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This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of
a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on
the decomposition of the solution into its mean and a random field using a generic Karhunen–Loève expansion. The random
field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally
represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos
bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to
derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of
equations consists of a partial differential equation (PDE) that defines the dynamic evolution of the mean, a set of PDEs
to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs) define dynamics
of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty
to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian
inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for
calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational
efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

Keywords: Bayesian framework, stochastic partial differential equation, Karhunen–Loève expansion, generalized polyno-
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1. Introduction

Recent advances in digital technologies have facilitated
the use of computer simulators for investigation of
large scale systems. However, computer simulators are
fraught with uncertainties due to poorly known/unknown
models, parameters, initial and boundary conditions
etc. (Oreskes et al., 1994). Various researchers have
investigated the effect of these uncertainties on the
credibility of a computer simulator and established
uncertainty quantification and calibration as an integral
aspect of a modeling and simulation process (Mehta,
1991; 1996; Oberkampf et al., 2002, Trucano et al., 2006;
Janiszowski and Wnuk, 2016). This paper focuses on the
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Bayesian approach that provide a formal framework to
identify, characterize and quantify the uncertainties, and
provides a generic inference method for calibration of a
computer simulator using limited and noisy experimental
data (Kennedy and O’Hagan, 2001; Higdon et al., 2005;
Goldstein and Rougier, 2005; Bayarri et al., 2007; Kelly
and Smith, 2009; Zaidi et al., 2012; Tagade and Sudhakar,
2011; Tagade et al., 2009).

The Bayesian inversion framework is preferred to
more traditional calibration methods due to its ability to
provide complete posterior statistics of the parameters
of interest. Sampling techniques such as the Markov
chain Monte Carlo (MCMC) method (Besag et al., 1995;
Gamerman and Lopes, 2006) are used for exploration
of the posterior statistics, especially for calibration of
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nonlinear dynamical simulators in non-Gaussian settings.
Satisfactory approximation of the posterior distribution
and associated statistics using MCMC requires evaluation
of the simulator at a large number of input settings, often
in the range of 103 to 106. A collection of a large
number of samples becomes computationally prohibitive
for simulation of a large scale system, imposing a key
challenge for implementation of the Bayesian framework.
To make the Bayesian inversion framework accessible
to large-scale problems, it is necessary to develop
computationally efficient uncertainty propagation and
calibration techniques.

An efficient implementation of the Bayesian
inversion can be achieved by reducing the computation
cost of MCMC sampling or forward nonlinear dynamical
simulators (Kamiński, 2015). The methods proposed
in the literature for efficient MCMC sampling include
rejectionless MCMC sampling (Bortz et al., 1975),
adaptive Metropolis–Hastings algorithm (Gilks
et al., 1998), and Metropolis within Gibbs sampling
(Cai et al., 2008). See the work of Cotter et al. (2013)
for a discussion on some of the recent modified MCMC
sampling methods for dynamical simulators, while
application of one of the methods to the variational data
assimilation is discussed elsewhere (Cotter et al., 2012).

Schwab and Stuart (2012) have proposed a sparse
deterministic approximation (Bieri and Schwab, 2009;
Schwab and Gittelson, 2011) of the posterior distribution
for efficient implementation of the Bayesian inference
in the context of elliptic partial differential equations.
In particular, Schwab and Stuart (2012) investigate
generalized polynomial chaos (gPC) expansion for
approximations of the posterior. Hoang et al. (2013) have
theoretically investigated the computational complexity
of MCMC, sparse MCMC using gPC expansion and
proposed a multi-level MCMC sampling. These
works (Schwab and Stuart, 2012; Hoang et al., 2013)
demonstrate the possibility of significant computational
complexity reduction for Bayesian inference using
spectral projection based approximation of the forward
problem.

This work concerns computationally efficient
implementation of the forward dynamical simulators. In
particular, the paper focuses on the spectral projection
based methods. Marzouk and Najm (2007) have proposed
a computationally efficient implementation of the
Bayesian framework using stochastic spectral methods.
Stochastic spectral projection (SSP) based methods
are extensively used for uncertainty propagation as a
computationally efficient alternative to Monte Carlo
methods with comparable accuracy. Homogeneous
chaos theory introduced by Wiener (1938; 1958) is the
earliest exposition of the SSP method, where random
variables are represented as an expansion series in
orthogonal Hermite polynomials that converges in the

mean square sense (Cameron and Martin, 1947). The
present state of the art in the field of SSP based methods
for uncertainty propagation is based on the generalized
polynomial chaos (gPC) method. The method has been
successfully implemented for solution of stochastic
finite element methods (Ghanem and Spanos, 1991;
2003, Ghanem and Red-Horse, 1999) and stochastic
fluid flow problems (Knio and Maitre, 2006; Xiu and
Karniadakis, 2002). Xiu and Karniadakis (2003)
have extended the method to a set of an Askey
scheme of orthogonal polynomials. Subsequently,
the method has been applied by various researchers for
uncertainty propagation through simulators of systems
of engineering importance (Lucor et al., 2003; Mathelin
et al., 2004; Narayanan and Zabaras, 2004; Poette
et al., 2009). The Bayesian inversion formulation
proposed by Marzouk and Najm (2007) uses the gPC
method to propagate the prior parametric uncertainty to
the simulator prediction. The resultant gPC expansion
of the prediction is used in the Bayes theorem to
define the likelihood. The methodology is further
extended by Marzouk and Najm (2009) for inference of
spatially/temporally varying uncertain parameters.

Although the gPC method offers a computationally
efficient estimation of the uncertainty, the computational
cost of the implementation grows significantly as the
number of stochastic dimensions increases (Sapsis and
Lermusiaux, 2012). Such a high dimensional uncertainty
typically arises for a simulator with a large number of
uncertain parameters, and more predominantly in the case
of a spatially/temporally varying uncertain parameter with
rapidly decaying covariance functions. The research work
presented in this paper addresses the Bayesian framework
for calibration of a simulator with high dimensional
uncertainty.

Sapsis and Lermusiaux (2009) have proposed the
dynamically orthogonal field equations (DOFEs) method
for efficient propagation of high-dimensional uncertainty.
The method features decomposition of the system
response into a mean and stochastic dynamical component
using a truncated generalized Karhunen-Loève expansion.
The stochastic component is spectrally represented in
terms of an orthogonal eigenfunction basis in the
spatial dimension, while the respective coefficients define
the time-varying stochastic dimension. The dynamic
orthogonality (DO) condition (Sapsis and Lermusiaux,
2009) is used to derive the closed-form evolution
equations for the mean, eigenfunction basis, and the
stochastic coefficients.

However, the DOFE method requires Monte Carlo
sampling for the solution of the evolution equation for
stochastic coefficients. Due to Monte Carlo sampling,
a parametric form of the PDF is not available. This
makes it hard to directly apply the DOFE methodology
for Bayesian inversion problems. This paper proposes
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a dynamic bi-orthogonality based approach that extends
the DOFE method for the Bayesian inversion of a
computer simulator with high dimensional uncertainty.
The proposed bi-orthogonal method uses the spectral
expansion of the stochastic field in the gPC basis. A
parametric form of the PDF of this gPC basis is available;
this makes the Bayesian inference tractable using the
proposed formulation.

The random coefficients of the truncated generalized
Karhunen–Loève expansion, obtained using dynamically
orthogonal field equations, are projected on the gPC basis
using Galerkin projection (Ghanem and Spanos, 2003;
Dumbser and Munz, 2007; Karczewska et al., 2016). The
resultant field equations are termed here as dynamically
bi-orthogonal field equations (DBFEs).1 The Bayesian
inversion approach proposed in this paper uses DBFEs
to project the prior parametric uncertainty to the system
response. The resultant bi-orthogonal expansion is used
in the likelihood during MCMC sampling for Bayesian
inference of the uncertain parameters. The proposed
DBFE method provides a substantial computational
speedup over the gPC based method for Bayesian
inversion. The efficacy of the proposed method is
demonstrated for calibration of a 2D transient diffusion
equation simulator with uncertain source location and the
diffusivity field. Note that a preliminary version of this
work was reported by Tagade and Choi (2012), while this
article includes (a) extension of the method to take into
account model structural uncertainty; (b) substantially
refined and expanded theoretical analysis; and (c)
additional numerical results demonstrating computational
efficiency of the proposed methodology.

The rest of the paper is organized as follows. In
Section 2, the statistical formulation is discussed in detail.
The proposed DBFE-based Bayesian method is presented
in Section 3. Section 4 provides numerical results for
a 2D transient diffusion equation. Finally, the paper is
summarized and concluded in Section 5.

2. Statistical formulation

The proposed Bayesian framework is developed for a
simulator T (x, t, θ(ω)), where t ∈ R≥0 is time, x ∈ X ⊂
R

d is a spatial dimension and θ(ω) is a set of uncertain
parameters that induce uncertainty in the predictions.
Note that the simulator T (x, t, θ(ω)) is defined over a
probability space (Ω,F ,P), where ω ∈ Ω, a set of
elementary events, F is the associated σ-algebra and P
is a probability measure defined over F . In this paper, the

1Note that the term dynamic bi-orthogonality is used by other authors
in related, but different, contexts (Venturi, 2011; Cheng et al., 2013a;
2013b). Venturi (2011) defines dynamic bi-orthogonality in terms of dy-
namically evolving inner products. Cheng et al. (2013a; 2013b) define
dynamic bi-orthogonality by decomposing the spatial dimension on an
eigenfunction basis, while maintaining the independence of random co-
efficients of the Karhunen–Loève expansion over time evolution.

proposed method is particularly developed for simulators
with a model given by the partial differential equation

∂u(x, t;ω)

∂t
= L [u(x, t;ω); θ(ω)] , (SPDE)

where u(x, t;ω) is the system response and L is an
arbitrary differential operator. Thus, note that the
simulator is

T (x, t, θ(ω)) = u(x, t;ω). (1)

Equation (SPDE) is a stochastic partial differential
equation. The stochasticity in (SPDE) emanates from the
uncertainty in the parameters. (SPDE) is initialized using
a random field u(x, 0;ω), while the boundary condition is
given by

B(β, t;ω) = h(β, t;ω), β ∈ ∂X , ω ∈ Ω, (2)

where B is a linear differential operator.
The simulator T (x, t, θ(ω)) approximates the

physical phenomena within the limits of available
knowledge. Let ζ(x, t) be the ‘true’ but unknown
model that perfectly represents the physical phenomena.
Since T (x, t, θ(ω)) is an approximate representation
of the physical phenomena, the simulator predictions
deviate from ζ(x, t) by δ(x, t), where δ(x, t) is known
as a discrepancy function.2 The relationship between
ζ(x, t) and T (x, t, θ(ω)) is given by (Kennedy and
O’Hagan, 2001)

ζ(x, t) = T (x, t, θ̂(ω)) + δ(x, t), (3)

where θ̂(ω) denotes the ‘true’ value of the uncertain
parameters.

The proposed Bayesian framework uses
experimental observations at finite locations for inference
of the uncertain parameters. At time t, let the system
be experimentally observed at M spatial locations
{xi; i = 1, . . . ,M}. The measurement at xi, denoted as
ye(xi, t), is given by

ye(xi, t) = ζ(xi, t) + ε(xi, t), (4)

where ε(xi, t) is the measurement uncertainty. Let
ye = {ye(xi, t); i = 1, . . . ,M} be the set of available
experimental observations. Using ye, the uncertain
parameters θ and the discrepancy function δ(x, t) can be
inferred through the Bayes theorem as

f
(
θ̂(ω), δ(x, t) | ye

)

∝ f
(
ye | T (x, t, θ̂(ω)), δ(x, t)

)
× f

(
θ̂(ω), δ(x, t)

)
,

(5)

2In the literature δ(x, t) is also termed model misspecification,
model form uncertainty, and model structural uncertainty.
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where f(θ̂(ω), δ(x, t)) stands for the prior,
f(ye | T (x, t, θ̂(ω)), δ(x, t)) signifies the likelihood
and f(θ̂(ω), δ(x, t) | ye) is the posterior probability
distribution.

Uncertainty in the experimental observations,
ε(x, t), is assumed to be specified using a zero mean
Gaussian distribution with covariance matrix

Σe = σ2
eIM , (6)

where I is the M × M identity matrix. In this
paper, the proposed Bayesian framework is developed
for independent prior uncertainties in θ̂(ω) and δ(x, t),
with the prior for δ(x, t) given by a zero-mean Gaussian
process with a covariance function of the form

Σδ(x1,x2) = σ2
δ exp

(
−

d∑
k=1

λδk
(
xk1 − xk2

)2
)
, (7)

where σ2
δ is the variance and λδk is the correlation

strength of the covariance function, which are treated as
uncertain hyper-parameters. In the present paper, the
inverse Gamma prior IG(ασ , βσ) is used for σ2

δ , while,
the Gamma prior G(αλk

, βλk
) is used for λδk (Kennedy

and O’Hagan, 2001; Paulo, 2005; O’Hagan, 2006). The
uncertainty in δ(x, t) is specified using the hierarchical
zero-mean Gaussian process prior as

f(δ(x, t), σ2
δ ,λ

δ)

∝
exp

(
− 1

2δ
TΣ−1

δ δ
)

√|Σδ|
× exp

(−βσ/σ2
δ

)
(σ2

δ )
ασ+1

×
d∏

k=1

(λki)
αλki−1 exp

(−βλk
λδk

)
(8)

where δ = {δ(xi, t); i = 1, . . . , N} and λδ = {λδk; k =
1, . . . , d}. Use (8) and (6) in the Bayes theorem (5) to
obtain

f
(
θ̂(ω), δ, σ2

δ ,λδ | ye

)

∝
exp

(
− 1

2d
TΣ−1

e d
)

√|Σe|
exp

(
− 1

2δ
TΣ−1

δ δ
)

√|Σδ|

× exp
(−βσ/σ2

δ

)
(σ2

δ )
ασ+1

×
[

d∏
k=1

(λki)
αλki−1 exp

(−βλk
λδk

)
]
× f(θ̂(ω)),

(9)

where d = {ye(xi, t)−
(
T (xi, t, θ̂(ω)) + δ(xi, t)

)
; i =

1, . . . ,M}. Marginalization of δ(x, t) from (9) gives

f(θ̂(ω), σ2
δ ,λδ | ye)

∝ exp
(− 1

2η
TΣ−1η

)
√|Σ| × exp

(−βσ/σ2
δ

)

(σ2
δ )

ασ+1

×
d∏

k=1

(λδk)
αλk

−1 exp
(−βλk

λδk
)× f(θ̂(ω)),

(10)

where Σ = Σδ + Σe and we set η = {ye(xi, t) −
T (xi, t, θ̂(ω)); i = 1, . . . ,M}.

3. Proposed methodology

Equation (10) can be solved by sampling from the
posterior distribution using MCMC, which requires
evaluation of T (xi, t, θ̂(ω)) for each sample, which
is computationally prohibitive for large-scale system
simulators. The approach proposed in this paper
requires a single evaluation of (SPDE) using dynamically
bi-orthogonal field equations. The DBFE is used
for propagating the prior uncertainty in θ̂(ω) to the
system response. The resultant bi-orthogonal expansion
of the system response is used in (10) to define the
posterior distribution, which is explored using MCMC.
The proposed method is described in detail in this section.

3.1. Dynamically bi-orthogonal field equations. The
proposed DBFE method is based on the dynamically
orthogonal field equations (DOFEs) proposed by Sapsis
and Lermusiaux (Sapsis and Lermusiaux, 2009). Consider
a generic Karhunen–Loève expansion of u(x, t;ω)
truncated at N terms as

u(x, t;ω) = u(x, t) +

N∑
i=1

Yi(t;ω)ui(x, t), (11)

where u(x, t) is the mean, ui(x, t) are the functions
that form a complete orthonormal basis on L2(X ), while
Yi(t;ω) are the zero-mean independent random variables.
Note that throughout this paper the equality sign, =, is
used to represent the approximate equality if no confusion
is expected. Substituting the expansion (11) in (SPDE)
gives

∂u(x, t)

∂t
+

N∑
i=1

ui(x, t)
dYi(t;ω)

dt

+

N∑
i=1

Yi(t;ω)
∂ui(x, t)

∂t

= L[u(x, t;ω); θ(ω)].

(12)

Equation (12) is a set of coupled partial differential
equations. Due to the coupled nature of the equations,
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solution of (12) is numerically intractable. This
necessitates the imposition of additional constraints to
ensure numerical tractability. Sapsis and Lermusiaux
(2009) proposed imposition of a dynamic orthogonality
(DO) condition to derive the independent evolution
equations for u(x, t), Yi(t;ω) and ui(x, t). The DO
condition constrains the time evolution of ui(x, t) such
that

〈
∂ui(x, t)

∂t
, uj(x, t)

〉

X

= 0, ∀i, j = 1, . . . , N,

(13)
where 〈·, ·〉 is the inner product. Note that the DO
condition ensures that ui(x, t) preserves orthonormality
over the time evolution of (SPDE).

Remark 1. In this paper, the inner product is defined
over spatial and stochastic dimensions. The inner product
over the spatial dimension is defined as

〈u(x, t;ω), v(x, t;ω)〉X
=

∫

X

u(x, t;ω)v(x, t;ω) dx, (14)

while the inner product over the stochastic dimension is
defined as

〈u(x, t;ω), v(x, t;ω)〉Ω
=

∫

Ω

u(x, t;ω)v(x, t;ω) dP(ω). (15)

Using the DO condition, the independent evolution
equations for u(x, t), ui(x, t) and Yi(t;ω) are derived as
follows (Sapsis and Lermusiaux, 2009).

3.1.1. Dynamically orthogonal field equations.
Apply the expectation operator to (12) to obtain the
evolution equations for u(x, t) as

∂u(x, t)

∂t
= Eω [L[u(x, t;ω); θ(ω)]] . (16)

Multiply (12) by Yj(t;ω) and apply the expectation
operator to have

N∑
i=1

CYi(t)Yj(t)
∂ui(x, t)

∂t
+

N∑
i=1

C dYi(t;ω)

dt Yj(t;ω)
ui(x, t)

= Eω [L [u(x, t;ω); θ(ω)]Yj(t;ω)] ,

(17)

whereCYi(t)Yj(t) denotes the covariance between Yi(t;ω)
and Yj(t;ω). Multiplying (17) by uk(x, t), taking the
inner product and applying the expectation operator gives

C dYk(t)

dt Yj(t)

= 〈Eω [L (u(x, t;ω);ω)Yj(t;ω)] , uk(x, t)〉X , (18)

which on substitution in (17) yields

N∑
i=1

CYi(t)Yj(t)
∂ui(x, t)

∂t

= Eω [L[u(x, t, ω); θ(ω)]Yj(t;ω)]

−
N∑

k=1

〈Eω [L[u(x, t, ω); θ(ω)]Yj(t;ω)] , uk(x, t)〉X

× uk(x, t).

(19)

Equation (19) can be written in matrix form

U = Γ−1D, (20)

where Γ is the covariance matrix with the (i, j)-th element
Σij = CYi(t)Yj(t).

To derive the evolution equation for Yj(t;ω),
multiply both the sides of (12) by uj(x, t) and take the
inner product to obtain

〈
∂u(x, t)

∂t
, uj(x, t)

〉

X

+
N∑
i=1

〈ui(x, t), uj(x, t)〉X
dYi(t;ω)

dt

+

N∑
i=1

Yi(t;ω)

〈
∂ui(x, t)

∂t
, uj(x, t)

〉

X

= 〈L[u(x, t;ω); θ(ω)], uj(x, t)〉X .

(21)

Note that the third term on the left-hand side in (21)
vanishes–completely due to the DO condition (13), while
the second term vanishes for all i �= j owing to the
orthonormality of ui(x, t). Thus

dYi(t;ω)

dt
+

〈
∂u(x, t)

∂t
, ui(x, t)

〉

X

= 〈L[u(x, t;ω); θ(ω)], ui(x, t)〉X .

(22)

Note that multiplying (16) by ui(x, t) and taking the inner
product gives
〈
∂u(x, t)

∂t
, ui(x, t)

〉

X

= 〈Eω [L[u(x, t;ω); θ(ω)]] , ui(x, t)〉X .

(23)

Using (23) in (22) gives the evolution equation for
Yi(t;ω) as

dYi(t;ω)

dt

=
〈
L [u(x, t;ω); θ(ω)]− Eω [L [u(x, t;ω); θ(ω)]] ,

ui(x, t)
〉
X
.

(24)
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3.1.2. Bi-orthogonal expansion. Note that the
numerical solution of (SPDE) using the DOFE method
provide the samples of u(x, t;ω) through the coefficients
Yi(t;ω), whereas the Bayesian inference requires an
analytic form of the probability distribution of the
system response. Thus, the DOFE method cannot
directly be used for Bayesian inference. In the present
paper, a bi-orthogonal expansion approach is proposed
to impose the orthogonality based geometric structure on
the stochastic dimension. Consider a gPC expansion of
Yi(t;ω) truncated at P terms as

Yi(t;ω) =
P∑

p=1

Y i
p (t)ψp(ξ(ω)), (25)

where ψp(ξ(ω)) are the orthogonal polynomials from the
Askey scheme, while ξ(ω) ∈ L2(Ξ) are the random
variables with the appropriate probability density function
(Xiu and Karniadakis, 2003). Use (25) in (11) to get

u(x, t;ω) = u(x, t) +

N∑
i=1

P∑
p=1

Y i
p (t)ψp(ξ(ω))ui(x, t).

(26)
Equation (26) is termed here the bi-orthogonal expansion.
Differentiate (25) with respect to time and use the
Galerkin projection to obtain

dY i
p (t)

dt
=

1〈
ψ2
q

〉
Ω

〈〈
L [u(x, t;ω); θ(ω)]

− Eω [L [u(x, t;ω); θ(ω)]] ,
〉
X
,

ui(x, t)ψp(ξ(ω))
〉
Ω
.

(27)

Note that (27) is a key innovation of this paper,
which differentiates the proposed approach from the
state-of-the-art DOFE method. Equation (27) allows
time evolution of the gPC expansion coefficients, while
retaining the gPC basis ψp(ξ(ω)) invariant. This allows
efficient data assimilation by updating the PDF of ξ(ω)
using the Bayes theorem. Equations (16), (19) and (27)
form dynamically bi-orthogonal field equations (DBFEs)
that define the dynamic evolution of the mean u(x, t), the
eigenfield ui(x, t) and the associated coefficients Y i

p (t).
The resultant bi-orthogonal expansion (26) approximates
the system response u(x, t;ω) to an arbitrary accuracy
depending on the number of eigenfunctions used, N ,
and the number of expansion coefficients for each
eigenfunction,P . Equations (16) and (19) are numerically
solved using a finite difference scheme in spatial
dimension and a fourth-order Runge–Kutta scheme in the
temporal dimension. Equation (27) is numerically solved
using a fourth-order Runge–Kutta scheme while the inner
product is evaluated using a Gaussian quadrature.

3.1.3. Boundary conditions. To define boundary
conditions for the DBFE, consider a generic
Karhunen–Loève expansion of h(β, t;ω)

h(β, t;ω) = h(β, t) +
N∑
i=1

Yi(t;ω)ui(β, t). (28)

Applying the expectation operator to (28), the boundary
condition for the mean is given by

B(u(x, t)) = h(β, t). (29)

Multiplying (28) by Yj(t;ω) and applying the expectation
operator, we obtain the boundary condition for ui(x, t)

B(ui(β, t)) =
N∑
j=1

C−1
Yi(t)Yj(t)

Eω [h(β, t;ω)Yj(t;ω)] .

(30)

3.2. Bayesian inference. With no loss of generality,
the proposed method is described here for a spatially
varying uncertain parameter with the prior given by a
scalar stochastic process v(x;ω), i.e., θ(ω) = {v(x;ω)}.
Use a KL expansion of v(x;ω) as

v(x;ω) = v(x) +

N∑
i=1

√
λvi vi(x)χi, (31)

where χi are independent identically distributed
zero-mean random variables, while λvi and vi(x)
are respectively the eigenvalues and eigenfunctions of
the covariance function of v(x;ω). For the covariance
function Cv(x1,x2), λvi and vi(x) are a solution to the
eigenvalue problem

∫

X
Cv(x1,x2)νi(x1) dx1 = λvi vi(x2). (32)

For a Gaussian process prior, χi are standard normal
random variables, whereas, for a generic stochastic
process prior, χi are given by

χi =
1√
λvi

∫

X
(v(x;ω)− v(x)) vi(x) dx. (33)

Use the gPC expansion of χi

χi =

P∑
p=1

χ̂i
pψp(ξ(ω)), (34)

where χ̂i
p are the gPC expansion coefficients, in (31) to

get the bi-orthogonal expansion of v(x;ω) as

v(x;ω) = v(x) +
N∑
i=1

P∑
p=1

√
λvi vi(x)χ̂

i
pψp(ξ(ω)). (35)
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The expansion (35) is used in L [u(x, t;ω); θ(ω)] to
define the RHS of the DBFE governing equations (16),
(19) and (27). The numerical solution of (16), (19)
and (27) produces the bi-orthogonal expansion (26) of
the system response u(x, t;ω). Note that numerical
solution of the DOFEs requires use of a Monte Carlo
method, whereas the DBFEs are numerically solved using
a deterministic numerical integration method. Since
the DBFEs do not require Monte-Carlo sampling, the
proposed method is computationally efficient compared
with the DOFE method.

Remark 2. The numerical solution is initiated with the
initial condition for the mean u(x, t) given by

u(x, t) = Eω [F [u(x, 0;ω); θ(ω)]] , (36)

while the initial conditions for the eigenfield are given by

ui(x, t) = vi(x). (37)

Since the stochasticity in (SPDE) emanates due to the
uncertainty in ν(x;ω), (SPDE) is initialized with a
deterministic initial condition. Thus, the initial condition
for the expansion coefficients Y i

p (t) is given by

Y i
p (0) = 0, ∀i = 1, . . . , N, p = 1, . . . , P. (38)

The bi-orthogonal expansion of u(x, t;ω) is used in
(10) to define the likelihood

f(ye | ξ, σ2
δ ,λ

δ) ∝| Σ |− 1
2 exp

(
−1

2
ηTΣ−1η

)
, (39)

where η = {ηk, k = 1, . . . ,M} with

ηk = ye(xk, t)−
(
u(xk, t)

+

N∑
i=1

P∑
p=1

Y i
p (t)ui(xk, t)ψp(ξ(ω))

)
.

(40)

Note that conditional on the hyper-parameters of the
discrepancy function, σ2

δ and λδ , ξ are the only uncertain
parameters in (39). Thus, the Bayesian inversion problem
is reformulated in the space L2(Ξ) as the inference of ξ.
In the present paper, the proposed method is demonstrated
for Hermite polynomials as the gPC basis, where ξ
are independent identically distributed standard normal
random variables. Thus, the prior for ξ is given by

f(ξ) ∝
Nz∏
k=1

exp

(
−ξ

2
k

2

)
, (41)

where Nz is the dimension of stochasticity. Using
(41) and (39) in (10), the proposed formulation for the

Bayesian inference is

f(ξ, σ2
δ ,λδ | ye)

∝ exp
(− 1

2η
TΣ−1η

)
√|Σ| × exp

(−βσ/σ2
δ

)
(σ2

δ )
ασ+1

×
d∏

k=1

(λδk)
αλk

−1 exp
(−βλk

λδk
)×

Nz∏
k=1

× exp

(
−ξ

2
k

2

)
.

(42)

Note that (42) does not involve the solution of
T (x, t, θ(ω)). Thus, the posterior distribution can be
explored efficiently using MCMC. In the present paper,
the Metropolis–Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970) is used to sample from the posterior
distribution.

4. Numerical example: A 2D transient
diffusion equation

The efficiency of the proposed method is investigated
for calibration of a two-dimensional transient diffusion
simulator with an uncertain source location and a
diffusivity field. The present paper considers a
stochastic transient diffusion equation defined over the
two-dimensional domain X = [−1, 1]× [−1, 1]

∂u(x, t;ω)

∂t
= ∇ · (ν(x;ω)∇u(x, t;ω))

+

Ns∑
l=1

sl
2πσ2

exp

(
− (zl − x)

2

2σ2
l

)
δt∈[0,Ti], (43)

where ν(x;ω) is the spatially varying diffusivity field,
while total Ns source terms are active during time [0, Ti]
at locations zl with source strengths sl. Here δt∈[0,Ti]

is a Kronecker delta function, which is defined such that
δt∈[0,Ti] = 1 if t ∈ [0, Ti] otherwise δt∈[0,Ti] = 0. The
diffusivity field, ν(x;ω), and the location of the source,
z, are assumed to be uncertain. The transient diffusion
equation (43) satisfies adiabatic boundary conditions, i.e.

∇u(x, t;ω) · n̂ = 0, (44)

u(x, t;ω) = 0, (45)

at the boundary.
The efficacy of the proposed method is demonstrated

using the ‘hypothetical test bed’ data, which is defined
using the numerical solution of (43) for the completely
known source locations and the diffusivity field. In the
present paper, the proposed method is demonstrated for a
single source located at (0.2,−0.2), which is active during



236 P.M. Tagade and H.-L. Choi

the time interval [0, 0.01]. The spatial variation of the
mean diffusivity is assumed to take the form

ν(x) = 0.05(ν0+10.0+0.25x+0.65y+x3+y3), (46)

where ν0 is a user defined constant. Figure 1(a) shows
the spatial variation in the diffusivity. The deterministic
numerical solution is obtained using a second-order
central difference scheme in the spatial dimension with the
uniform grid spacing h = 0.02, while the explicit fourth
order Runge–Kutta scheme is used for time integration
with the time step Δt = 0.0001. Figure 1(b) shows the
numerical solution at t = 0.05 s, while the solution at
t = 0.1 s is shown in Fig. 1(c). Note that the source
has peak strength at zl and reduces exponentially with the
distance, resulting in the peak value of u at the source
location and the subsequent diffusion with time to other
locations. Upon removal of the source, diffusion of u is
non-uniform owing to the non-linear diffusivity.

4.1. DBFE formulation. For notational convenience,
define

S(x;ω) =
s

2πσ2
exp

(
− (z − x)

2

2σ2

)
, (47)

which is uncertain owing to the uncertainty in the source
location z. The prior uncertainty in z is expanded in a
gPC basis, while the Galerkin projection is used to obtain
the resultant gPC coefficients, Ŝ(x), of

S(x;ω) =
P∑

p=1

Ŝ(x)ψp(ω). (48)

The prior uncertainty in ν(x;ω) is represented using a
Gaussian process, which is spectrally represented using
the bi-orthogonal expansion as

ν(x;ω) = ν(x) +

N∑
i=1

P∑
p=1

V i
p νi(x)ψp(ω), (49)

where ν(x) is the mean, νi(x) are the eigenfunctions
of the covariance function of ν(x;ω) and V i

p are the
respective expansion coefficients. Use (48) and (49) in
(43) to obtain the differential operator in (SPDE) as

L [u(x, t;ω); θ(ω)]

= ∇[ν(x)∇u(x, t)

+ ν(x)

N∑
i=1

P∑
p=1

Y i
p (t)ψp(ξ(ω))∇ui(x, t)

+

N∑
i=1

N∑
j=1

P∑
p=1

P∑
q=1

V i
pY

j
q (t)νi(x)ψp(ξ(ω))

× ψq(ξ(ω))∇uj(x, t)

+

N∑
i=1

P∑
p=1

V i
p νi(x)ψp(ξ(ω))∇u(x, t)]

+

P∑
p=1

Ŝ(x)ψp(ξ(ω)).

(50)

Use (50) in (16), (19) and (27) to obtain the
DBFE governing equations for the two-dimensional
transient-diffusion equation.

4.2. Solution of the forward problem. The prior
uncertainty in the source location is specified using
independent Gaussian distributions for the x and y
co-ordinates with zero mean and a standard deviation of
0.3. The prior for diffusivity ν(x;ω) is specified using a
Gaussian process with the mean

ν(x) = 0.05(ν0 + 10.0 + 0.25x+ 0.65y) (51)

and the squared exponential covariance function

C(x1,x2)

= σ2
ν exp

(−λv1(x1 − x2)
2 − λv2(y1 − y2)

2
)
, (52)

where σ2
ν is the variance of the Gaussian process and λvi

is the correlation length. Note that though these specific
priors are chosen in this paper for demonstration, the
method is insensitive to the choice of the prior. The
proposed method can be implemented for an arbitrary
prior using an appropriate orthogonal gPC basis (Xiu and
Karniadakis, 2003).

The efficacy and the computational efficiency of the
proposed Bayesian inference depend on the ability of the
DBFE method to accurately solve the forward problem. In
this section, the accuracy and the computational cost for
the numerical implementation of the DBFE are compared
against the Monte Carlo and the generalized polynomial
chaos method (see the work of Marzouk and Najm (2007)
for the gPC formulation of (43)).

Figure 2 shows the accuracy and computational
efficiency of the DBFE and the gPC method for different
numbers of the eigenfunctions used, N , and the order
of the polynomial chaos basis, p. The accuracy is
compared using the Monte Carlo method with 10000
samples, which are collected at the computational cost of
6616.17 seconds. The computational cost for solution of
the forward problem increases with an increase in N and
p for both the DBFE and gPC methods. Note that the
stochastic dimension for the present problem is N +2 (N
dimensions representing the truncated KL expansion, with
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(a) (b) (c)

Fig. 1. Solution of a two-dimensional transient diffusion equation: spatial variation in diffusivity (a), u-field at time t = 0.05 s (b),
u-field at t = 0.1 s (c).

two dimensions representing uncertainty in the source
location), for which the number of polynomial chaos
terms is given by

P =
(N + 2 + p)!

(N + 2)!p!
+ 1. (53)

Since implementation of the gPC method requires
numerical solution of P PDEs (see (Marzouk and Najm,
2009) for details), whereas the DBFE method involves
numerical solution of (N + 1) PDEs and N × P ODEs,
the increase in computational cost with p is significantly
higher for the gPC method compared with the DBFE
method. The computational cost of the gPC method
is comparable to the Monte Carlo method for N = 6
and the second-order polynomial chaos basis, while the
computational cost is higher than for the Monte Carlo
method for the third-order polynomial chaos basis with
N ≥ 3, rendering the gPC method computationally
intractable.

The DBFE method is numerically implemented at a
computational cost comparable to the gPC method for p =
1, while the computational cost for the DBFE method for
p ≥ 2 is considerably lower than for the gPC method.
Figure 2(b) shows the L1-error in the variance, which is
defined as

e =

∫
X | v̂(x)− v(x) | dx∫

X | v̂(x) | dx , (54)

where v̂(x) is the variance obtained using the Monte Carlo
method, while v(x) is the variance obtained using the gPC
or the DBFE method. The error is comparable for both the
DBFE and the gPC methods, which decreases with N and
reaches a limiting value for N ≥ 4, though the limiting
value is higher for p = 1. Note that the transient diffusion
equation involves multiplication of the diffusivity ν
with ∇u. Thus, the appropriate spectral representation
requires the use of the second-order polynomial chaos

basis. From the results, it may be concluded that
(43) can be numerically solved using the DBFE method
at significantly lower computational cost than the gPC
method with a comparable accuracy.

4.3. Solution of the source inversion problem. The
proposed method is used for inference of the source
location and the diffusivity. The prior uncertainty in
the source location is given by independent Gaussian
processes in the x and y directions, with N (0.0, 0.3)
prior. The prior uncertainty in the diffusivity is specified
using the Gaussian process with the mean (51) and the
covariance function (52) with σ2 = 0.3 and λ = 1.5.
The prior uncertainty is propagated to the system response
using the DBFE method withN = 5 and p = 2. Note that
the accuracy and computational cost of the DBFE method
depend on the choices of N and p, necessitating the
appropriate compromise. The choice of p depends on the
non-linearity associated with the governing equations. As
can be seen from Fig. 2(b), p = 2 suffices for the present
test case. The accuracy of the truncated Karhunen–Loève
expansion depends on the number of the eigenfunctions
used, N , through the variance of the associated random
expansion coefficients.

Figure 3(a) shows the eigenvalues of the covariance
function of the diffusivity. From the figure, it may be
seen that the prior uncertainty in the diffusivity can be
satisfactorily approximated with N = 3. However, to
allow the possibility of higher order modes becoming
active, N = 5 is used in the present paper. Figure
3(b) shows the variance of the random coefficient of the
respective eigenfunctions. From the figure, it can be seen
that variance for N > 3 is significantly lower than the
variance of the first three eigenmodes, resulting in an
acceptable approximation of the solution field over time
evolution. Note that N also depends on the uncertainty
in the source, with a higher uncertainty necessitating the
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(a)

(b)

Fig. 2. Comparison of the accuracy and computational effi-
ciency of the DBFE with gPC and Monte Carlo meth-
ods. Panel (a) shows a comparison of CPU time and (b)
shows the L1-error.

use of a higher value ofN . Further note that in the present
implementation, eigenmodes are adaptively activated only
after the variance crosses a given minimum value (1−5 in
the present case).

The deterministic solution of the 2D transient
diffusion equation at time t = 0.02 seconds with
the source removed at t = 0.01 seconds is used as
experimental observations. The source is assumed to be
located in [0.2,−0.2]. A total of 25 uniformly spaced
data points are used for the Bayesian inference. A 1%
experimental uncertainty is assumed for each data point.
The model structure uncertainty is defined by specifying
the prior probability distribution for σ2

δ and λδ . The
inverse Gamma distribution IG(6.0, 2.0) is used for σ2

δ ,
while the prior for λδ is given by the Gamma distribution
G(6.0, 2.0). The authors compared different numbers of
MCMC samples to explore the posterior distribution. A
total of 10,000 MCMC samples, after the burnout period
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Fig. 3. Panel (a) shows the eigenvalues of the covariance func-
tion of diffusivity, and panel (b) displays time evolution
of the variance of random coefficients.

of 1000 samples, provided an acceptable accuracy.

Figure 4 shows the prior and posterior probability
density contours for the source location. The location
of the experimental observations is also shown in
Fig. 4(a). The contour is shown for the posterior
density obtained using the proposed method (dashed
line) and direct MCMC sampling from the posterior
distribution (solid lines). The source location is predicted
accurately, while the posterior density obtained using
the proposed method agrees closely with direct MCMC
sampling, demonstrating the efficacy of the DBFE based
Bayesian inference. Figure 5(a) shows prior and posterior
probability distributions of the gPC basis ξ. The
posterior distribution of ξ1–ξ5 represents an update in
the uncertainty of the diffusivity, while the posterior
distribution of ξ6 and ξ7 represents the inference of x
and y co-ordinates of the source location, respectively.
The probability distribution of ξ1 is updated with variance
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(a)

(b)

Fig. 4. Probability contours for the source location. The loca-
tion of experimental observations is also shown in (a).

significantly lower than the prior, whereas the update
of the probability distribution for ξ2–ξ5 is comparatively
low. Note that the variance of the random coefficients
associated with the eigenmodes N > 3 is negligible,
resulting in the negligible update of the probability
distribution of ξ4 and ξ5. The probability distribution
of ξ6 and ξ7 is updated significantly, indicating high
information contained in the experimental observations
about the source location. The low variances of ξ6
and ξ7 indicate very high confidence on the inferred
source location. Figure 5(b) shows a comparison of the
probability distribution of u(x, t;ω) at the source location
(x = 0.2 and y = −0.2) obtained by running the
forward model at posterior samples of direct MCMC and
the proposed method. The probability distribution for the
proposed method matches closely with the direct MCMC
method. Similar results are obtained at other locations.
However, they are not shown in the paper for brevity.

Figure 6(a) shows the L1-error in the posterior
variance of the diffusivity between the DBFE direct
MCMC sampling. The maximum error is of the order of
10−3, indicating the close agreement in variance for the
posterior probability of the diffusivity obtained using the

ζ
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direct mcmc
dbfe

(b)

Fig. 5. Panel (a) shows the posterior probability distribution of
ξ, and panel (b) displays a comparison of the posterior
probability distribution of u at x = 0.2 and y = −0.2
obtained using direct MCMC and the proposed method.

DBFE and direct MCMC sampling methods. Figure 6(b)
shows theL1-error for posterior mean of the diffusivity for
the DBFE method obtained against the ‘true’ diffusivity.
Note that the error reduces non-uniformly, indicating the
effect of the location of the experimental observations on
the proposed Bayesian inference.

Figure 7 draws a comparison of the posterior
probability distributions of σ2

δ and λδ obtained using
direct MCMC sampling and the proposed method. The
posterior distribution for λδ obtained using the proposed
method matches closely direct sampling. However, the
match is comparatively poor for the posterior distribution
of σ2

δ . Note that the bi-orthogonal expansion obtained
using the DBFE method acts as an emulator of the
2D transient diffusion equation, which is used in the
Bayesian inference against the simulator in direct MCMC
sampling. Thus, any remnant error in the bi-orthogonal
expansion is regarded as the uncertainty in the model
structure, resulting in the difference in the posterior
probability distribution for σ2

δ . The posterior probability
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(a)

(b)

Fig. 6. L1-errors in the posterior variance for the DBFE and di-
rect MCMC sampling (a) and the posterior mean for dif-
fusivity.

for λδ has moved towards the left for both the cases,
indicating an increased correlation for the model structure
uncertainty, while the posterior distribution for σ2

δ moves
towards the right, indicating higher posterior confidence
on the simulator. Detailed guidelines for inference
on the veracity and validity of the model based on
the posterior distribution of hyper-parameters of the
discrepancy function are provided by Tagade and Choi
(2013).

Figure 8 shows the L1-error in the posterior mean
for the system response u, which is defined against the
true spatial distribution of u. The posterior mean of the
system response is calculated by substituting the mean
of ξ in the bi-orthogonal expansion. The maximum
L1-error is of the order of 10−1, which is located in the
boundary region where experimental data are not provided
for Bayesian inference. In the region where experimental
observations are available, the error is significantly low
with the minimum value of the order of 10−7.

σ

(a)

λ

(b)

Fig. 7. Comparison of probability distributions of σ2
δ (a) and

λδ (b).

5. Concluding remarks

The paper has presented a dynamic bi-orthogonality based
approach to computationally efficient implementation
of Bayesian inference. The proposed method can be
applied for calibration of a simulator represented using
a partial differential equation with high dimensional
uncertainty. Though the method requires reformulation
of the governing equations, the existing schemes can be
extended in a straightforward manner for the numerical
solution of the DBFE.

A key innovation of the proposed approach
is a gPC expansion of the stochastic coefficients
of the DO expansion. The resultant DBFEs are
solved using numerical integration techniques like the
central difference method and the fourth-order order
Runge–Kutta method. As the proposed approach does not
require Monte Carlo sampling for a solution, numerical
implementation of the DBFE method is computationally
more efficient compared with the state-of-the-art DOFE
methods. Numerical examples presented in this paper
have demonstrated the computational efficiency of the
proposed approach.
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Fig. 8. L1-error in the posterior mean for u.

Efficacy of the proposed method is demonstrated
for calibration of a two-dimensional transient diffusion
equation with uncertain source location and diffusivity.
The computational cost of the proposed method for
uncertainty propagation is compared with the gPC and
Monte Carlo methods. It has been observed that
as the dimensionality of the uncertainty increases, the
DBFE method provides the solution of the SPDE
at a significantly less computational cost than the
gPC method with a comparable accuracy. It has
also been demonstrated that the method provides
accurate inference of the source location with the
marginal posterior distribution matching closely MCMC
sampling. The method is found to accurately infer the
posterior distribution of the spatially/temporally varying
parameters.
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