
Int. J. Appl. Math. Comput. Sci., 2016, Vol. 26, No. 3, 585–602
DOI: 10.1515/amcs-2016-0041

A DOUBLE WINDOW STATE OBSERVER FOR DETECTION AND ISOLATION
OF ABRUPT CHANGES IN PARAMETERS
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The paper presents a new method for diagnosis of a process fault which takes the form of an abrupt change in some real
parameter of a time-continuous linear system. The abrupt fault in the process real parameter is reflected in step changes in
many parameters of the input/output model as well as in step changes in canonical state variables of the system. Detection
of these state changes will enable localization of the faulty parameter in the system. For detecting state changes, a special
type of exact state observer will be used. The canonical state will be represented by the derivatives of the measured output
signal. Hence the exact state observer will play the role of virtual sensors for reconstruction of the derivatives of the output
signal. For designing the exact state observer, the model parameters before and after the moment of fault occurrence must
be known. To this end, a special identification method with modulating functions will be used. A novel concept presented in
this paper concerns the structure of the observer. It will take the form of a double moving window observer which consists
of two signal processing windows, each of width T . These windows are coupled to each other with a common edge. The
right-hand side edge of the left-side moving window in the interval [t− 2T, t − T ] is connected to the left-hand side edge
of the right-side window which operates in the interval [t − T, t]. The double observer uses different measurements of
input/output signals in both the windows, and for each current time t simultaneously reconstructs two values of the state—
the final value of the state in the left-side window zT (t − T ) and the initial value of the state z0(t − T ) in the right-side
window. If the process parameters are constant, the values of both the states on the common joint edge are the same. If
an abrupt change (fault) in some parameter at the moment tA = t − T occurs in the system, then step changes in some
variables of the canonical state vector will also occur and the difference between the states will be detected. This will enable
localization of the faulty parameter in the system.

Keywords: fault detection and isolation, exact state observer, parameter abrupt changes, derivative reconstruction, linear
continuous systems.

1. Introduction

Scientists are inventing more and more complicated
algorithms for diagnosis and detection of faults in
industrial processes. The literature on this subject is
very rich (e.g., Frank, 1990; Chen and Patton, 1999;
Patton et al., 2000; Chiang et al., 2001; Blanke et al.,
2003; Korbicz et al., 2004; Isermann, 2006; Ding, 2013).
On-line application of these algorithms requires modern
computers and advanced information processing systems.
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One of the problems of interest is detection and isolation
of abrupt changes in some intrinsic and real parameters
of technological objects, which may be of importance for
both safety and economic reasons.

Usually, two types of faults may occur—measuring
instruments or actuator faults and process faults. For
simulation purposes, instrument faults can be modeled
as additive faults, whereas process faults are mainly
multiplicative ones. If instrument faults are dangerous
for some safety-critical operation, a commonly used
approach is the use of extra redundant measurement
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hardware such as extra sensors, transducers, measuring
buses and indicators, and even triple-modular redundancy
(TMR) technology. Then the concept of voting is
used (two-out-of-three, 2oo3) for guaranteeing safety
integrity level SIL3 or SIL4 according to the norm
EC61508/61511. Other important conditions for safety of
programmable control systems can be found in the norm
PN-EN 62061.

If, however, there is no possibility of using extra
hardware redundant equipment and simultaneously the
working sensors are not reliable and of high quality,
then one can implement the idea of additional virtual
soft-sensors for instrumentation fault diagnosis and
isolation (FDI). Sometimes virtual soft-sensors can be
very sophisticated and need special methods of signal
processing. For example, reconstruction of the derivative
from the measured signal is a serious problem, especially
if this signal contains noise and other disturbances.
Consequently, if a parametric model of the dynamic
system is known and all the state variables as well as the
input and output signals are accessible for measurements,
and also good quality of all the sensors (hardware or
virtual) is assured, then recognition of process faults and
emergency situations is usually not that difficult (Wang
et al., 2008).

However, if all of the process variables are not
measured, then the procedures for process fault diagnosis
and isolation may be not easy.

Summarizing the above, one can present two
different schemes of process faults diagnosis to represent
two different situations.

Case 1. All the process variables are measured (such as
state variables and input/output signals).

(a) Assume that there is also the possibility of supplying
the whole process with a full set of highly
reliable hardware sensors and instrumentation (even
hardware-redundant sensors) for correct, accurate
and error-free measurements. In such a case,
detection of some differences (residuals) between
the nominal relationship of certain process values
arising from the first principles and simple reasoning
rules enables confident process fault diagnosis and
isolation by the FDI system.

(b) Assume that the whole process is equipped only
with a full set of single measurement sensors for all
the process variables. These sensors, however, do
not guarantee error-free measurements and hardware
redundancy is not available, so one can apply
some additional virtual soft-sensors (the use of
analytical redundancy) which enable a comparison of
measurement estimates with real measurements and
a confirmation of the error-free sensor operation. In
such a case, detection of process faults by the FDI
system has a similar difficulty level as in Case 1(a).

Case 2. Not all the process variables are measured. For
instance, very often the internal state x is unmeasurable
and only the input u and the output y are measured. In
such a case, the detection of some process faults is not
easy, although not impossible. Let us at least assume that
high quality instrumentation is used and the correct and
reliable input/output measurements are available. Then
the FDI system usually uses a model-based approach
with implementation of different methods for modeling,
parameter identification, state observation and different
hypotheses testing.

This paper will focus on diagnosis of faults in
continuous processes as in Case 2 above.

Generally, for such cases, many different
methods based on dynamic system modelling have
been investigated and various state observation
and identification algorithms used (e.g., Chen
and Zhang, 1991; Ding and Guo, 1996; Simani
et al., 2003; Rolink et al., 2006; Ding, 2013).

Here it will be assumed that in the continuous system
abrupt changes in parameters will occur. The values of the
parameters before and after the change are constant. The
changes are not catastrophic, but take the form of a sudden
modification of the parameters’ values, which changes
the dynamics of the system. The detection of such very
fast changes is very important and was investigated in
the literature some years ago (Basseville and Nikiforov,
1993; Niedzwiecki, 1994; Lai and Shan, 1999). However,
the importance of this problem still remains valid and the
results of the research are still being published, both for
discrete systems (Costa et al., 2005; Ukil and Zivanovic,
2007) as well as for continuous ones (Costa et al., 2013).

As mentioned previously, a new method of fault
detection will be presented in this paper, and it will be
applied to linear continuous systems. Assume that in
this system abrupt changes in parameters occur at the
moment tA. It will be proven that such parameter changes
will result in step changes of some derivatives y(i)(tA)
of the output signal y(t). Careful observation of these
derivatives and recognition of their order in which step
changes occur will provide information about the location
of the faulty parameter in the structure of the system.

2. Reconstruction of derivatives

One of the main elaborated research issues in this
paper will be a new method of reconstructing function
derivatives. Generally, numerical differentiation plays an
important role in data processing; however, the design of
an ideal differentiator working on noisy data is a difficult
problem and is often known to be ill-posed (small noise
can induce a big error in the approximated derivatives).

Various methods for determination of the derivative
from measurement signals have been proposed in various
research publications.
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In some works (e.g., Carlsson et al., 1991), a
stochastic approach to the problem is used. In others
(Qu, 1996), an algebraic approximation method for
differentiation is proposed. In the paper of Vainio et al.
(1997), one can find the use of finite impulse response
(FIR) filters as well as least-squares linear and quadratic
approximation to obtain output signal derivatives. For
extracting the signs of derivatives, bond-graphs were used.
Smith et al. (2003) elaborated a method of algebraic
computation of derivatives in frequency domain. Ibir
(2004) proposed use of a high-gain asymptotic observer
for derivative reconstruction, and in the work of Wei et al.
(2005) scattered noisy data were taken into consideration.

Reger and Jouffroy (2009) studied the method of
using the Gram observability matrix for calculation of
derivatives from the function y(t) and use of an integral
operator. In this work, the function y(t) is interpreted
as the output of an autonomous system with no control
signal with multiple zero eigenvalues in the state matrix.
The presented method enables reconstruction of the
output initial conditions y(0). Byrski and Fuksa (1996)
presented for the first time the problem of simultaneous
identification of system parameters and state observation
by use of a modulating function. A similar problem was
investigated by Jouffroy and Reger (2015).

In this paper, we will use the theory of exact state
observers for on-line reconstruction of the derivatives
y(i)(t) of the signal y(t). This signal will be the
output signal of any continuous linear SISO system
driven by the control signal u(t). For reconstruction
of these derivatives, a special type of integral state
observer will be used. These observers can reconstruct
the exact value of the state, and so differ from differential
estimators such as the Luenberger observer or the Kalman
filter. Such estimators introduce additional uncertainty
to the reconstructed state because of their asymptotic
nature (the estimate of the state error converges to
zero asymptotically). Thus, use of such estimators for
derivative estimation as well as diagnosis of the system
may be ineffective.

Fast modern computers make application of other
on-line observation algorithms possible. They originate
directly from the definition of state observability. The
theory of the general and optimal form of the exact state
observer with a minimal norm, formulated in Hilbert
spaces, was presented for the first time by Fuksa and
Byrski (1984). Other versions and different applications
were presented later on by Byrski (1995; 2003). The
most general structure of such an observer is given by
the inner product (the integral) of the measurements of
the output y ∈ Y and input u ∈ U as well as special
observation matrix functions G1(τ), G2(τ) on interval
[0, T ]. After the first observation interval [0, T ], the
observer reconstructs the exact value of the finite state
x(T ). Using the moving window observer MWO on

interval [t − T, t], it is possible to observe x(t) on-line
for every t > T . After the first observation interval [0, T ],
one can also reconstruct the initial state x(0) with the use
of other functions G1(t), G2(t) and the same input/output
signals. There are many different special observation pairs
of functionsG1(t), G2(t) orG1(t), G2(t) which fulfill the
definition of the exact observer that exactly reconstructs
the state. In the above-mentioned publications, the use
of an observer which has a minimal norm in the space
L2[0, T ] was recommended. Such an observer ensures the
occurrence of the smallest state reconstruction error in the
case of disturbances in measurements of y and u.

In this paper, the exact state observer for
reconstruction of the canonical state vector z(t) is
used. The elements of this state are the derivatives y(i)(t)
of the output signal y(t). Detection of step changes in the
state variables will enable detection of rapid changes in
the system parameters.

3. Use of the double window observer

Assume that, in the system, abrupt changes in parameters
occur at a moment tA. It will result in step changes
of the derivatives of output signal y(i)(tA). Exact state
observation and recognition of the order of the derivative
in which the step changes occur will provide information
about the location of the faulty real parameter in the
system structure. To this end, the new concept of a
moving double window state observer is used. This
observer is based on two windows coupled to each other
with a common middle edge. The right-hand side edge
of the left window, which is defined in interval [t −
2T, t − T ], follows the left-hand side edge of the right
window, which operates in interval [t − T, t]. The
observer works simultaneously within both the windows
with different measurements of input/output signals given
on the intervals [t− 2T, t− T ] and [t− T, t], respectively
(t denotes the current time). The left window observer
uses the special observation matrix functions G1(τ),
G2(τ) (for reconstruction of the final state zT ), and the
right window observer uses the functions G1(τ), G2(τ)
(for reconstruction of the initial state z0 ).

If the system parameters ai, bi are constant, the
values of both the reconstructed states are the same,
zT (t − T ) = z0(t − T ). If abrupt changes (faults) of
parameters in the system occur at the moment (tA =
t − T ) then step changes in the state occur and the
double observer will detect the difference between the
states zT (tA) �= z0(tA). This will be possible, because
before the moment of fault occurrence t < tA the
model parameters are known (identified); hence, the
observation matrices G1(τ), G2(τ) are also known. For
t > tA immediately after detection of time tA by the FDI
system, the procedure for identification of the new value
of model parameters within the identification window
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[tA, tA+TID] will start. The fast identification method for
continuous systems was published in our previous works
(Byrski and Byrski, 2012b). It is based on a modulating
function procedure and works within an extra processing
window of width TID < T . After the identification, the
new value of model parameters ai, bi will be used for
calculation of the new observation matrices G1(t), G2(t)
and reconstruction of z0(tA), enabling proper detection
of the difference zT (tA) �= z0(tA). This detection will be
possible at the current moment of time t = tA +T , which
means some short delay T after the moment of parameter
fault occurrence tA.

To complete this section, one more important remark
needs to be made. In this paper, we will discuss
two different classes of parameters. Abrupt changes
(faults) affect real parameters such as electrical resistance,
capacity or flow rate coefficients Si in hydraulic systems.
On the other hand, the identification procedure identifies
the transfer function of the system, which means the
parameters ai, bi of the input/output model equation:

y(n)(t) + an−1y
(n−1)(t)

+ · · ·+ a1y
(1)(t) + a0y(t) = b0u(t).

Such model parameters ai, bi can be called
‘aggregated parameters’ because they are nonlinear
functions of the real parameters Si. Very often isolation
of the faulty parameter Si by solving the set of nonlinear
equations is impossible because of the ambiguity of
calculation.

One of the important contributions of this paper is to
show that the proposed method indicates, in the structure
of the model, the real parameter Si which fails, and for
this purpose it only needs the new identified values of the
model aggregated parameters ai, bi and does not require
knowledge of the new value of parameter Si. The number
i of the real parameter Si which has failed is indicated by
the step in the i-th derivative.

4. Class of systems under consideration

The linear time invariant (LTI) model of the continuous,
observable and controllable single-input-single-output
(SISO) system with the real state x and output y is given
by the formulas

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0,

y(t) = Cx(t),
(1)

where x(t) ∈ R
n , y(t) ∈ R, u(t) ∈ R, ∀t ≥ 0.

After linear similarity transformation of the real state
x by the observability matrix QO, one can obtain the new

canonical vector state z(t): z(t) = QOx(t), where

QO =

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ ,

F = QOAQ
−1
O =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 · · ·
...

...
... 1

−a0 −a1 · · · −an−1

⎤
⎥⎥⎥⎦ .

The new canonical system with the same input u(t)
and output y(t) as in (1) has the Frobenius state matrix F
and matrices BF , CF and is also state observable:

ż(t) = Fz(t) +BFu(t), z(t0) = QOx0,

y(t) = CF z(t),
(2)

BF = QOB =

⎡
⎢⎢⎢⎣

0
0
...
b0

⎤
⎥⎥⎥⎦ ,

CF = CQ−1
O =

[
1 0 0 . . . 0

]

The corresponding transfer function is

G(s) = C[sI −A]
−1

B = CF [sI − F ]
−1

BF

=
b0

sn + an−1sn−1 + · · ·+ a1s+ a0
,

and the n-th order differential equation for the output y(t)
is

y(n)(t) + an−1y
(n−1)(t)

+ · · ·+ a1y
(1)(t) + a0y(t) = b0u(t).

For the state z(t), the following well-known equality is
fulfilled:

z(t) =

⎡
⎢⎢⎢⎣

z1(t)
z2(t)

...
zn(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

z1(t)
ż1(t)

...

z
(n−1)
1 (t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y(t)
ẏ(t)

...
y(n−1)(t)

⎤
⎥⎥⎥⎦ . (3)

The state variables zi(t) represent consecutive derivatives
of the output y(t).

5. Theory of exact integral observers

Based on the work of Byrski (2003), the main formulas for
integral state observers will be recalled. Assume that we
measure the control u and the output y of the system on
the interval [0, T ], where T is the fixed observation time
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(regardless of whether it is a system working in open loop
or closed loop). Our purpose is to determine the initial
state z(0) which will be reconstructed at the beginning of
the operating window. The output y(t) of the real system
(1) may be also calculated as the output of the canonical
system (2) for t ∈ [0, T ] based on the well-known formula
with the initial condition z(0) and control signal u(t):

y(t) = CF e
Ftz(0) + CF

t∫

0

eF (t−τ)BFu(τ) dτ (4)

We shall derive one of possible formulas of integral
observer for reconstruction of the exact value of the initial
state z(0). To this end, one should multiply both the
sides of Eqn. (4) by the transposed matrix [CF e

Ft]′, and
next integrate such an equation over the interval [0, T ].
Because of the assumption of state observability, the real
Gram matrix MF0 is nonsingular for any T :

MF0 =

T∫

0

eF
′tC′

FCF e
Ft dt.

Hence, the initial state z(0) = z0 may be reconstructed
exactly by the formula

z(0) =

T∫

0

GF01(τ)y(τ) dτ +

T∫

0

GF02(τ)u(τ) dτ. (5)

Equation (5) as well as the matrices GF01(τ) and
GF02(τ) (vectors in the SISO case) result from the above
transformation of (4). During this operation, in the second
part of (4) one should change the integration order. The
formula (5) represents the exact integral observer, which
is given by two integrals with products of function vector
GF01(τ) and the output signal as well as GF02(τ) and
the input signal. These vectors GF01(τ) and GF01(τ) are
defined as in

z(0)

=

T∫

0

M−1
F0 e

F ′τC′
F y(τ) dτ

−
T∫

0

⎡
⎣

T∫

τ

M−1
F0 e

F ′sC′
FCF e

F (s−τ) ds

⎤
⎦BFu(τ) dτ.

(6)

For the known (identified) system matrices F , BF , CF ,
the observer vectors GF01(τ) and GF02(τ) (matrices in
the multidimensional case) may be calculated off-line in
interval [0, T ]. Then, for the given output y(t) and input
u(t) in [0, T ], it is easy to find the initial state z(0) from

(5). Such an initial state in [0, T ] will be reconstructed by
the right-side window of the double observer.

The same calculation procedure may be used for
derivation of the exact value of the final state z(T ) in the
window [0, T ]. The formula for the output y(t), which is
based on the unknown final condition z(T ), is analogous
to Eqn. (4) and is of the form

y(t) = CF e
−F (T−t)z(T )

− CF

T∫

t

eF (t−τ)BFu(τ) dτ.
(7)

In a similar manner, after some calculation one can obtain
the form of the integral observer for exact reconstruction
of the final state z(T ) = zT of the window:

z(T ) =

T∫

0

GFT1(τ)y(τ) dτ +

T∫

0

GFT2(τ)u(τ) dτ, (8)

where the observer matrices are

GFT1(τ) = eFTM−1
F0 e

F ′τC′
F ,

GFT2(τ) = eFTM−1
F0

⎡
⎣

τ∫

0

eF
′sC′

FCF e
Fsds

⎤
⎦e−FτBF .

(9)

Such a value of the final state of the window will be
reconstructed by the left window of the double observer.
Based on the above formulas, one can derive an on-line
version of the double window state observer, which
operates for the current t, in the interval t ∈ [T, TF ]
according to the following formulas:

• in the left window for reconstruction of the final state,

zT (t− T ) =

T∫

0

GFT1(τ)y(t − 2T + τ) dτ

+

T∫

0

GFT2(τ)u(t− 2T + τ) dτ,

• in the right window for reconstruction of the initial
state,

z0(t− T ) =

T∫

0

GF01(τ)y(t − T + τ) dτ

+

T∫

0

GF02(τ)u(t − T + τ) dτ.
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If the system parameters are constant and known, the
reconstructed value of the final state in the left-side
window and the initial state in the right-side window are
the same: zT (t−T ) = z0(t−T ), see Fig. 1. In order not
to obscure the figure, only the plot of the output signal y
was drawn. The plot of the control signal u was omitted.

Fig. 1. Double window state observer (no faults).

If, in the observed system, the abrupt changes (faults)
of its parameters at the moment tA occur, then the step
changes in the state will also occur, and after time T
(t = tA + T ) the double window observer will detect
the difference of the border states zT (t− T ) �= z0(t− T )
(between the windows) on its common edge, see Fig. 2. In
this figure the entire plots of the two reconstructed states
zT and z0 are presented, which are the result of the on-line
action of the observer in the entire interval [T, TF ]. The
position of the observer was plotted for t = tA + T .

Fig. 2. Double window state observer (parameter fault).

It should be pointed that after detection of the
parameter fault at t = tA, in the moving double window
observer, the right-side window must be switched off
from on-line operation in open interval t ∈ (tA, tA + T )
(Fig. 2, the dashed line), because of outdated parameter
data, and the left-side window must be switched off for
t ∈ (tA + T, tA + 2T ) (the solid line). Such a rule of
observer operation guarantees state reconstruction to be
executed by the double window observer constantly and
without any breaks.

Fig. 3. Three tank cascade system.

6. First example system with faults

As the first example of (1) we shall consider a three tank
cascade connected system as shown in Fig. 3, given by

⎡
⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−S1

P1

S2

P1
0

0 −S2

P2

S3

P2

0 0 −S3

P3

⎤
⎥⎥⎥⎥⎥⎥⎦

×
⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦+

⎡
⎣

0
0

b/P3

⎤
⎦u(t),

y(t) =
[
S1 0 0

]
x(t),

(10)

G(s) =
b0

s3 + a2s2 + a1s+ a0

=
b0(

s+
S1

P1

)(
s+

S2

P2

)(
s+

S3

P3

) ,

b0 = b
S1S2S3

P1P2P3
,

a2 =
S1

P1
+

S2

P2
+

S3

P3
, (11)

a1 =
S1S2

P1P2
+

S1S3

P1P3
+

S2S3

P2P3
,

a0 =
S1S2S3

P1P2P3
.

The observability matrix QO and matrices F , BF ,
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CF are

QO =

⎡
⎣

C
CA
CA2

⎤
⎦

= S1

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

−S1

P1

S2

P1
0

S2
1

P 2
1

−S1S2

P 2
1

− S2
2

P1P2

S2S3

P1P2

⎤
⎥⎥⎥⎥⎥⎦
,

F = QOAQ
−1
O =

⎡
⎣

0 1 0
0 0 1

−a0 −a1 −a2

⎤
⎦ , (12)

BF = QOB =

⎡
⎢⎢⎢⎣

0
0

b
S1S2S3

P1P2P3

⎤
⎥⎥⎥⎦ =

⎡
⎣
0
0
b0

⎤
⎦ ,

CF = CQ−1
O =

[
1 0 0

]
.

By differentiating y(t) twice in (10), we get (13).
It is clear that the following statements are true:

• if a step change (fault) occurs in the flow rate
coefficientS1, then step changes will be seen in z1(t)
and in the next state variables z2(t) and z3(t);

• if a step change occurs in the flow rate coefficient
S2, then step changes will be seen only in the state
variables z2(t) and z3(t);

• if a step change occurs in the flow rate coefficient
S3, then a step change will be seen only in the state
variable z3(t).

The above statements can be generalized to any
number of cascade-connected tanks.

Below, we will analyze another system with the
structure of series-connected tanks.

7. Second example system with faults

As the second example of (1), we shall consider a
three-tank series-connected system as in Fig. 4, given by

⎡
⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−S1

P1
− S2

P1

S2

P1
0

S2

P2
−S2

P2
− S3

P2

S3

P2

0
S3

P3
−S3

P3

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

×
⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦+

⎡
⎢⎢⎢⎣

0
0

b

P3

⎤
⎥⎥⎥⎦u(t),

y(t) =
[
S1 0 0

]
x(t),

G(s) =
b0

s3 + a2s2 + a1s+ a0
,

b0 =
bS1S2S3

P1P2P3
,

a2 =
S1

P1
+

S2

P2

P1 + P2

P1

+
S3

P3

P2 + P3

P2
, (15)

a1 =
S1S2

P1P2
+

S1S3

P1P3

P2 + P3

P2

+
S2S3

P2P3

P1 + P2 + P3

P1
,

a0 =
S1S2S3

P1P2P3
.

The observability matrix QO [3× 3] and matrices F , BF ,
CF are

QO =

⎡
⎣

C
CA
CA2

⎤
⎦

= S1

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

−S1 + S2

P1
· · · 0

(S1 + S2)
2

P 2
1

+
S2
2

P1P2
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

· · · 0

· · · S2

P1

· · · −S2(S1 + S2)

P 2
1

− S2

S2 + S3

P1P2

0
0

S2S3

P1P2

⎤
⎥⎥⎥⎦ ,

F = QOAQ
−1
O =

⎡
⎣

0 1 0
0 0 1

−a0 −a1 −a2

⎤
⎦ , (16)

BF = QOB =

⎡
⎢⎢⎢⎣

0
0

bS1S2S3

P1P2P3

⎤
⎥⎥⎥⎦ =

⎡
⎣
0
0
b0

⎤
⎦ ,

CF = CQ−1
O =

[
1 0 0

]
.

By differentiating y(t) twice in (14), we obtain (17).
It is easy to see that once more the following statements
are true:
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⎡
⎣
z1(t)
z2(t)
z3(t)

⎤
⎦ =

⎡
⎣
y(t)
ẏ(t)
ÿ(t)

⎤
⎦ (13)

= S1

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

−S1

P1

S2

P1
0

S2
1

P 2
1

−S1S2

P 2
1

− S2
2

P1P2

S2S3

P1P2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S1x1(t)

−
(S1

P1

)
S1x1(t) +

(S1

P1

)
S2x2(t)

(S1

P1

)2

S1x1(t)−
[(S1

P1

)2

+
S1S2

P1P2

]
S2x2(t) +

S1S2

P1P2
S3x3(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

⎡
⎣
z1(t)
z2(t)
z3(t)

⎤
⎦ =

⎡
⎣
y(t)
ẏ(t)
ÿ(t)

⎤
⎦ (17)

= S1

⎡
⎢⎢⎢⎢⎣

1 0 0

−S1 + S2

P1
· · · 0

(S1 + S2)
2

P 2
1

+
S2
2

P1P2
, · · · · · ·

⎤
⎥⎥⎥⎥⎦

⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦

= S1

⎡
⎢⎢⎢⎣

1 0 0

· · · S2

P1
0

· · · −S2(S1 + S2)

P 2
1

− S2(S2 + S3)

P1P2

S2S3

P1P2

⎤
⎥⎥⎥⎦

⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦

• if a step change (fault) occurs in the flow rate
coefficient S1, then step changes will be seen in z1(t)
and in the next state variables z2(t) and z3(t);

• if a step change occurs in the flow rate coefficient
S2, then step changes will only be seen in the state
variables z2(t) and z3(t);

• if a step change occurs in the flow rate coefficient
S3, then a step change will only be seen in the state
variable z3(t).

The above statements can be generalized to any number
of series-connected tanks. For fault localization it is
enough to carefully observe all the n−1 derivatives of the
output signal y(t), i.e., all canonical state variables z(t) of
the system of series-connected tanks as well as cascade,
connected ones. To this end, we shall use the idea of the
double window exact state observer.

Fig. 4. Three tank serial connected system.

8. Simulation experiments for the first
system

The results of application of the above described
diagnostic methodology for the third order system (10) of
cascade-connected tanks with the control of u(t) = b1(t),
b = 10, will be presented in two experiments.
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Fig. 5. Functions GFT1(t), GFT2(t) for the left window.

8.1. First experiment for the first system. The
cross-sectional area of tanks is P1 = 1.5, P2 = 4.5, P3 =
1. The coefficients are S1 = 5, S2 = 2, S3 = 1. The
step change (fault) occurs in the flow rate of coefficient
S1. Before fault occurrence, the value of coefficient S1

was S1 = 5, and after the fault it is S1 = 8. The interval
of experiment is [0, 4]. The moment of fault occurrence is
tA = 2. The width of the observation windows is T = 1.
Before the fault the Frobenius matrix is F , and afterwards
it is F , cf. (12). We have

F =

⎡
⎣

0 1 0
0 0 1

−1.4815 −5.2593 −4.7778

⎤
⎦ ,

F =

⎡
⎣

0 1 0
0 0 1

−2.3704 −8.1481 −6.778

⎤
⎦ ,

BF =
[
0 0 14.8148

]T
,

BF =
[
0 0 23.7037

]T
,

M−1
FO =

⎡
⎣

15 −105 492
−105 953 −4780
492 −4780 24577

⎤
⎦ ,

M
−1

FO =

⎡
⎣

18 −162 1025
−162 1755 −11740
1025 −11740 79412

⎤
⎦ .

The function matrices

GFT1(t) =

⎡
⎣
GFT11(t)
GFT12(t)
GFT13(t)

⎤
⎦ ,

GFT2(t) =

⎡
⎣
GFT21(t)
GFT22(t)
GFT23(t)

⎤
⎦ (18)

for reconstruction of the final state in the left-side window
(before the fault) calculated from (9) in the window
[0, 1] have the form of two function vectors (for the
SISO system) whose elements are functions presented in
Fig. 5. The function matrices GF01(τ) and GF02(τ) for
the initial state in the right-side window (after the fault)
calculated from (6) have the form as in Fig. 6.

The simulation results of reconstruction of the
derivatives of the output y (3) generated by the double
window observer (8) (left window) and (5) (right window)
are shown below. Figures 7–9 confirm the statement from
Section 6 about the step changes in z(t).
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Fig. 6. Functions GFT1(τ ), GFT2(τ ) for the left window.
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Fig. 7. Step change in the output y(t) = z1(t).

There is visible reconstruction of the final state zT (t)
by the left moving window [t − 1, t] before the fault for
t ∈ [1, 2], as well as reconstruction of the initial state z0(t)
by the right moving window [t−1, t] after the fault for t ∈
[3, 4] (the last reconstructed initial state value is z0(3)).
In all state variables zi(t), step changes at t = 2 occur,
meaning that the fault happened in parameter S1.
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Fig. 8. First derivative of the output ẏ(t) = z2(t).
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Fig. 9. Second derivative of the output ÿ(t) = z3(t).

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

t

G
F

T
11

(t
),

   
G

F
T

12
(t

),
   

G
F

T
13

(t
)

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

t

G
F

T
21

(t
),

   
G

F
T

22
(t

),
   

G
F

T
23

(t
)

Fig. 10. Matrices GFT1(t) and GFT2(t) for the left window.

8.2. Second experiment for the first system. The
cross-sectional area of the tanks is P1 = 1.5, P2 = 4.5,
P3 = 1. The coefficients are S1 = 2, S2 = 1, S3 = 5.
A step change (fault) occurs in the flow rate coefficient
S3, before the fault S3 = 5 and after the fault S3 = 8.
The interval of experiment is [0, 4]. The moment of fault
occurrence is tA = 2. The width of the observation
window is T = 1. Before fault occurrence, the Frobenius
matrix is marked as F , and after the fault as F , cf. (12):

F =

⎡
⎣

0 1 0
0 0 1

−1.4815 −8.0741 −6.5556

⎤
⎦ ,

F =

⎡
⎣

0 1 0
0 0 1

−2.3704 −12.7407 −9.5555

⎤
⎦ ,

BF =
[
0 0 14.8148

]T
,

BF =
[
0 0 23.7037

]T
,

M−1
FO =

⎡
⎣

18 −152 924
−152 1627 −10498
924 −10498 60956

⎤
⎦ ,

M
−1

FO =

⎡
⎣

20 −260 2280
−260 3550 −32350
2280 −32350 297390

⎤
⎦ .

The function matrices GFT1(t) and GFT2(t) and for
the final state in the left-side window (before the fault)
calculated from (8) have the form as in Fig. 10. The
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Fig. 11. Matrices GF01(τ ) and GF02(τ ) for the left window.
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Fig. 12. Output y(t) = z1(t) without step changes.

function matrices GF01(τ) and GF02(τ) for the initial
state in the right-side window (after the fault) calculated
from (6) have the form as in Fig. 11. The simulation
results of reconstruction of the derivatives of the output
y (3) generated by the double window observer based on
(16) (left window) and (14) (right window) are shown in
Figs. 12–14. In these figures one can find once more a
confirmation of the statement from Section 6 about step
changes in z(t). In this experiment the failure occurred
in the parameter S3, hence the step changes should be
visible only on the z3(t) variable of the state (the second
derivative of y(t)). The figures present the reconstructed
derivatives in interval [tA − T, tA + T ] as in Fig. 2.

9. Simulation experiments for the second
system

In this section the results of application of the above
described diagnostic methodology will be presented in
two experiments for series-connected tanks (system (14))
with the control of u(t) = b1(t), b = 10 (see Fig. 4).

9.1. First experiment for the second system. The
cross-sectional area of the tanks is P1 = 1.5, P2 = 4.5
and P3 = 1. The coefficients are S1 = 2, S2 = 1,
S3 = 5. The step change (fault) occurs in the flow
rate of coefficient S1. Before fault occurrence, the value
of coefficient S1 was S1 = 5, and after the fault it
is S1 = 8. The interval of experiment is [0, 4]. The
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Fig. 13. First derivative of the output ẏ(t) = z2(t).
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Fig. 14. Second derivative of the output ÿ(t) = z3(t).

moment of fault occurrence is tA = 2. The width of the
observation window is T = 0.5. Before fault occurrence,
the Frobenius matrix is F and after the fault it is F , cf.
(16):

F =

⎡
⎣

0 1 0
0 0 1

−1.4815 −− 7.6296 −6.3333

⎤
⎦ ,

F =

⎡
⎣

0 1 0
0 0 1

−2.3704 −10.963 −8.333

⎤
⎦ ,

BF =
[
0 0 14.8148

]T
,

BF =
[
0 0 23.7037

]T
,

M−1
FO =

⎡
⎣

30 −300 2240
−300 953 −37230
2240 −37230 303440

⎤
⎦ ,

M
−1

FO =

⎡
⎣

30 −380 3400
−380 6570 −62250
3400 −62250 603090

⎤
⎦ .
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Fig. 15. Matrices GFT1(t) and GFT2(t) for the left window.
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Fig. 16. Matrices GF01(τ ) and GF02(τ ) for the right window.
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Fig. 17. Step change in the output y(t) = z1(t).

The function matrices

GFT1(t) =

⎡
⎣
GFT11(t)
GFT12(t)
GFT13(t)

⎤
⎦ ,

GFT2(t) =

⎡
⎣
GFT21(t)
GFT22(t)
GFT23(t)

⎤
⎦

for the final state of the left-side window (before the fault)
calculated from (8) have the form as in Fig. 15. The
function matrices GF01(τ) and GF02(τ) for the initial
state of the right-side window (after fault occurrence)
calculated from (5) have the form as in Fig. 16. The
simulated reconstruction results of the derivatives of the
output y (3) generated by the double window observer (8)
(left window) and (5) (right window) are shown below. In
Figs. 17–19, one can find a confirmation of the statement
from Section 7 about the step changes in z(t). There
is visible reconstruction of the final state zT (t) by the
left-side moving window [t − 0.5, t] before the fault for
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Fig. 18. First derivative of the output ẏ(t) = z2(t).
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Fig. 19. Second derivative of the output ÿ(t) = z3(t).

t ∈ [0.5, 2], as well as reconstruction of the initial state
z0(t) by the right-side moving window [t − 0.5, t] after
fault occurrence for t ∈ [2.5, 4]. The step changes occur in
all state variables zi(t), meanings that the fault happened
in parameter S1.

9.2. Second experiment for the second system. The
cross-sectional area of the tanks is P1 = 1.5, P2 = 4.5
and P3 = 1. The coefficients are S1 = 2, S2 = 1, S3 = 5.
The step change (fault) occurs it the flow rate coefficient
S3. Before the fault the value of S3 was S3 = 5, and after
fault occurrence it is S3 = 8. The interval of experiment
is [0, 4]. The moment of fault is tA = 2. The width of
the observation window is T = 0.5. Before the fault the
Frobenius matrix is denoted by F and after the fault by F ,
cf. (16):

F =

⎡
⎣

0 1 0
0 0 1

−1.4815 −13.6296 −8.3333

⎤
⎦ ,

F =

⎡
⎣

0 1 0
0 0 1

−2.3704 −21.6296 −12.0

⎤
⎦ ,

BF =
[
0 0 14.8148

]T
,

BF =
[
0 0 23.7037

]T
,

M−1
FO =

⎡
⎣

30 −380 3280
−380 6470 −60260
3280 −60260 575630

⎤
⎦ ,

M
−1

FO =

⎡
⎣

0 −600 6500
−600 11400 −141200
6500 −141200 1769700

⎤
⎦ ,

The function matrices GFT1(t) and GFT2(t) for the final
state of the left-side window (before the fault) calculated
from (8) have the form as in Fig. 20. The function matrices
GF01(τ) and GF02(τ) for the initial state of the right-side
window (after the fault) calculated from (5) have the form
as in Fig. 21. The simulation results of reconstructing
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Fig. 20. Matrices GFT1(t) and GFT2(t) for the left window.
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Fig. 21. Matrices GF01(τ ) and GF02(τ ) for the right window.

the derivatives of the output y (3) generated by the double
window observer based on (8) (left-side window) and
(5) (right-window) are shown in Figs. 22, 23 and 24.
There one can find a confirmation of the statement from
Section 7 about the step changes in z(t). In the figures,
reconstruction of the final state zT (t) by the left moving
window in [t−0.5, t] before the moment of fault is visible,
for t ∈ [0.5, 2], along with the reconstruction of the initial
state z0(t) by the right moving window in [t− 0.5, t] after
the fault for t ∈ [2.5, 4].

One can see that the step change at tA = 2 occurs
only in the state z3(t), meaning that the failure happened
on parameter S3.

10. Diagnosis of a more general system

Let us discuss diagnosis of abrupt changes of parameters
in more general structures of SISO linear systems. The
transfer function of the input-output model will have the
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form

G(s) =
bn−1s

n−1 + · · ·+ b1s+ b0
sn + · · ·+ a2s2 + a1s+ a0

.

Assume that there is a possibility of identification of
all the model parameters ai, bi before and immediately
after the moment of fault occurrence. The question is
whether the exact calculation of step changes in real
parameters of the system (symbolically denoted by the
letter Si) based on these model parameters values is
possible. Various cases were analyzed by Byrski (2014),
and a short description of these cases will be presented
below. As an example of analysis, we assume once more
a third-order hydraulic system in the configuration as in
Fig. 25, for which the input-output model is

G(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

. (19)
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Fig. 22. Reconstructed output y(t) = z1(t).
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Fig. 23. Reconstructed first derivative ẏ(t) = z2(t).

For simplicity of the description, we will assume the
equality of the tanks cross-sectional area to be P1 = P2 =
P3 = P = 1. Then the real state model of the system is
given by the equations

⎡
⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣
−S1 S2 0
0 −S2 S3

0 0 −S3

⎤
⎦
⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦+

⎡
⎣
b1

b2

b3

⎤
⎦u(t),

y(t) =
[
S1 0 0

]
x(t).
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Fig. 24. Second derivative of the output ÿ(t) = z3(t).

Fig. 25. Three tank cascade system.

One can obtain the transfer function (19) from the formula
G(s) = C[sI − A]−1B. Then the model parameters are
given by the formulas

b2 = b1S1,

b1 = b1S1S2 + b1S1S3 + b2S1S2,

b0 = (b1 + b2 + b3)S1S2S3,

a2 = S1 + S2 + S3,

a1 = S1S2 + S1S3 + S2S3,

a0 = S1S2S3.

Case 1. If the model parameters ai, bi are identified before
and after the failure and the gain coefficients b1, b2, b3

are known, then from the above equations one can find
that

S1 =
b2
b1

,

S3 =
b2(b1 + b2)(b1a2 − b2)− b2

1b1
b1b2(b1 + b2)− b2

1b2
,

S2 =
a0

S1S3
.
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This means that before the moment of fault occurrence as
well as immediately after it, by a calculation of the above
equations the old and new values of system parameters
Si are known directly. Hence, the faulty parameter SF is
easy to recognize and there is no need to use the diagnostic
method presented in this paper.

Case 2. Another situation occurs if the gain coefficient
b1 = 0. The transfer function has the form

G(s) =
b1s+ b0

s3 + a2s2 + a1s+ a0
,

and the model parameters are given by

b1 = b2S1S2,

b0 = (b2 + b3)S1S2S3,

a2 = S1 + S2 + S3,

a1 = S1S2 + S1S3 + S2S3,

a0 = S1S2S3.

After some calculation one can obtain the quadratic
equation for S1. There are two possible solutions of this
equation:

Δ =
(
a2 + a0

b2

b1

)2

− 4
b1
b2

,

S11,12 =
1

2

(
a2 + a0

b2

b1
±
√
Δ
)
,

S21 =
b1
b2

1

S11
, S31 =

a0
S11S21

,

S22 =
b1
b2

1

S12
, S32 =

a0
S12S22

.

In this case, after identification of new values of the
parameters ai, bi (after faults) and calculation of the
possible values of parameters Si, direct recognition of the
faulty parameter SF may be possible, but in some special
malicious cases it may be not.

Case 3. Yet another case of possible situations is for b1 =
b2 = 0 and b3 = b �= 0. The state equation is given by
Eqns. (10) and (11):

G(s) =
b0

s3 + a2s2 + a1s+ a0
.

From (11), after some algebra one can obtain the formula
for S1. This is a third-degree equation which has three
possible solutions for S11, S12, S13. For each S1j there
is a second-degree equation for S2, hence two possible

solutions for S2j exist and finally one solution for S3j :

− S3
1 + a2S

2
1 − a1S1 + a0 = 0,

3S1j
=⇒ S2

2 − (a2 − S1j)S2 +
a0
S1j

= 0,

=⇒ S2j=
1

2

(
a2−S1j+

√
(a2−S1j)

2−4
a0
S1j

)
,

S2j=
1

2

(
a2−S1j−

√
(a2−S1j)

2−4
a0
S1j

)

S3j =
a0

S1jS2j
.

In this case there are six possible sets of the same triple
values Si, but arranged in a different sequence. Direct,
correct and fast diagnosis as well as location of the fault
in this case may be impossible. The standard approach
is to carry out numerical experiments and testing the
different hypotheses regarding the different sequences of
the parameter values Si with simulation of the abrupt
changes in consecutive Si’s. After this, by comparing
the real output signal and different modeling output
signals, a meaningful hypothesis must be chosen that will
enable determination of the correct i-th number of the
faulty valve. This methodology is impossible for on-line
applications.

It is clear that the third case with b1 = b2 = 0 and
b3 = b �= 0 is most complicated for diagnosis. Hence,
especially for this case (and also for the second one), the
method presented in this paper is intended. This method
does not use information about the changed value of Si;
however, it can indicate the position of the faulty valve in
the system structure.

11. Identification method

Although the method of model identification which
cooperates with the double window observer is not the
main subject of this paper, a brief description of this
method will be presented here along with comments
on this cooperation. In the literature (e.g., Young,
1981; Unbehauen and Rao, 1987), various methods of
parameter identification of time-continuous models have
been discussed. For the diagnostic algorithm presented
in this paper the identification method with a modulating
function is most useful. The efficiency of this method
has been investigated by the authors and the results of the
identification published (Byrski and Byrski, 2012b). The
improvement of this method which enables acceleration of
calculations was developed and the results were published
by Byrski and Byrski (2012a).

The above method for identification of parameters of
the linear continuous n-th order input-output model

n∑
i=0

aiy
(i)(t) =

m∑
j=0

bju
(j)(t)



A double window state observer for detection and isolation of abrupt changes in parameters 599

is based on convolution transformation of both the sides
of this model with the special known modulating function
ϕ(t) with compact support [0, h]; that is to say, ϕ(t)
and ϕ(i)(t) are given on the interval (0, h), and are zero
outside this interval (Preisig and Rippin, 1993), h < TID:

n∑
i=0

ai

⎡
⎣

h∫

0

y(t− τ)ϕ(i)(τ) dτ

⎤
⎦

=
m∑
j=0

bj

⎡
⎣

h∫

0

u(t− τ)ϕ(j)(τ) dτ

⎤
⎦,

n∑
i=0

aiyi(t) =

m∑
j=0

bjuj(t).

After such transformation of the differential model,
a new algebraic model is obtained which contains the
new functions yi(t), uj(t) that replace the unknown
derivatives y(i)(t), u(i)(t). This algebraic model has the
same parameters (however, still unknown) and is valid
for any initial conditions. Parameter identification may
be performed based on the equation error method. The
use of minimization of the integral square error in the
moving integral window [t − TID, t] for any t generates
a special Gram matrix. The eigenvector of this matrix
represents the best estimate of the system parameters
ai(t), bi(t). The identification moving window cooperates
with the left-side window of the double window observer
[t − 2T, t − T ] (where T > TID) and produces, for
the observer, the current values of the input-output model
parameters ai, bi before the fault (for calculation of
matrices GFT1(t), GFT2(t) ), as well as cooperates with
the right-side window of the double window observer [t−
T, t] and yields, for this observer, the current values of the
input-output model parameters ai(t), bi(t) after the fault
(for calculation of new matrices GF01(τ), GF02(τ)). In
an on-line application, all calculations of the identification
procedure in the entire identification window TID must be
completed and repeated within each single measurement
sample.
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Fig. 26. Noisy measurement of the output y(t).
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Fig. 27. Reconstructed output signal y(t) = z1(t).
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Fig. 28. Reconstructed first derivative ẏ(t) = z2(t).
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Fig. 29. Second derivative of output ÿ(t) = z3(t).

12. Conclusions

The main and original contribution of this paper is the
new method for diagnosis of a system and localization
of some real parameter Si in which an abrupt change
has occurred, by observation of the canonical state of
this system. This method only requires knowledge of the
input-output model with identified values of the model
parameters ai, bi and does not require knowledge of the
real parameter valuesSi. The step changes in the observed
canonical state variables indicate the i-th number of the
real parameter Si which has failed. The correctness of
this methodology has been shown for linear systems with
a regular structure (cascade or serial connections of first
order systems). Such a structure can be found in many
real systems, e.g., in series or cascade connections of
irrigation reservoirs or technological tanks, and in electric
cable modeling with RC elements in chain or in series
connections of manipulator arms. Many authors have
carried out research on such structures (e.g., Theilliol
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et al., 2002; Sainz et al., 2002; Lincon et al., 2007; Orani
et al., 2010; Wang et al., 2008).

Another contribution of this paper is the new idea
of observer construction. It proposes the use of the
double moving window integral observer for observation
of the exact value of the canonical state. The integral
observer plays the role of a high quality virtual sensor
for reconstruction of the output signal derivative . This
observer reproduces derivatives y(i)(t) very efficiently
and has good filtration properties because of the two
integral operations (for signal processing). It works
properly even if a noisy signal y(t) is measured. It is
visible in extra simulation results made for the first system
in the first experiment presented in Section 8 (Figs. 7–9),
but this time with noisy measurements y(t). The results
can be seen in Figs. 26–29.

Due of considering the continuous time problem, the
observation interval T can be theoretically of any length,
so it can be chosen to be as short as possible. In practice,
for guaranteeing the accuracy of numerical calculation
of the integrals and from the point of view of possible
existence of disturbances in input/output measurements,
this interval should have a reasonable duration and could
be chosen by an experiment. For the integral observer, one
can calculate its norm as the functional norm in L2[0, T ].
This norm depends on the system matrices A, B, C as
well as the observation interval T . If in the measurement
signals the disturbances occur and they have some norm
in L2[0, T ], then the norm of the observation error can
be estimated (as an upper estimate) by the product of the
norm of disturbances and the norm of the observer.

An important remark is that, if the observation
interval T increases, the norm of the observer decreases.
On the other hand, if the interval T decreases, then the
norm of the observer increases and so does the influence
of the disturbance to the observation error.

The exact state observers (6), (9) chosen in this paper
are optimal from the point of view of disturbances, which
are present only in measurements of the output signal
y(t). We assume that the control signal is known exactly.
This means that in both observers only the first integral
must have the minimal norm. Then the influence of the
additive disturbances of the output measurements will be
minimized (Byrski, 2003).

The methods of fault detection which uses finite
memory integral observers have been rarely studied
and reported. One can find only few publications in
which such an approach is presented (e.g., Medvedev,
1996; Nuninger et al., 1998). Commonly for diagnostic
purposes, the asymptotic Luenberger estimator is applied.
However, because of the initial state observation error, as
has already been stated, this estimator can only estimate
the state and cannot reconstruct this state exactly in a
finite time interval. The presented diagnostic algorithm
was implemented in a software package and it has

been embedded as a separate task to the STERGLASS
computer control system. Such a system was established
at the AGH University of Science and Technology in
Kraków and is dedicated to the monitoring and control
of industrial glass melting installations.
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