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The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the
shallow water wave problem. A weak formulation and the Petrov–Galerkin method are used. It is shown that the FEM
gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new
results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into
account stochastic effects, which will be discussed in a subsequent paper.
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1. Introduction

The Korteveg–de Vries equation appears as a model for
the propagation of weakly nonlinear dispersive waves in
several fields. Among them, there are gravity driven
waves on a surface of an incompressible irrotational
inviscid fluid (Whitham, 1974; Infeld and Rowlands,
2000; Remoissenet, 1999; Drazin and Johnson, 1989;
Marchant and Smyth, 1990; Dingemans, 1997), ion
acoustic waves in plasma (Infeld and Rowlands, 2000),
impulse propagation in electric circuits (Remoissenet,
1999), and so on. In the shallow water wave problem the
KdV equation corresponds to the case when the bottom is
even. There have been many attempts to study nonlinear
waves in the case of an uneven bottom because of its
significance, for instance, in phenomena such as tsunamis.
Among the first papers dealing with a slowly varying
bottom are those of Mei and Le Méhauté (1966) as
well as Grimshaw (1970). When taking an appropriate
average of vertical variables, one arrives at Green–Nagdi
type equations (Green and Naghdi, 1976; Nadiga et al.,
1996; Kim et al., 2001). Van Groesen and Pudyaprasetya
(1993; 1996) studied uni-directional waves over a slowly

∗Corresponding author

varying bottom within the Hamilton approach, obtaining
a forced KdV type equation. An extensive study of
wave propagation over an uneven bottom conducted
before 2000 is summarized in Dingemans’s monograph
(Dingemans, 1997). The papers by Nakoulima et al.
(2005), Grimshaw et al. (2008) and Pelinovsky et al.
(2010) are examples of approaches that combine linear
and nonlinear theories. The Gardner equation and the
forced KdV equation were also extensively investigated
in this context (see, e.g., Grimshaw and Smyth, 1986;
Smyth, 1987; Kamchatnov et al., 2012).

In our previous papers (Karczewska et al., 2014b;
2014a) we derived a new KdV type equation containing
terms which come directly from an uneven bottom. These
terms, however, appear naturally only if Euler equations
for the fluid motion are considered up to the second
order in small parameters, whereas the KdV equation
is obtained in a first order approximation. There are
no analytic solutions for the above equation. We also
presented several cases of numerical simulations for that
equation obtained using the finite difference method
(FDM) with periodic boundary conditions (Karczewska et
al., 2014b; 2014a).
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It was demonstrated by Debussche and Printems
(1999) that the finite element method (FEM) describes
properly the dynamics of the KdV equation (6), which is
the equation in a moving frame of reference.

The first aim of this paper is to construct an effective
FEM method for solving higher order KdV equations,
both with an even and an uneven bottom. The second
goal is to compare the results obtained in this numerical
scheme with some of the results obtained earlier using
the finite difference method (Karczewska et al., 2014b;
2014a).

The paper is organized as follows. In Section 2
we review the KdV equation (4), the extended KdV
equation (3) and the KdV type equation containing direct
terms from bottom variation (1), all expressed in scaled
dimensionless variables. In Section 3 the construction
of the numerical method for solving these equations
within the FEM is described. Coupled sets of nonlinear
equations for coefficients of expansion of solutions to
these equations in a basis of piecewise linear functions
are obtained. In Section 4 several examples of numerical
simulations are presented.

2. Preliminaries

Extended KdV type equations, derived by some of the
authors (Karczewska et al., 2014b; 2014a), second order
in small parameters, have the following form (written in
scaled dimensionless coordinates, in a fixed coordinate
system), for the case with an uneven bottom:
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3
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Details of the derivation of the second order equation (1)
from the set of Euler equations with appropriate boundary
conditions can be found in the works of Karczewska et
al. (2014b; 2014a). In (1), η(x, t) stands for a wave
profile and h = h(x) denotes a bottom profile. Subscripts
are used for notation of partial derivatives, that is, for
instance, η2x ≡ ∂2η/∂x2, and so on. Small parameters
α, β, δ are defined by ratios of the amplitude of the wave
profile a, the depth of undisturbed water h0, average
wavelength l and the amplitude of the bottom changes
ah:

α =
a

h0
, β =

(
h

l

)2

, δ =
ah
h0
. (2)

For details of the transformation of the original
dimensional variables to the nondimensional, scaled ones
used here, see, e.g., the works of Karczewska et al.
(2014b; 2014a) or Burde and Sergyeyev (2013).

It should be emphasized that in Eqn. (1) all the
three terms originating from an uneven bottom are second
order in small parameters. These terms appear from the
boundary condition at the bottom, which is already in the
second order with the coefficient βδ (see Karczewska et
al., 2014a, Eqn. (5); 2014b, Eqn. (10)). Then in the final
second order equation (1) we write them in the form βδ(·)
in order to emphasize that they all come from the second
order perturbation approach. For details we refer to the
above-mentioned papers.

In the case of an even bottom (δ = 0), Eqn. (1) is
reduced to the second order KdV type equation,

ηt + ηx + α
3
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and, when β = α, it becomes identical to Eqn. (21) of
Burde and Sergyeyev (2013). Equation (3) was obtained
earlier by Marchant and Smyth (1990) and is called the
extended KdV equation.

Limitation to the first order approximation in small
parameters gives KdV in a fixed system of coordinates

ηt + ηx + α
3

2
ηηx + β

1

6
η3x = 0. (4)

The standard, mathematical form of the KdV
equation is obtained from (4) by transformation to a
moving reference frame. Substituting

x̄ =

√
3

2
(x− t), t̄ =

1

4

√
3

2
α t, u = η, (5)

one obtains from (3) the equation

ut̄ + 6 u ux̄ +
β

α
u3x̄ = 0, (6)

or finally, when β = α,

ut̄ + 6 u ux̄ + u3x̄ = 0. (7)

In this paper we attempt to solve numerically Eqn. (1)
for several cases of bottom topography and different initial
conditions. In several aspects we follow the method
applied by Debussche and Printems (1999). However, the
method is extended to higher order KdV type equations
with a plain bottom (3) and with bottom fluctuations (1).
For both the cases we work in a fixed reference system,
necessary for a bottom profile depending on the position.

3. Numerical method

The emergence of soliton solutions to the KdV equation
was observed in numerics fifty years ago by Zabusky
and Kruskal (1965). Several numerical methods used
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for solving the KdV equation are discussed by Taha
and Ablowitz (1984). Among them there are the finite
difference explicit method (Zabusky and Kruskal, 1965),
the finite difference implicit method (Goda, 1975) and
several versions of the pseudospectral method (Fornberg
and Whitham, 1978). It is also worth mentioning papers
using the FEM and Galerkin methods (Bona et al.,
2013; Cui and Ma, 2007). Most numerical applications
use periodic boundary conditions, but there also exist
works that apply Dirichlet boundary conditions on a finite
interval (Skogstad and Kalisch, 2009; Yi et al., 2013; Yuan
et al., 2008).

The authors attempt to construct a method which
will be applicable not only for numerical simulation of
an evolution of nonlinear waves governed by Eqns. (1) or
(3), but also for their stochastic versions. Such stochastic
equations will be studied in the next paper. Since
stochastic noise is irregular, solutions are not necessarily
smooth, neither in time nor space. A finite element
method (FEM) seems to be suitable for such a case.

3.1. Time discretization. We have adapted the
Crank–Nicholson scheme for time evolution, beginning
with the KdV equation (4) in a fixed coordinate system.
Note that ηηx = 1

2 (η
2)x. Write also v := ηx andw := vx.

Let us choose, time step τ . Then the KdV equation (4) in
the Crank–Nicholson scheme can be written as a set of
coupled first order differential equations,
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For the second order equations (1) or (3) we need
to introduce two new auxiliary variables: p := wx and
q := px. Note that η2ηx = 1

3 (η
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This setting allows us to write the Crank–Nicholson

scheme for (3) as the following set of first order equations:
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For the second order KdV type equation with an
uneven bottom (1) the first equation in the set (9) has
to be supplemented by terms originating from bottom
variations, yielding
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where g := hxx.
Below we focus on the second order equations

(3) and (9), pointing out contributions from the bottom
variation later.

3.2. Space discretization. Following the arguments
given by Debussche and Printems (1999) we apply the
Petrov–Galerkin discretization and the finite element
method. We use piecewise linear shape functions and
piecewise constant test functions. We consider the wave
motion on the interval x ∈ [0, L] with periodic boundary
conditions. Given N ∈ N, we use a mesh Mχ of points
xj = jχ, j = 0, 1, . . . , N , where χ = L/N . Let V 1

χ ,
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which is a space of piecewise linear functionsϕj(x), such
that ϕj(0) = ϕj(L), defined as

ϕj(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
χ(x− xj−1) if x ∈ [xj−1, xj ],

1
χ(xj+1 − x) if x ∈ [xj , xj+1],

0 otherwise.

(12)

As test functions we have chosen the space of piecewise
constant functions ψj(x) ∈ V 0

χ , where

ψj(x) =

{
1 if x ∈ [xj , xj+1),

0 otherwise.
(13)

An approximate solution and its derivatives may be
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Therefore, in a weak formulation we can write (8) as
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for any i = 1, . . . , N , where ∂x is understood as ∂/∂x.
In (15) and below, scalar products are defined by the
appropriate integrals:

(f, g) :=
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0

f(x)g(x) dx.

In the case of Eqn. (1), the first equation of the set
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Insertion of (14) into (15) yields a system of coupled
linear equations for coefficients anj , b

n
j , c

n
j , d

n
j , e

n
j . The

solution to this system supplies an approximate solution
to (3) given at the mesh points xj .

3.2.1. KdV equation. In order to demonstrate the
construction of the matrices involved, at this point we
limit our discussion to the first order equation (4). This
means that in (15) we drop temporarily second order
terms, that is, those with α2, αβ, β2. Equations with p
and q do not apply because η4x and η5x do not appear in
(4). This leads to the equations
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In (22), An+1, Bn+1, Cn+1 represent the unknown
coefficients and An, Bn, Cn the known ones. Note that
the system (22) is nonlinear. The single nonlinear term is
quadratic in unknown coefficients. For the second order
equations (3) and (1) there are more nonlinear terms.

In an abbreviated form, the set (22) can be written as
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approximate solution to (25), (Xn+1)m in m = 3 − 5
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where k = 1, 2.

3.2.2. Extended KdV equation (3). For the second
order equation (3) there are more nonlinear terms.
These are terms with α2 and αβ. According to the
Petrov–Galerkin scheme, we get for the term with α2
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bn+1
j + bnj

)
ϕj

N∑
k=1

(
bn+1
k + bnk

)
ϕk

⎞
⎠

=
1

4

N∑
j=1

N∑
k=1

[bn+1
j + anj ][b

n+1
k + bnk ]

(
ϕ′
jϕk + ϕjϕ

′
k

)

and

∂x

(
ηn+

1
2wn+ 1

2

)
(35)

=
1

4
∂x

⎛
⎝ N∑

j=1

(
an+1
j + anj

)
ϕj

N∑
k=1

(
an+1
k + ank

)
ϕk

⎞
⎠

=
1

4

N∑
j=1

N∑
k=1

[an+1
j + anj ][b

n+1
k + bnk ]

(
ϕ′
jϕk + ϕjϕ

′
k

)
.

The scalar products appearing in the terms proportional to
α2 and αβ are already defined:

((
ϕ′
jϕk + ϕjϕ

′
k

)
, ψi

)
=

C
(3)
ijk .

Due to the properties (33) and (21), triple and double
sums reduce to single ones. With these settings the second
order KdV equation (15) gives the following system of
equations:

N∑
j=1

{
(an+1

j − anj )C
(1)
ij + τ

[
1

2
(bn+1

j + bnj )C
(1)
ij (36)

+

(
α

3

16
(an+1

j + anj )
2 + β

1

12
(cn+1

j + cnj )

−α2 1

64
(an+1

j + anj )
3 + αβ

13

192
(bn+1

j + bnj )
2

+αβ
5

96
(an+1

j + anj )(c
n+1
j + cnj )

+β2 19

720
(en+1

j + enj )

)
C

(2)
ij

]}
= 0,

N∑
j=1

[
(an+1

j + anj )C
(2)
ij − (bn+1

j + bnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1

j + bnj )C
(2)
ij − (cn+1

j + cnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(cn+1

j + cnj )C
(2)
ij − (dn+1

j + dnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1

j + bnj )C
(2)
ij − (en+1

j +enj )C
(1)
ij

]
= 0,

where i = 1, 2, . . . , N .
In this case the vector of expansion coefficients Xn

is 5N -dimensional,

Xn =

⎛
⎜⎜⎜⎜⎝

An

Bn

Cn

Dn

En

⎞
⎟⎟⎟⎟⎠ , (37)

where An, Bn and Cn are already defined in (24) and

Dn =

⎛
⎜⎜⎜⎝
dn1
dn2
...
dnN

⎞
⎟⎟⎟⎠, En =

⎛
⎜⎜⎜⎝
en1
en2
...
enN

⎞
⎟⎟⎟⎠. (38)

The Jacobian now becomes (5N × 5N)-dimensional. Its
structure, however, is similar to (27), that is,

J =

⎛
⎜⎜⎜⎜⎝

(Aa) (Ab) (Ac) (0) (Ae)
(C2) −(C1) (0) (0) (0)
(0) (C2) −(C1) (0) (0)
(0) (0) (C2) −(C1) (0)
(0) (0) (0) (C2) −(C1)

⎞
⎟⎟⎟⎟⎠ ,

(39)
where the matrices (Aa), (Ab), (Ac) are defined as
previously and

(Ae)ij =
∂Fi

∂en+1
j

.

Now Fi represents the set (36) which contains four
nonlinear terms.

3.2.3. Extended KdV equation with an uneven bot-
tom. For the extended KdV with non-flat bottom we
have to include into (36) three additional terms contained
in the last line of the formula (1). Expanding the bottom
function h(x) and its second derivative h2x(x) in the basis
{ϕj(x)},

h(x) =

N∑
j=1

H0jϕj(x), h2x(x) =

N∑
j=1

H2jϕj(x),

(40)
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we can write the terms mentioned above in the following
form:

∂x

(
hηn+

1
2

)
(41)

=
1

2

N∑
j=1

N∑
k=1

H0j
(
an+1
k + ank

) (
ϕ′
jϕk + ϕjϕ

′
k

)
,

∂x

(
h2xη

n+ 1
2

)
(42)

=
1

2

N∑
j=1

N∑
k=1

H2j
(
an+1
k + ank

) (
ϕ′
jϕk + ϕjϕ

′
k

)
.

∂x

(
hη

n+ 1
2

2x

)
(43)

=
1

2

N∑
j=1

N∑
k=1

H0j
(
cn+1
k + cnk

) (
ϕ′
jϕk + ϕjϕ

′
k

)
.

Since((
ϕ′
jϕk + ϕjϕ

′
k

)
, ψi

)
= C(3)(i, j, k) = C(2)(i, j) δjk,

terms proportional to βδ can be reduced to single sums
like those proportional to α2, αβ and β2 discussed in the
previous subsections. Finally, one obtains (1) as a system
of coupled nonlinear equations (i = 1, 2, . . . , N ):

N∑
j=1

{
(an+1

j − anj )C
(1)
ij + τ

[
1

2
(bn+1

j + bnj )C
(1)
ij (44)

+

(
α

3

16
(an+1

j + anj )
2 + β

1

12
(cn+1

j + cnj )

−α2 1

64
(an+1

j + anj )
3 + αβ

(
13

192
(bn+1

j + bnj )
2

+
5

96
(an+1

j +anj )(c
n+1
j +cnj )

)
+ β2 19

720
(en+1

j + enj )

−1

4
δH0j

(
an+1
k + ank

)
+

1

8
βδH2j

(
an+1
k + ank

)

−1

8
βδH0j (c

n+1
j + cnj )

)
C

(2)
ij

]}
= 0,

N∑
j=1

[
(an+1

j + anj )C
(2)
ij − (bn+1

j + bnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1

j + bnj )C
(2)
ij − (cn+1

j + cnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(cn+1

j + cnj )C
(2)
ij − (dn+1

j + dnj )C
(1)
ij

]
= 0,

N∑
j=1

[
(bn+1

j + bnj )C
(2)
ij − (en+1

j +enj )C
(1)
ij

]
= 0.

In this case the structures of the vectorXn and all matrices
remain the same as in (37)–(39). However, the matrix
elements in matrices Aa and Ac are now different from
those in Section 3.2.2, due to the new terms in (44).
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Fig. 1. Time evolution of the initial KdV soliton according to
the extended KdV equation (3). The profiles are ob-
tained by a numerical solution of the set of equations
(36). The dashed lines represent the undisturbed fluid
surface.

4. Numerical simulations

It was demonstrated by Debussche and Printems (1999)
that the method described in the previous section works
reasonably well for the KdV equation (7). Our aim was to
apply the finite element method in order to numerically
solve the second order equations with a flat bottom
(3) and with an uneven bottom (1). There exist two
kinds of solutions to KdV equations: soliton (in general,
multi-soliton) solutions and periodic solutions, called
cnoidal waves (see, e.g. Whitham, 1974; Dingemans,
1997). In Sections 4.1 and 4.2 we present some examples
of numerical simulations for soliton solutions, whereas in
Section 4.3—some examples for cnoidal solutions.

4.1. Extended KdV equation (3). In Fig. 1 we present
several steps of the time evolution of the soliton wave
(at t = 0 it is the KdV soliton) according the the
extended KdV equation (3) and the numerical scheme
(36). The mesh size is N = 720, with a time step
τ = χ2 and parameters α = β = 0.1. Plotted are the
calculated profiles of the wave η(x, tk), where tk = 5 · k,
k = 0, 1, . . . , 10. In order to avoid overlaps of profiles at
different time instants, each subsequent profile is shifted
up by 0.15 with respect to the previous one. This
convention is used in Figs. 2 and 3 as well. Here
and in the next figures the dashed lines represent the
undisturbed fluid surface. As the initial condition we
chose the standard KdV soliton centered at x0 = 18. That
is, in the applied units,

η(x, t = 0) = sech2

[√
3

2
(x− x0)

]
.
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Note that since we use scaled variables and the definition
(2), the amplitude of the soliton is equal to 1. In Figs. 2–4
we use the same initial conditions.

The soliton motion shown in Fig. 1 is in agreement
with the numerical results obtained with the finite
difference method by Karczewska et al. (2014b; 2014a).
With parameters α = β = 0.1, the resulting distortion of
the KdV soliton due to second order terms in (3), (36) is
in the form of a small amplitude wavetrain created behind
the main wave.

4.2. Uneven bottom. We may ask whether the FEM
numerical approach to the extended KdV (44) is precise
enough to reveal the details of soliton distortion caused
by a varying bottom. The examples plotted in Figs. 2–4
show that this is indeed the case. In all the presented
calculations the amplitude of the bottom variations is δ=
0.2. The bottom profile is plotted as a black line below
zero on a different scale than the wave profile.
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Fig. 2. Time evolution of the initial KdV soliton governed by
the extended KdV equation (1) when the bottom has one
hump. Here and in the following figures the dotted line
shows the position of (the) undisturbed bottom.

In Fig. 2 the motion of the KdV soliton over a wide
bottom hump of a Gaussian shape is presented. Here, the
bottom function is

h(x) = δ exp
(
−
(x− 36

7

)2)
.

In the scaled variables the undisturbed surface of the water
(dashed lines) is at y = 0. The soliton profiles shown
in Fig. 2 are almost the same as those obtained with the
finite differences method (FDM) used by Karczewska et
al. (2014b; 2014a). There are small differences due to a
lower precision of our FEM calculations. The FEM allows
the use of larger time steps than the FDM. However, in the
FEM the computing time grows rapidly with an increase

in the number N of the mesh, since calculation of the
inverse of the Jacobian (5N×5N) matrices becomes time
consuming.
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Fig. 3. Time evolution of the initial KdV soliton governed by
the extended KdV equation (1) when the bottom has two
narrow humps.

Figure 3 displays the motion of the KdV soliton
above a double humped Gaussian shaped bottom defined
by

h(x) = δ
[
exp

(
−
(x− 30

6
√
2

)2)
+exp

(
−
(x− 48

6
√
2

)2]
.

Here, both the Gaussians are rather narrow and therefore
distortions of the wave shape from the ideal soliton are
smaller than those in Fig. 2.
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Fig. 4. Time evolution of the initial KdV soliton governed by
the extended KdV equation (1) when the bottom has a
well.

In Fig. 4 we see the influence of a bottom well with
horizontal size extending the soliton’s wavelength. The
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bottom function is chosen as

h(x) = 1− δ

2

[
tanh(x− 28) + tanh(44− x)

]

symmetric with respect to the center of the x interval.
Figure 4 shows that during the motion above smooth
obstacles two effects appear. First, some additional
‘waves’ of small amplitude, but moving faster than the
main solitary wave, appear. Second, a wave of smaller
amplitude and smaller velocity appears behind the main
wave. Both these properties were observed and described
in detail in our previous paper (Karczewska et al., 2014a).

4.3. Motion of cnoidal waves. Cnoidal solutions to
the KdV equation are expressed by the Jacobi elliptic cn2

function. The explicit formula for cnoidal solutions (see,
e.g., Dingemans, 1997) is

η(x, t) = η2 +Hcn2
(
x− ct

Δ

∣∣∣∣m
)
, (45)

where

η2 =
H

m

(
1−m− E(m)

K(m)

)
, Δ = h

√
4mh

3H
, (46)

and

c =
√
gh

[
1 +

H

mh

(
1− m

2
− 3E(m)

2K(m)

)]
. (47)

The solution (45)–(47) is written in dimensional
quantities, where H is the wave height, h is the mean
water depth, g is the gravitational acceleration andm is an
elliptic parameter. K(m) and E(m) are complete elliptic
integrals of the first and second kinds, respectively. The
value of m ∈ [0, 1] governs the shape of the wave.

Asm→ 0, the cnoidal solution converges to a cosine
function. As m → 1, the cnoidal wave forms peaked
crests and flat troughs, such that for m = 1 the distance
between crests increases to infinity and the cnoidal wave
converges to a soliton solution.

For (1) and (3) we have to express the formulas
(45)–(47) in dimensionless variables.

Figure 5 shows the time evolution of the cnoidal
wave according to the extended KdV equation (3), that
is, the second order KdV equation with a flat bottom.
The parameters of the simulation are α=β=0.14, m =
1− 10−16. With this value of m the wavelength of the
cnoidal wave is equal to d ≈ 75.1552 dimensionless
units, and calculations were performed on the interval of
that length, x ∈ [0, 75.1552], with a periodic boundary
condition. The mesh size was taken as N = 752. The
initial position of the wave peak was chosen at the center
of the given interval, that is, x0 = 37.5776. The explicit
form of the initial condition in this case was η(x, t =
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Fig. 5. Time evolution of the initial KdV cnoidal wave governed
by the extended KdV equation (3) and the numerical
scheme (36).

0) = −0.0189862+ 0.368486 cn2
(

x−x0

1.90221

∣∣m). Profiles
of the wave are plotted at time instants tk = 10 · k, where
k = 0, 1, . . . , 8. Since the amplitudes of cnoidal waves
are less than 1, the vertical shift for the sequential profiles
in Figs. 5–8 is chosen to be 0.075.

In Fig. 6 we display the initially cnoidal wave
moving over an extended, almost flat hump. In this
simulation the value of parameters α, β,m and interval x
are the same as in the previous figure. Since we consider
here the motion over an uneven bottom defined by the
function

h(x) =
1

2

[
− tanh

(
2(x− 8.6)− 1

2
)

+ tanh(2(x− 66.5552)− 1

2

)]
,

the evolution was calculated according to Eqn. (1) and the
numerical scheme (44). Profiles of the wave are plotted at
time instants tk = 10 · k, where k = 0, 1, . . . , 8. Figure
6 shows that during the wave motion over the obstacle
a kind of slower wave with smaller amplitude is created
following the main peak.

In Fig. 8 we present the initially cnoidal wave
moving over an extended, almost flat hump. In this
simulation,m=1−10−8. The initial condition is given by

η(x, t=0) = 0.0359497+ 0.368486 cn2
( x− x0
1.90221

|m
)

with x0 = 20.1571. Because m is smaller than in the
previous cases, the wavelength d of the cnoidal wave is
also smaller, d ≈ 40.3241. Calculations were made on
the interval x ∈ [0, 2d] with N = 807. Profiles of the
wave are plotted at time instants tk = 10 · k, where k =
0, 1, . . . , 8. Figure 8 shows qualitatively similar features
to those in Fig. 6.
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Fig. 6. Time evolution of the initial KdV cnoidal wave governed
by the extended KdV equation (1). The bottom function
is here h(x) = 1

2
[−tanh(2(x− 8.6)− 1

2
)+ tanh(2(x−

66.5552) − 1
2
)].

4.4. Precision of numerical calculations. The KdV
equation (6) or (7) is unique since it possesses an infinite
number of invariants (see, e.g., Miura et al., 1968; Drazin
and Johnson, 1989). The lowest invariant,

I1 =

∫ +∞

−∞
η dx,

represents the conservation law for the mass (volume) of
the liquid. The second,

I2=

∫ +∞

−∞
η2 dx,

is related to momentum conservation, and the third,

I3=

∫ +∞

−∞
(η3 − 1

3
η2x) dx,

is related to energy conservation. However, as pointed
by Ablowitz and Segur (1979), Ali and Kalisch (2014)
or Karczewska et al. (2015), the relations between I2 and
momentum and I3 and energy are more complex.

Approximate conservation of these invariants often
serves as a test of the precision of numerical simulations.
However, this is not the case for the second order KdV
type equations (1) and (3). It was noted by Karczewska
et al. (2015) that I1 is an invariant of Eqns. (1) and (3),
but I2 and I3 are not invariants. Therefore, only I1 can be
used as a test for the precision of numerical calculations
of waves moving according to second order extended KdV
equations. In all the presented calculations the precision
of the numerical values of I1 was consistently high, i.e.,

I1(t)− I1(0)

I1(0)
≤ 10−6.
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Fig. 7. Time evolution of the initial KdV cnoidal wave governed
by the extended KdV equation (1). The bottom function
is here h(x) = 1

2
[−tanh(2(x−13.3)− 1

2
)+ tanh(2(x−

67)− 1
2
)].
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Fig. 8. Precision of numerical calculations for the KdV equation
in the fixed frame as a function of mesh size.

Wave motion according to KdV and extended
(second order) KdV equations is usually calculated in
the reference frame moving with the natural velocity
c = 1 in scaled dimensionless variables (in the original
variables c =

√
gh). The KdV and extended KdV

equations for a moving reference frame are obtained by
the transformation x̂ = (x − t), t̂ = t, which removes
the term ηx from the Eqn. (3). Then the soliton velocity
in the fixed frame is proportional to 1 + α/2, whereas in
the moving frame it is proportional to α/2. Therefore, for
the value of α = 0.1 the distance covered by a soliton
in the moving frame is (α/2)/(1 + α/2) = 1/21 times
shorter than the distance covered in the fixed frame for
the same duration. Then, with the same number of the
mesh pointsN the mesh size χ can be more than 20 times
smaller assuring much higher precision of calculation in
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the moving frame at the same operational cost. For
instance, Debussche and Printems (1999) obtained good
precision for motion of a KdV soliton with the FEM
method using N = 200, χ = 0.01 and time step τ = χ
on the interval x ∈ [0, 2].

The precision of the FEM method in the fixed frame
can be tested by calculation of a root mean square (RMS)
of deviations of wave profile obtained numerically from
those generated by the analytic solution. Denote by
ηanali (t) and ηnumi (t) the values of the solutions at given
mesh point i and time instant t, analytic and numerical,
respectively. Then the RMS is expressed as

RMS(χ, t) =

(
1

N

N∑
i=1

(ηanal
i (t)− ηnum

i (t))2

)1/2

. (48)

We checked our implementation of the FEM on the
interval x ∈ [0, 20] using several different sizes χ of
the mesh and several time values. Figure 8 displays the
RMS (48) values for t = 10. It shows that deviations
from the analytic solution decrease substantially with
decreasing χ. Small χ assures very high precision in
numerical simulations, although at the expense of large
computation time. Another tests (not shown here) in
which χ was fixed and the RMS was calculated as a
function of time showed that for τ = χ2 the RMS
increases with time linearly and very slowly.

When the bottom is not flat, simulations have to
be done in the fixed reference frame. For our purposes
we needed to choose the x intervals of the order of 70
or 80. Even for χ = 0.1 the size of the Jacobian
matrices (39) reaches (4000×4000) and its inversion is
time consuming. In a compromise between numerical
precision and reasonable computing times we made our
simulations with χ = 0.1. This choice resulted in about
one week of computing time for a single run on a cluster.
In spite of the insufficient precision the results presented
in Figs. 1–7 reproduce details of evolution known from
our previous studies, obtained with the finite difference
method. These details, resulting from second order terms
in the extended KdV (3), are seen in Fig. 1 as a wavetrain
of small amplitude created behind the main one (compare
it with Fig. 2 of Karczewska et al. (2014a)). A similar
wavetrain behind the main one was observed in numerical
simulations by Marchant and Smyth (1996); see, e.g.,
Fig. 2 therein. For waves moving with the presence of
a bottom obstacle these secondary waves behind the main
one are amplified by interaction with the bottom and new
faster secondary waves appear (see, e.g., Figs. 2–4). These
effects were already observed by us (Karczewska et al.,
2014a, Figs. 6 and 7).

5. Conclusions

The main conclusions of our study can be summarized as
follows.

• A weak formulation of the finite element method
(FEM) for the extended KdV equation (3) can be
effectively used for numerical calculations of the
time evolution of both soliton and cnoidal waves
when calculations are done in a moving frame.

• Since numerical calculations for Eqn. (1) have to
be performed in a fixed frame, the presented FEM
method is not as effective as the FDM method
used by us in our previous papers because the
computer time necessary for obtaining sufficiently
high precision becomes impractical. On the other
hand, the presented results (though not as precise
as FDM ones) exhibit all secondary structures
generated by higher order terms of the equations.

• First tests of numerical solutions to second order
KdV type equations with a stochastic term seem to
be very promising (Karczewka et al., 2016).
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Maciej Szczeciński holds an M.Sc. degree in
economics from the Wrocław University of Eco-
nomics and an M.Sc. degree in mathematics ob-
tained at the Faculty of Mathematics, Computer
Science and Econometrics, University of Zielona
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