
parameter estimation, and the result is not a parameter
vector but a set of feasible parameter vectors. A parameter

vector is said to be feasible if the error between the system
output and the model output remains in the bounded-error
interval.

The bounded-error approach to parameter estimation
problems for linear and nonlinear rational systems has
attracted the attention of many researchers. The reader
can refer to the works of Milanese et al. (1996), Raissi
et al. (2004) and Polyak et al. (2004), as well as the
references therein, for more details. For fractional
models, the development of bounded-error approaches
has begun recently. For frequency-domain identification,
there exist some approaches presented in the literature.
One uses a set inversion algorithm (Malti et al., 2010) and
an interval-based global optimization algorithm (Amairi
et al., 2012). For time-domain parameter estimation,
some methods formalizing the identification problem as
an ellipsoidal or paralellotope set estimation problem have
been used to characterize the set of all feasible parameters
which are compatible with the model, the measured data
and some prior error bounds (Amairi, 2015). In these
methods the bounds of the error at each sampling time
are specified over an equation error.

In practice, the bounded error is specified over a
measurement noise rather than over an equation error,
and then it is more suitable to use a set-membership
approach based on the output error. A first attempt is made
using an interval-based global optimization algorithm to
estimate both the coefficients and the fractional orders of
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the system (Amairi et al., 2010). The main disadvantage
of this approach is the important computational burden
which limits its use (the number of parameters to be
estimated should be less than four even with reduced
precision). In this paper, discussion will be concentrated
on the use of set-membership parameter estimation using
output-error fractional models. The proposed approach
bounds the feasible set of parameters by an ellipsoid
defined by its center and axis, and then a projection
algorithm gives the interval parameter’s uncertainties.

The paper is structured as follows. A brief review
of fractional differentiation and linear fractional orders
systems is presented in Section 2. Section 3 discusses
the principle of set-membership parameter estimation of
fractional models considering bounding the output error.
A method based on the outer bounding ellipsoid algorithm
is developed to identify a system using a fractional model.
Section 4 presents a simulation example to show the
effectiveness of the proposed method.

2. Preliminaries

Consider a SISO linear fractional order system governed
by the following fractional differential equation:

y (t) +

n∑

i=1

aiD
υaiy (t) =

m∑

j=0

bjDυbju (t), (1)

where ai ∈ R, bj ∈ R are the linear coefficients of the
differential equation, u (t) and y (t) are respectively the
input and the output signals, and Dυ is the time domain
differential operator.

The fractional orders υai and υbj are allowed to be
non-integer positive numbers and are ordered as follows
for the identifiability purpose:

υa1 < υa2 < · · · < υan,

υb0 < υb1 < · · · < υbm,
(2)

The υ-order fractional differentiation of a continuous-time
function g(t), relaxed at t = 0, i.e., g (t) = 0 for t ≤
0, is numerically evaluated using the Grünwald definition
(Samko et al., 1993):

Dυg (t) � lim
h→0

1

hυ

K∑

k=0

(−1)k
(
υ

k

)
g (t− kh),

∀υ ∈ R, (3)

where h is the sampling period, t = Kh and

(
υ

k

)
=

⎧
⎨

⎩
1 if k = 0,
υ (υ − 1) . . . (υ − k + 1)

k!
if k > 0

(4)

is Newton’s binomial generalized to fractional orders.

The Laplace transform of the υ-order fractional
differentiation of a function g (t) with null initial
conditions is defined by (Samko et al., 1993)

L{Dυg(t)} = sυG(s), (5)

where G(s) = L (g (t)) and s is the Laplace operator.
Applying the Laplace transform to the fractional

differential equation (1) yields the following fractional
transfer function:

F (s) =
B(s)

A(s)
=

m∑
j=0

bjs
υbj

1 +
n∑

i=1

aisυai

. (6)

Moreover, if F (s) is ν-commensurate1 with ν ∈ R+,
then it can be rewritten as follows:

F (s) =

M∑
J=0

bJs
Jν

1 +
N∑
I=1

aIsIν
, (7)

where N = υan/ν and M = υbm/ν are integers, and
∀I ∈ {1, . . .N}, ∀J ∈ {0, . . . ,M}:

bJ =

{
bj if ∃j ∈ {0, . . . ,m} s.t.υbj = Jν,

0 otherwise,
(8)

aI =

{
ai if ∃i ∈ {1, . . . , n} s.t. υai = Iν,

0 otherwise.
(9)

A fractional system, represented by its transfer
function (6), is bounded input bounded output (BIBO)
stable if (Matignon, 1996) there exists R satisfying

|F (s)| ≤ R (10)

and
Re (p) ≥ 0,

for any complex pole p.

In the case where F (s) is irreducible, the stability
property reads

BIBO stability

⇔ A (s) �= 0 and Re (p) ≥ 0, ∀p. (11)

A commensurate-order system described by Eqn. (7) is
BIBO stable iff (Matignon, 1996)

0 < ν < 2 (12)

and

∀sνk ∈ C, A (sνk) = 0

such that

|arg (sνk)| > ν
π

2
,

(13)

where sνk is a pole of the commensurate transfer function.

1All differentiation orders are exactly divisible by the same number,
an integral number of times.
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3. Set-membership parameter estimation
using the output-error fractional model

3.1. Problem statement. Consider a linear fractional
model given by the following differential equation:

y∗ (t) +
n∑

i=1

aiDυaiy∗ (t) =
m∑

j=0

bjDυbju∗ (t), (14)

where ai ∈ R, bj ∈ R are the linear coefficients of the
differential equation, and y∗ (t), u∗ (t) are respectively the
noise-free output and input signals.

We assume that the system output is corrupted by
additive noise η as shown in Fig. 1, i.e.,

y = y∗ + η. (15)

�
�

η

u
∗

y

y
∗

Real process

Identification

Fig. 1. Basic setup for the identification problem.

In order to derive a recursive algorithm for parameter
estimation, an indirect approach with four steps is
used here. It consists of discretization, linearization,
estimation of pseudo-coefficients, and finally return to the
continuous-time parameters.

Now, assuming that the discretization and
linearization steps are performed, the discrete linear
form of the differential equation (14) can be written as

yK = −
n∑

i=0

αiỹi,K +
m∑

j=0

βj ũj,K + eK , (16)

where

ỹi,K =

K∑

k=1

(−1)k
(
υai

k

)
yK−k, (17)

ũj,K =

K∑

k=0

(−1)k
(
υbj
k

)
u∗
K−k, (18)

αi =

ai
hυai

1 +

n∑

l=1

al
hυal

, βj =

bj
hυbj

1 +

n∑

l=1

al
hνal

, (19)

eK = ηK +

n∑

i=0

αiṽi,K ,

n∑

i=0

αi = 1, (20)

ṽi,K =

K∑

k=1

(−1)k
(
υai

k

)
ηK−k, (21)

with h being the sampling period used in the discretization
step. To ensure the stability of the discrete-time system, a
stability test can be performed as mentioned by Ostalczyk
(2012) or Busłowicz and Ruszewski (2015).

By replacing α0 in the Eqn. (16) with 1 −∑n
i=1 αi

and taking into account that ỹ0,K = 0, ∀K , we obtain the
following linear regression form:

yK = −ỹ0,K + ϕ̃K θ̃ + eK , (22)

= ϕ̃K θ̃ + eK , (23)

where

θ̃ = [α1, . . . , αn, β0, . . . , βm]
T
, (24)

ϕ̃K =
[−ỹ1,K , . . . ,−ỹn,K , ũ0,K , . . . , ũm,K

]
. (25)

The return from the pseudo-coefficients (αi and βj)
to the continuous-time parameters (ai and bj) can be
performed by solving the linear system Ax = B, where

Ai,j =

⎧
⎪⎨

⎪⎩

(αi − 1)

hυai
if i = j,

αi

hυaj
if i �= j,

(26)

Bi = −αi, (27)

x = (a1, a2, . . . , an)
T , (28)

and the coefficients bj are computed according to

bj = βj

n∑

i=0

aih
υbj

−υai . (29)

In the bounded-error context, the additive noise is
assumed to be an unknown-but-bounded sequence, i.e.,
there exists a known γ such that

|ηK | ≤ γ, ∀K ≥ 0. (30)

In this context, the problem statement is
characterizing the feasible set of parameters Θ,

Θ =
{
θ ∈ R

n+m+1 :

|yK − ŷK | ≤ γ, K = 1, . . . , Ns

}
.

(31)

where Ns is the number of samples used and ŷK is the
estimated model output.
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Using the return procedure explained above, the
feasible set of parameters Θ can be obtained from the
feasible set of pseudo-parameters Θ̃,

Θ̃ =
{
θ̃ ∈ R

n+m+1,

∣∣yK − ϕ̃T
K θ̃
∣∣ ≤ γ, K = 1, . . . , Ns

}
.

(32)

One way to solve this problem is by considering
that the equation error is bounded. This was developed
by Amairi (2015) who proposed the characterization
using the outer bounding ellipsoid strategy adapted for
estimation of fractional system parameters. To ensure
good convergence, several procedures for the selection
of the ‘best’ excitation signal and computation of the
equation-error bounds were proposed and discussed.
Also, when the system is commensurate, an iterative
algorithm was proposed to deal with commensurate-order
estimation.

In this paper, we propose the use of the bounded
output-error context instead of the bounded equation-error
one. This choice is motivated by the fact that it
is more natural to specify the noise bounds than the
equation-error bounds. In spite of the possibility to
compute equation-error bounds from noise bounds as
mentioned by Amairi (2015), the procedure remains
inaccurate because they depend on the pseudo-parameter
estimates αi, the fractional orders υai , the noise bounds γ,
and also the sampling period h.

3.2. Formulation in a bounded output-error context.
Equation (15) can be written as a linear regressive
equation as

yK = ϕ̃∗
K θ̃ + ηK , (33)

where

ϕ̃∗
K =

[−ỹ∗1,K , . . . , ỹ∗n,K , ũ0,K , . . . , ũm,K

]

is the free-noise regression vector and

θ̃ = [α1, . . . , αn, β0, . . . , βm]
T

is the vector of pseudo-parameters.

The regression vector in Eqn. (33) is partially
unknown because it contains the model output y∗K and not
the measured one yK . One solution is to replace y∗K by
yK−ηK , which leads to Eqn. (16), which can be rewritten
in the regression form as in Eqn. (23).

The regression vector

ϕ̃K = [−ỹ1,K , . . . ,−ỹn,K , ũ0,K , . . . , ũm,K ]

now contains the measured output, but it remains
unknown because it depends on the pseudo-parameters
to estimate. One way to overcome this dependence is to
reformulate the linearization procedure using the bounded
context of the additive noise.

Proposition 1. Assume that |ηK | ≤ γ. In the output-
error bounding context, two conditions delimiting the
feasible set of the pseudo-parameters should be satisfied:

ϕ̃−
K θ̃ ≤ yK + γ, (34)

ϕ̃+
K θ̃ ≥ yK − γ, (35)

where

ϕ̃+
K = [−ỹ1,K + sgn (α1) γ̃1, . . . ,−ỹn,K + sgn (αn) γ̃n,

ũ0,K , . . . , ũm,K ] ,

(36)

ϕ̃−
K = [−ỹ1,K − sgn (α1) γ̃1, . . . ,−ỹn,K − sgn (αn) γ̃n,

ũ0,K , . . . , ũm,K ] ,

(37)

and
γ̃i = (c (υai)− 1) γ,

with

c (υai) =

�υai
�∑

k=0

(
1 + (−1)k+�υai

�
)(υai

k

)
.

Here sgn(x) denotes the function whose value is +1 if
x ≥ 0 and −1 if x < 0.

Proof. The inequality

yK − γ ≤ y∗K ≤ yK + γ, ∀K (38)

leads to

yK−k − γ ≤ y∗K−k ≤ yK−k + γ,

∀K, k ∈ {0, . . . ,K} . (39)

Taking into account the sign of
(υai

k

)
and the parity

of k, we obtain

(−1)k
(
υai

k

)(
yK−k − sgn

(
(−1)k

(
υai

k

))
γ

)

≤ (−1)
k

(
υai

k

)
y∗K−k

≤ (−1)k
(
υai

k

)(
yK−k + sgn

(
(−1)k

(
υai

k

))
γ

)
.

(40)
Summing all these terms, we obtain

K∑

k=1

(−1)
k

(
υai

k

)(
yK−k − sgn

(
(−1)

k

(
υai

k

))
γ

)

≤ ỹ∗i,K

≤
K∑

k=1

(−1)
k

(
υai

k

)(
yK−k + sgn

(
(−1)

k

(
υai

k

))
γ

)
.

(41)
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Furthermore, we have

ỹi,K −
∞∑

k=1

∣∣∣∣(−1)
k

(
υai

k

)∣∣∣∣ γ

≤ ỹi,K −
K∑

k=1

∣∣∣∣(−1)k
(
υai

k

)∣∣∣∣ γ

≤ ỹ∗i,K

≤ ỹi,K +

K∑

k=1

∣∣∣∣(−1)
k

(
υai

k

)∣∣∣∣ γ

≤ ỹi,K +

∞∑

k=1

∣∣∣∣(−1)
k

(
υai

k

)∣∣∣∣ γ.

(42)

Consider

c (υai) �
∞∑

k=0

∣∣∣∣

(
υai

k

)∣∣∣∣ < ∞,

which can be represented as a finite sum as (Samko et al.,
1993)

c (υai) =

�υai
�∑

k=0

(
1 + (−1)

k+�υai
�)
(
υai

k

)
, (43)

where 
υai� means the largest integer not greater than υai .
Then we obtain

ỹi,K − (c (υai)− 1) γ ≤ ỹ∗i,K
≤ ỹi,K + (c (υai)− 1) γ.

(44)

Taking into account the sign of αi, we have

n∑

i=1

αi (ỹi,K − sgn (αi) (c (υai)− 1) γ)

≤
n∑

i=1

αiỹ
∗
i,K

≤
n∑

i=1

αi (ỹi,K + sgn (αi) (c (υai)− 1) γ)

(45)

Changing the sign, we get

n∑

i=1

αi (−ỹi,K − sgn (αi) (c (υai)− 1) γ)

≤ −
n∑

i=1

αiỹ
∗
i,K

≤
n∑

i=1

αi (−ỹi,K + sgn (αi) (c (υai)− 1) γ),

(46)

which provides bounds for yK ,

n∑

i=1

αi (−ỹi,K − sgn (αi) (c (υai)− 1) γ) +

m∑

j=1

βj ũj,K

≤ y∗K

≤
n∑

i=1

αi (−ỹi,K + sgn (αi) (c (υai)− 1) γ)

+
m∑

j=0

βj ũj,K .

(47)

But y∗K is also bounded by

yK − γ ≤ y∗K ≤ yK + γ. (48)

Accordingly, in order to make these two pairs of
inequalities coherent, two conditions should be satisfied:

n∑

i=1

αi (−ỹi,K − sgn (αi) γ̃i) +

m∑

j=0

βj ũj,K

≤ yK + γ (49)

and

n∑

i=1

αi (−ỹi,K + sgn (αi) γ̃i) +

m∑

j=0

βj ũj,K

≥ yK − γ, (50)

which lead respectively to (34) and (35). �

Remark 1. With this reformulation, some additional
a priori knowledge is needed, but it is limited to the values
of the differentiation orders (υai and υbj ) and the signs of
the autoregressive pseudo-parameters αi determined by

sgn (αi) = sgn (ai) sgn (α0) ,

sgn (α0) = sgn

(
n∑

l=0

al
hυal

)
,

(51)

where a0 = 1, υa0 = 0. Thereafter, using the
new formulation, one assumption employed in the
equation-error-based algorithm is relaxed. In fact, there
is no necessity to know the values of αi, and only their
sign is required.

From a geometrical point of view, the inequalities
(34) and (35) define a band ΛK =

[
H−

K , H+
K

]
of R

p,
where the band is contained between two non-parallel
hyperplanes:

H−
K =

{
θ̃ ∈ R

p : ϕ̃+
K θ̃ = yK − γ

}
, (52)

H+
K =

{
θ̃ ∈ R

p : ϕ̃−
K θ̃ = yK + γ

}
, (53)
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and p = n + m + 1 is the number of parameters to be
estimated.

The problem considered in this paper is now
reformulated as the characterization of the set of feasible
pseudo-parameters Θ̃,

Θ̃ =
{
θ̃ ∈ R

p : yK − ϕ̃+
K θ̃ ≤ γ,

yK − ϕ̃−
K θ̃ ≥ −γ, K = 1, . . . , N

}
.

(54)

One way to characterize the set Θ̃K is the
intersection of the last K bands. This intersection
operation yields a convex polyhedron with a complex
geometric form:

Θ̃K =

K⋂

k=1

Λk. (55)

In the following, an ellipsoidal approach to fractional
model estimation in the bounded output-error context is
presented.

3.3. Set-membership parameter estimation through
the outer bounding ellipsoid (OBE). The proposed
approach consists in enclosing Θ̃K with an ellipsoid

ẼK =
{
θ̃ ∈ R

p : (θ̃ − c̃K−1)
T
M̃−1

K−1(θ̃− c̃K−1) ≤ σ̃2
K

}
,

(56)
where c̃K−1 is the center of the ellipsoid and M̃K−1 is
a positive definite matrix. The axes of the ellipsoid are
determined from the eigenvectors of the matrix σ̃2

KM̃K−1.
The ellipsoid ẼK contains the intersection of the

band ΛK and the ellipsoid ẼK−1, taking into account the
new observations (yK and u∗

K)

ẼK ⊃ ẼK−1 ∩ ΛK . (57)

The construction of ẼK needs knowledge of the band
position ΛK with respect to the current ellipsoid ẼK−1.
In fact, there are five possible cases:

1. If

yK − γ ≥ ϕ̃+
K c̃K−1 +

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T

or

yK + γ ≤ ϕ̃−
K c̃K−1 −

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
,

then ẼK−1 ∩ ΛK = ∅. In this case, the new
observation is treated as erroneous and ẼK = ẼK−1.

2. If

yK − γ ≤ ϕ̃+
K c̃K−1 −

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T

and

yK + γ ≥ ϕ̃−
K c̃K−1 +

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
,

then ẼK−1 ⊂ ΛK . The new observation is
considered redundant and ẼK = ẼK−1.

3. If

yK − γ > ϕ̃+
K c̃K−1 −

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T

and

yK + γ ≥ ϕ̃−
K c̃K−1 +

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
,

then only H−
K intersects ẼK−1 and ΛK is replaced

by
[
H−

K , H++
K

]
with

H++
K =

{
θ̃ ∈ R

p, ϕ̃+
K θ̃ = ϕ̃+

K c̃K−1

+

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T
}
.

(58)

The hyperplane H++
K is tangent to ẼK−1 and

parallel to H+
K . An optimal bounding ellipsoid

(OBE) algorithm can be directly applied to obtain
ẼK .

4. If

yK − γ < ϕ̃+
K c̃K−1 −

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T

and

yK + γ < ϕ̃−
K c̃K−1 +

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
,

then only H+
K intersects ẼK−1 and ΛK is replaced

by Λ′
K =

[
H−−

K , H−
K

]
with

H−−
K =

{
θ̃ ∈ R

p, ϕ̃−
K θ̃ = ϕ̃−

K c̃K−1

+

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
}
.

(59)

The hyperplane H−−
K is tangent to ẼK−1 and

parallel to H−
K , and then an OBE algorithm can be

directly applied to obtain ẼK .

5. If

yK − γ > ϕ̃+
K c̃K−1 −

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T

and

yK + γ < ϕ̃−
K c̃K−1 +

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
,

then the two hyperplanes H−
K and H+

K are strictly
inside ẼK−1 but they are not parallel. Thus, the band
ΛK cannot be defined with a quadratic form and then
it is not possible to apply directly an OBE algorithm
to obtain ẼK .
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For the last case, two algorithms have been proposed
in the literature to construct the ellipsoid ẼK . The first
algorithm (CLE) is due to Clement and Gentil (1988),
and the construction consists of two steps. The second
one (FER) has been proposed by Ferreres and M’Saad
(1997) and needs only one step, which consists in the
construction of a hyperplane parallel to H−

K or H+
K .

Theorem 1. (Ferreres and M’Saad, 1997) If H−
K and H+

K

are strictly inside ẼK−1, then two parallel hyperplanes
can be defined as follows:

• H−∗
K is parallel to H−

K:

H−∗
K =

{
θ̃ ∈ R

p, ϕ̃+
K θ̃ = f∗

1

}
, (60)

• H+∗
K is parallel to H+

K:

H+∗
K =

{
θ̃ ∈ R

p, ϕ̃−
K θ̃ = f∗

2

}
, (61)

where

f∗
1 = ϕ̃+

K c̃K−1

+
λ2m12 +

√
(m22 − λ2

2) (m11m22 −m2
12)

m22
,

(62)

f∗
2 = ϕ̃−

K c̃K−1

+
λ1m12 −

√
(m11 − λ2

1) (m11p22 −m2
12)

m11
,

(63)

with

λ1 = y − γ − ϕ̃+
K c̃K−1,

λ2 = y + γ − ϕ̃−
K c̃K−1,

m11 =

√
ϕ̃−
KM̃K−1

(
ϕ̃−
K

)T
,

m12 =

√
ϕ̃−
KM̃K−1

(
ϕ̃+
K

)T
,

m22 =

√
ϕ̃+
KM̃K−1

(
ϕ̃+
K

)T
.

(64)

After the construction of the parallel hyperplane, the
use of an OBE algorithm is possible. As mentioned in
the literature, the FER algorithm produces an ellipsoid
with less pessimism than the CLE algorithm (Ferreres
and M’Saad, 1997). To optimize the result of the
FER algorithm, it is possible to construct two ellipsoids
(Ẽ

′
K ,Ẽ

′′
K) using (H−∗

K , H+∗
K ), and then calculate their

intersection.
The obtained ellipsoid should take into account the

old information represented by the ellipsoid ẼK−1 and
the new observations defined by hyperplanes using the

weights ρK and δK :

ẼK =
{
θ̃ ∈ R

n+m+1|

ρK(θ̃ − c̃K−1)
T
M̃−1

K−1(θ̃ − c̃K−1)

+δK(yK − ϕ̃T
K θ̃)

2 ≤ ρK σ̃2
K−1 + δKγ

}
.

(65)

The new values of c̃K , M̃K and σ̃K are recursively
obtained from their previous values using the following
expressions (Fogel and Huang, 1982):

ẽK = yK − ϕ̃T
K c̃K−1, (66)

g̃K = ϕ̃T
KM̃K−1ϕ̃K , (67)

M̃K =
1

ρK

[
M̃K−1 − δKM̃K−1ϕ̃K ϕ̃T

KM̃K−1

ρK + δK g̃K

]
, (68)

c̃K = c̃K−1 + δKM̃Kϕ̃K ẽK , (69)

σ̃2
K = ρK σ̃2

K−1 + δKγ2
K − ρKδK ẽ2K

ρK + δK g̃K
, (70)

where

ρK =
1

σ̃2
K−1

, δK =
qK
γ2

.

The variable qK is obtained from the minimization of
measure μV proportional to the ellipsoid volume (Fogel
and Huang, 1982):

μV (K) = det
(
σ̃2
KM̃K

)
. (71)

Here qK is the positive solution of

d2q
2
K + d1qK + d0 = 0, (72)

with

d2 = (p− 1)σ̃4
K−1g̃

2
K ,

d1 = ((2p− 1)γ2 − σ̃2
K−1g̃K + ẽK)σ̃2

K−1g̃K ,

d0 = (p(γ2 − ẽ2K)− σ̃2
K−1g̃K)γ2.

3.4. Return to continuous parameters. Using the
general OBE algorithm described by Eqns. (66)–(70), the
interval vector containing the coefficients αi and βj in
guaranteed way can be determined as

[
θ̃
]
=
[
θ̃−, θ̃+

]
, (73)

where

θ̃− = c̃Ns − Δ̃, (74)

θ̃+ = c̃Ns + Δ̃, (75)

Δ̃ =

√
diag

(
σ̃2
Ns

M̃Ns

)
. (76)
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The return to the interval continuous-time parameters
vector [θ] from the interval pseudo-coefficients vector [θ̃]
can be performed by solving the interval linear system of
equations [A] [x] = [B], where

[A]i,j =

⎧
⎪⎪⎨

⎪⎪⎩

([αi]− 1)

hυai
if i = j,

[αi]

hυaj
if i �= j,

(77)

[B]i = −[αi], (78)

[x] = ([a1], [a2], . . . , [an])
T . (79)

The coefficients [bj ] are determined directly by

[bj ] = [βj]

n∑

i=0

[ai]h
υbj

−υai . (80)

Remark 2. Owing to the use of the relations (74) and
(75), the ellipsoid obtained using the previous procedure is
conservative. Moreover, solving the interval linear system
of equations may lead to completely erroneous results.

To solve this problem, the following Algorithm 1
proposed by Amairi (2015) is used.

Algorithm 1. Return to continuous parameters.

Require: Δ̃, c̃Ns

• Apply the relations (74) and (75) to obtain θ̃−

and θ̃+.

• Construct a gridΩd of n+m+1 vectors obtained
from

[
θ̃−, θ̃+

]
using a suitable stepsize.

• Filter the grid by removing all elements that do
not belong to the ellipsoid ẼNs . The obtained
filtered grid is denoted by Ωd

f .

• Return to the continuous-time parameter from
each element belonging to Ωf using Eqns.
(26)–(29). The obtained set is denoted by Ωc

f .

{Returns Ωc
f}

Knowing that the return procedure is linear, the
obtained set Ωc

f will be an ellipsoid that contains all
feasible continuous parameters.

Remark 3. If the signs of the pseudo-parameters
αi are not assumed to be known a priori, then a
pre-estimation step can be performed using a classic
identification algorithm. The algorithm should produce
accurate estimates by filtering the data and using an
iterative technique such as the algorithm srivcf proposed
by Victor et al. (2013). Finally, Eqn. (51) is applied to
determine the sign of αi.

Remark 4. As long as the system is commensurate,
an iterative algorithm can be developed to estimate the
fractional commensurate order. The algorithm can be
similar to the one proposed by Amairi (2015), or to other
algorithms that minimize the output error.

In the following, the proposed method is accessed
through a numerical example. A comparative study
between the equation-error OBE algorithm and the
output-error OBE algorithm is presented to show the
efficiency of the proposed method.

4. Numerical example

Consider the BIBO stable commensurate-order fractional
system described by the following transfer function:

G (s, θ∗) =
k

(
s

ω0

)2ν

+ 2ξ

(
s

ω0

)ν

+ 1

=
b0

a2s2ν + a1sν + 1
,

(81)

where (k, ξ, ω0)
T

= (1,−0.5, 2)
T is the real parameter

vector and ν = 0.5 is the real commensurate-order.
The real parameter vector can be also written as θ∗ =
(a2, a1, b0)

T
= (0.5,−0.707, 1)

T .
System output y with constant sampling period

h = 0.05 s is generated using a pseudo random binary
sequence (PRBS) input uniformly distributed in [−1, 1],
with its power spectral density (PSD) shown in Fig. 2.
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Fig. 2. Power spectral density of the input signal.

An unknown-but-bounded noise η is added to the
system output, where |ηK | ≤ γ, ∀K ∈ {1, . . . , 10000}.

4.1. Sign determination. Before applying the
proposed algorithm, the sign of each pseudo-parameter
αi, i = 0, 1, 2 should be determined. In this
case, the simplified refined instrumental variable for the
continuous-time fractional models (srivcf) algorithm is
used because it is known to produce accurate estimates
(Victor et al., 2013). Using Eqn. (51) leads to the sign of
αi as mentioned in Table 1.
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Table 1. Signs of the pseudo-parameters αi, i = 0, 1, 2.
Pseudo-parameter sign

α0 +1

α1 −1

α2 +1

4.2. Comparative study. In order to compare the
results obtained with the output-error approach with those
presented by Amairi (2015), a noise realization with γ =
0.005 is used as presented in Fig. 3.
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Fig. 3. Additive bounded noise with γ = 0.005.

By applying the proposed method using the
Fogel–Huang (FH) algorithm (Fogel and Huang, 1982;
Milanese et al., 1996), an ellipsoid enclosing the set
of feasible pseudo-parameters Θ̃ is obtained. Figure 4
presents the evolution of the ellipsoid volume.

� �� ��� ��� ��� ��� ��� ��� ��� ��� ���
���

���

���

����

����

����

�������	
�������	���

V
o
lu
m
e

Time (s)

Fig. 4. Evolution of the ellipsoid volume using the output-error
approach.

Now, the return to continuous parameters is used to
obtain the values relative to the center of the ellipsoid.
Figure 5 and Table 2 show respectively the time evolution
of these estimated parameters and the final values for the
equation-error and output-error approaches.
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Fig. 5. Evolution of the estimated parameters relative to the
ellipsoid center.

Table 2. Ellipsoid center.
Approach Center

equation-error OBE (0.497,−0.705, 0.997)

output-error OBE (0.499,−0.703, 1.004)

From the previous results it is clear that the
proposed method leads to an ellipsoid with a reduced
volume and has good convergence properties. But the
OBE algorithm naturally leads to conservatism in the
pseudo-parameter space and more in the continuous-time
parameter space. This conservatism can be reduced
using the appropriate projection algorithm (Algorithm 1).
Figure 6 presents the ellipsoid enclosing the set of all
the feasible continuous-time parameters with 12 data
recirculations. Data recirculation is a technique used to
optimize the results (reduction of the ellipsoid volume and
an improvement of the convergence properties) (Milanese
et al., 1996).
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Fig. 6. Ellipsoid enclosing the set of all feasible continuous-
time parameters with 12 data recirculations.

To provide more evidence on the effectiveness of
the proposed method, the obtained ellipsoid is projected
in the continuous-parameter space after obtaining the set
Ωf by Algorithm 1. As shown in Table 3, the proposed
method leads to minimum-width intervals for any number
of recirculations.

4.3. Monte Carlo simulations. In several situations,
the noise may not be a white process or may not even be
stationary. It may have sinusoidal components, or it may
be impulsive in other cases. Therefore, in this section the
performances of the proposed method are shown when
the noise is, e.g., an additive sum of white noise and a
sinusoid.

Consider as input a PRBS signal uniformly
distributed in [−1, 1]. The noise is generated by

ηK = A sin(ωKh) +
γ

2
w, (82)
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Table 3. Interval continuous-time parameters based on the number of recirculations (projection of Ωc
f onto the parameter space).

Algorithm
Number of recirculations

1 5 12

Equation error
[a2] [0.4432, 0.5786] [0.4504, 0.5703] [0.4509, 0.5690]
[a1] [−0.7836,−0.6264] [−0.7809,−0.6303] [−0.7753,−0.6347]
[b0] [0.8523, 1.2156] [0.8600, 1.2031] [0.8576, 1.2012]

Output error
[a2] [0.4458, 0.5713] [0.4575, 0.5555] [0.4593, 0.5512]
[a1] [−0.7708,−0.6423] [−0.7599,−0.6538] [−0.7564,−0.6574]
[b0] [0.8795, 1.1669] [0.8929, 1.1405] [0.8948, 1.1340]

where w is a white process uniformly distributed in
[−1, 1], A satisfies 0 ≤ A ≤ γ/2, ω is a frequency taken
randomly between π/20 and π/5, and h = 0.05 s.

The noise ηK remains bounded with a known bound
γ = 0.005, and 500 Monte Carlo runs of the proposed
OBE algorithm with Ns = 10000 are performed. Figure 7
shows two arbitrary noise sequences taken from the 500
generated ones. Table 4 contains the continuous-time
parameters relative to the center of the ellipsoid, the
volume, and the FIT, which is defined as follows:

FIT = 100×

⎛

⎜⎜⎜⎜⎝
1−

√√√√√√√√

Ns∑
k=1

(yk − ŷk)
2

Ns∑
k=1

(yk − ȳ)
2

⎞

⎟⎟⎟⎟⎠
, (83)

where ȳ is the mean value of the output signal and ŷ is the
estimated output signal.
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Fig. 7. Different bounded noise signals with sinusoidal

components.

Table 4. Mean values of the continuous parameters relative to
the ellipsoid center.

a2 a1 b0 Volume(×10−5) FIT

0.5022 −0.7035 1.007 1.618 98.55

The obtained results confirm the consistency of the
proposed algorithm even if the noise is not white. This

is confirmed by the interval parameters obtained after
projection of Ωf as shown in Table 5.

Table 5. Interval continuous-time parameters obtained by the
output-error OBE algorithm when the noise is not
white (projection of Ωc

f onto the parameter space).
[a2] [0.4375, 0.5938]

[a1] [−0.8113,−0.6183]

[b0] [0.8149, 1.2597]

5. Conclusion

This paper focused on set-membership parameter
estimation of a fractional system in a bounded-error
context using outer bounding ellipsoid algorithms. The
main idea consisted in reformulating the characterization
of the ellipsoid enclosing the feasible set of discrete
parameters (pseudo-parameters) using the bounded
output-error context instead of the equation-error
one. First, a simple method to determine the sign
of the pseudo-parameters was presented and tested.
This information was then used in the proposed
set-membership method to enclose the feasible set of
pseudo-parameters with an ellipsoid of a reduced volume.
Once obtained, the ellipsoid was transformed into another
ellipsoid that encloses the feasible set of continuous
parameters using an algorithm that offers minimum
conservatism.

The performances of the proposed method were
evaluated through a second-order fractional system.
Monte Carlo simulations showed that the method provides
proper interval parameters even if the noise is not white.
Therefore, the method offers a framework to estimate
uncertainties of a fractional system, especially for an
adaptive control scheme. Hence, it will be interesting, in
future developments, to extend this method to deal with
colored output noise and adapt it to the errors-in-variables
context.
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