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The purpose of this work is to propose and characterize fractional descriptor reduced-order perfect nonlinear observers for
a class of fractional descriptor discrete-time nonlinear systems. Sufficient conditions for the existence of these observers
are established. The design procedure of the observers is given and demonstrated on a numerical example.
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1. Introduction

Fractional linear systems have been considered in many
papers and books (Kaczorek, 2013; 2008; 2012b;
2011a; 2011b; Oldham and Spanier, 1974; Ostalczyk,
2008; Podlubny, 1999; Vinagre et al., 2002). Positive
linear systems consisting of n subsystems with different
fractional orders were proposed by Kaczorek (2011a;
2011b). Descriptor (singular) linear systems were
investigated by Cuihong (2012), Dodig and Stosic (2009),
Dai (1989), Duan (2010), Fahmy and O’Reill (1989),
Gantmacher (1959), Kaczorek (2012b; 2013; 2004;
1992; 2012a), Kucera and Zagalak (1988), Lewis (1983),
Luenberger (1977; 1978), Sajewski (2016), Van Dooren
(1979) or Virnik (2008), and the positivity and stability
of fractional descriptor time-varying discrete-time linear
by Kaczorek (2016c), who also addressed the eigenvalues
and invariants assignment by state and input feedbacks
(Kaczorek, 2004; 1992; 2011b). The computation of
Kronecker’s canonical form of a singular pencil was
analyzed by Van Dooren (1979).

A new concept of perfect observers for linear
continuous-time systems was proposed Kaczorek (2001)
and N’Doye et al. (2013). Observers for fractional
linear systems were addressed by Kaczorek (2014b),
Kociszewski (2013), and N’Doye et al. (2013) and
for descriptor linear systems by Kaczorek (2015),
who also discussed perfect nonlinear observers of
descriptor nonlinear systems (Kaczorek, 2016a; 2016b).
Fractional descriptor full-order observers for fractional

descriptor continuous-time linear systems were proposed
by Kaczorek (2014a), along with reduced-order observers
(Kaczorek, 2016d; 2014). Stability of positive descriptor
systems was investigated by Virnik (2008).

In this paper reduced-order perfect nonlinear
observers for fractional descriptor nonlinear discrete-time
systems will be proposed, conditions for their existence
will be established and a design procedure will be given.

The paper is organized as follows. In Section 2
conditions for the existence of perfect full-order nonlinear
observers for fractional descriptor nonlinear systems
will be given. Conditions for the existence of
reduced-order perfect observers of fractional discrete-time
nonlinear systems will be established in Section 3. A
design procedure and an illustrating numerical example
for reduced-order perfect nonlinear observers will be
presented in Section 4. Concluding remarks will be given
in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; In, the
n×n identity matrix; Z+, the set of nonnegative integers.

2. Perfect fractional discrete-time nonlinear
observers

Consider the fractional descriptor discrete-time nonlinear
system

EΔαxi+1 = Axi + f(xi, ui), i ∈ Z+, (1a)
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yi = Cxi, (1b)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are respectively the

state, input and output vectors and E,A ∈ R
n×n, C ∈

R
p×n, f(xi, ui) ∈ R

n is a continuous nonlinear vector
function of xi and ui,

Δαxi =
i∑

j=0

(−1)j
(
α

j

)
xi−j , (2a)

(
α

j

)
=

{
1 for j = 0,
α(α−1)...(α−j+1)

j! for j = 1, 2, . . .
(2b)

α ∈ R is the fractional order difference of xi.
Substituting (2) into (1) we obtain

Exi+1 = Aαxi +

i+1∑

j=2

cjExi−j+1 + f(xi, ui), (3a)

where

Aα = A+ Eα, cj = (−1)j+1

(
α

j

)
. (3b)

It is assumed that

detE = 0, det[Ez −A] �= 0. (4)

for some z ∈ C.

Definition 1. The fractional descriptor discrete-time
nonlinear system

Ex̂i+1 = F x̂i +

i+1∑

j=2

cjExi−j+1

+ f(xi, ui) +Hyi,

(5)

where x̂i is the estimate of xi, ui and f(xi, ui), yi are
the same vectors as in (1), E,F ∈ R

n×n, detE = 0,
H ∈ R

n×p is called a (full-order) perfect observer for the
system (1) if

x̂i = xi for i = 1, 2, . . . . (6)

The following elementary row (column) operations
will be used (Kaczorek, 1992):

1. Multiplication of the i-th row (column) by a real
number c. Here and subsequently this operation will
be denoted by L[i× c](R[i× c]).

2. Addition of the j-th row (column) multiplied by
a real number c to the i-th row (column). This
operation will be denoted by L[i+j×c](R[i+j×c]).

3. Intercharge of the i-th and j-th rows (columns). This
operations will be denoted by L[i, j](R[i, j]).

Lemma 1. If
rankE = r < n, (7)

then through elementary row and column operations the
matrix E can be reduced to the following upper triangular
form:

N = PEQ =

[
0 E12

0 0

]
,

E12 =

⎡

⎢⎢⎢⎣

e11 e12 · · · e1r
0 e22 · · · e2r
...

...
. . .

...
0 0 · · · err

⎤

⎥⎥⎥⎦ ,

(8)

where P and Q are matrices of the elementary row and
column operations.

Proof. If (7) is satisfied, then by elementary row and
column operations the matrix E can be reduced to the
form [

0 E′
12

0 0

]
, E′

12 ∈ R
r×r. (9)

Next, applying elementary column operations, we can
reduce the matrix E′

12 to the upper triangular form E12.
�

Definition 2. The smallest nonnegative integer q is called
the nilpotent index of a nilpotent matrix N if N q = 0 and
N q−1 �= 0.

Lemma 2. (Kaczorek, 2016b) If

rankE = r <
n

2
, (10)

then the nilpotent index q of the matrix E is

q = 2 for r = 1, 2, . . . ,
n

2
− 1. (11)

Lemma 3. (Kaczorek, 2016a) If (7) is satisfied and N is
the nilpotent matrix (8), then the equation

Nxi+1 = Dxi,

xi = [ x1,i x2,i · · · xn,i]
T , i ∈ Z+

(12)

for a nonsingular diagonal matrix

D = diag[ d1 · · · dn] , (13)

with dk �= 0, k = 1, . . . , n has zero solution xi = 0 for
i = 1, 2, . . . .

Theorem 1. (Kaczorek, 2016a) The perfect observer (5)
of the fractional descriptor nonlinear system (1) exists if
and only if

rank

[
Ā−D

C̄

]
= rank C̄, (14)

where Ā = PAαQ, C̄ = CQ and the matrices P , Q are
defined by (8).
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To design the perfect observer (5) for the fractional
descriptor nonlinear system (1) with given matrices A, C
we have to choose the matrices F , H of the observer so
that the conditions (14) and F̄ = D are satisfied. Note
that the conditions are met if and only if

Ā− H̄C̄ = D, (15)

where H̄ = PH .
By the Kronecker–Capelli theorem, Eqn. (15) has

a solution H̄ for given Ā, C̄ and D if and only if
the condition (14) is satisfied. Therefore, we have the
following procedure for designing of the perfect observer
(5) for the nonlinear system (1).

Procedure 1.

1. Find matrices P and Q of elementary row and
column operations reducing the matrix E to its
nilpotent form N = PEQ.

2. Using Ā = PAαQ and C̄ = CQ compute the
matrices Ā and C̄.

3. Choose a diagonal matrix D so that the condition
(14) is satisfied.

4. Find the solution H̄ of Eqn. (15) for given Ā, C̄ and
D.

5. Compute the matrices

F = Aα −HC, H = P−1H̄ (16)

of the perfect observer (5).

3. Reduced-order perfect observers of
fractional discrete-time nonlinear
systems

Consider the fractional descriptor discrete-time nonlinear
system described by (3) and (1b). If

rankC = p, (17)

then there exists an elementary column operation matrix
Q1 such that (Kaczorek, 1992)

C̄ = CQ1 = [ Ip 0 ]. (18)

Substituting
x = Q1x̄ (19)

into (1b) and using (18), we obtain

yi = Cxi = CQ1x̄i = [ Ip 0 ]

[
x̄1,i

x̄2,i

]

= x̄1,i, x̄1,i ∈ R
p, x̄2,i ∈ R

n−p.

(20)

From (20) it follows that for given y the subvector
x̄1,i ∈ R

p is known. Therefore, the reduced-order
observer of the fractional descriptor nonlinear system (1)
should reconstruct only the subvector x̄2,i ∈ R

n−p.

It is assumed that there exists a matrix of elementary
row operations P1 such that

P1EQ1 =

[
E11 0
E21 E22

]
,

E11 ∈ R
p×p, E22 ∈ R

(n−p)×(n−p),
(21a)

P1AαQ1 =

[
A11 A12

A21 A22

]
,

A11 ∈ R
p×p, A22 ∈ R

(n−p)×(n−p),
(21b)

P1f(xi, ui) =

[
f1(x̄1,i, ui)
f2(x̄i, ui)

]
,

f1(x̄1,i, ui) ∈ R
p, f2(x̄i, ui) ∈ R

n−p.
(21c)

Premultiplying (3a) by the matrix P1 and using (20)
and (21), we obtain

E11x̄1,i+1

= A11x̄1,i +A12x̄2,i

+

i+1∑

j=2

cjE11x̄1,i−j+1 + f1(x̄1,i, ui), (22a)

E21x̄1,i+1 + E22x̄2,i+1

= A21x̄1,i +A22x̄2,i

+
i+1∑

j=2

cj(E21x̄1,i−j+1 + E22x̄2,i−j+1)

+ f2(x̄i, ui). (22b)

Defining

ȳi = E11x̄1,i+1 −A11x̄1,i

−
i+1∑

j=2

cjE11x̄1,i−j+1 (23a)

− f1(x̄1,i, ui),

f̄2(x̄i, ui) = f2(x̄i, ui) +A21x̄1,i

+

i+1∑

j=2

cjE21x̄1,i−j+1 (23b)

− E21x̄1,i+1

as the output and input of the subsystem, respectively,
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from (22) we obtain

E22x̄2,i+1 = A22x̄2,i +

i+1∑

j=2

cjE22x̄2,i−j+1

+ f̄2(x̄i, ui), (24a)

ȳi = A12x̄2,i. (24b)

If detE22 �= 0, then premultiplying (23a) by
detE−1

22 we obtain the standard fractional discrete-time
nonlinear system which can be analyzed by the
well-known method (Kaczorek, 2016a).

Let

rankE22 = r < n− p. (25)

In this case the method presented in Section 2 can be
used to design the perfect descriptor fractional nonlinear
observer to the nonlinear system (1).

Therefore, the following theorem has been proved.

Theorem 2. A reduced-order perfect nonlinear observer
for the fractional descriptor nonlinear system (1) exists if
the following conditions are satisfied:

1. The condition (17) is met.

2. There exists a matrix P1 of elementary row opera-
tions such that (21) is satisfied.

3. The condition (25) is met.

4. The condition (14) is satisfied for the subsystem (24).

4. Design procedure and an illustrating
example

From Section 3 we have the following procedure for
designing the perfect nonlinear observer for the fractional
descriptor nonlinear system (24).

Procedure 2.

1. Using elementary column operations, find a matrix
Q1 satisfying the condition (18) and a subvectors
x̄1,i ∈ R

p and x̄2,i ∈ R
n−p.

2. Find the output ȳi and the input f̄2(x̄i, ui) defined by
(23) and the equations of the subsystem (24).

3. Using Procedure 1, find the desired perfect observer
of the subsystem (24).

Example 1. Consider the fractional descriptor nonlinear

system (1) with α = 0.5 and

E =

⎡

⎢⎢⎣

0 0 0 1
0 1 0 0
1 2 0 1
0 −1 0 0

⎤

⎥⎥⎦ ,

A =

⎡

⎢⎢⎣

1 0 0 1
0 0 1 0
−1 1 0 0
0 2 1 1

⎤

⎥⎥⎦ ,

C =

[
0 0 0 1
2 1 0 2

]
,

f(xi, ui) =

⎡

⎢⎢⎣

x2
4,i + ui

x1,ix2,i + x2
3,iui

3u2
i

(x2,i − 2x1,i + 2x4,i)x4,i − 2u2
i

⎤

⎥⎥⎦ .

(26)

The system satisfies the assumption (4) since

det[Ez −Aα]

= det[E(z − α)−A]

=

∣∣∣∣∣∣∣∣

−1 0 0 z − 1.5
0 z − 0.5 −1 0

z + 0.5 2z − 2 0 z − 0.5
0 −z − 1.5 −1 −1

∣∣∣∣∣∣∣∣

= −2z3 − z2 + 4.5z − 0.75 �= 0.

(27)

Using Procedure 2 we obtain the following:

Step 1. Interchanging the first and fourth columns of the
matrix C, we obtain

Ĉ = CQ0

=

[
0 0 0 1
2 1 0 2

]
⎡

⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤

⎥⎥⎦

= [ C1 C2],

C1 =

[
1 0
2 1

]
, C1 =

[
0 0
0 2

]

(28)

and

C̄ = ĈQ2 = [ C1 C2]

[
C−1

1 −C−1
1 C2

0 In−p

]

=

[
1 0 0 0
2 1 0 2

]
⎡

⎢⎢⎣

1 0 0 0
−2 1 0 −2
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

=

[
1 0 0 0
0 1 0 0

]
,

(29)
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Q1 = Q0Q2 =

⎡

⎢⎢⎣

0 0 0 1
−2 1 0 −2
0 0 1 0
1 0 0 0

⎤

⎥⎥⎦ . (30)

Step 2. The new state vector has the form

x̄i = Q−1
1 xi =

⎡

⎢⎢⎣

0 0 0 1
−2 1 0 −2
0 0 1 0
1 0 0 0

⎤

⎥⎥⎦

−1 ⎡

⎢⎢⎣

x1,i

x2,i

x3,i

x4,i

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

x4,i

2x1,i + x2,i + 2x4,i

x3,i

x1,i

⎤

⎥⎥⎦ =

[
x̄1,i

x̄2,i

]
(31)

and the subvector x̄1,i is known since yi = x̄1,i, i ∈
Z+. Therefore, the reduced-order perfect observer should
reconstruct only the subvector x̄2,i. In this case we have

P1 =

⎡

⎢⎢⎣

1 0 0 0
0 0 2 3
0 1 −1 0
0 3 −2 0

⎤

⎥⎥⎦ (32)

and

P1EQ1 =

⎡

⎢⎢⎣

1 0 0 0
0 0 2 3
0 1 −1 0
0 3 −2 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0 0 0 1
0 1 0 0
1 2 0 1
0 −1 0 0

⎤

⎥⎥⎦

×

⎡

⎢⎢⎣

0 0 0 1
−2 1 0 −2
0 0 1 0
1 0 0 0

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
1 −1 0 1
0 −1 0 0

⎤

⎥⎥⎦

=

[
E11 0
E21 E22

]
,

E11 =

[
1 0
0 1

]
, E21 =

[
1 −1
0 −1

]
,

E22 =

[
0 1
0 0

]
,

(33)

P1AαQ1 =

⎡

⎢⎢⎣

1 0 0 0
0 0 2 3
0 1 −1 0
0 3 −2 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1 0 0 1.5
0 0.5 1 0

−0.5 2 0 0.5
0 1.5 1 1

⎤

⎥⎥⎦

×

⎡

⎢⎢⎣

0 0 0 1
−2 1 0 −2
0 0 1 0
1 0 0 0

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

1.5 0 0 1
−13 8.5 3 −18
2.5 −1.5 1 3.5
4 −2.5 3 6

⎤

⎥⎥⎦

=

[
A11 A12

A21 A22

]
,

A11 =

[
1.5 0
−13 8.5

]
, A12 =

[
0 1
3 −18

]

A21 =

[
2.5 −1.5
4 −2.5

]
, A22 =

[
1 3.5
3 6

]
,

(34)

P1f(xi, ui) =

⎡

⎢⎢⎣

1 0 0 0
0 0 2 3
0 1 −1 0
0 3 −2 0

⎤

⎥⎥⎦

×

⎡

⎢⎢⎣

x2
4,i + ui

x1,ix2,i + x2
3,iui

3u2
i

(x2,i − 2x1,i + 2x4,i)x4,i − 2u2
i

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

x2
4,i + ui

3(x2,i − 2x1,i + 2x4,i)x4,i

x1,ix2,i + x2
3,iui − 3u2

i

3x1,ix2,i + 3x2
3,iu− 6u2

i

⎤

⎥⎥⎦

=

[
f1(x̄1,i, ui)
f2(x̄i, ui)

]
,

f1(x̄1,i, ui) =

[
x2
4,i + ui

3(x2,i − 2x1,i + 2x4,i)x4,i

]
,

f2(x̄i, ui) =

[
x1,ix2,i + x2

3,iui − 3u2
i

3x1,ix2,i + 3x2
3,iu− 6u2

i

]
.

(35)

The descriptor subsystem (24) is given by the
equations

[
0 1
0 0

]
x̄2,i+1

=

[
1 3.5
3 6

]
x̄2,i

+

i+1∑

j=2

(−1)j+1

(
0.5
j

)[
0 1
0 0

]
x̄2,i−j+1

+

[
x1,ix2,i + x2

3,iui − 3u2
i

3x1,ix2,i + 3x2
3,iu− 6u2

i

]
, (36a)
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ȳi =

[
0 1
3 −18

]
x̄2,i, (36b)

where

ȳi =

[
1 0
0 1

]
x̄1,i+1

−
i+1∑

j=2

(−1)j+1

(
0.5
j

)[
1 0
0 1

]
x̄1,i−j+1

−
[

x2
4,i + ui

3(x2,i − 2x1,i + 2x4,i)x4,i

]
. (36c)

Step 3. Using Procedure 1, we obtain the following. We
have

N =

[
0 1
0 0

]
, Ā = A22 + αN, C̄ = A12

and we choose

D =

[
3 0
0 4

]
.

Note that the condition (14) is satisfied and the equation
(15) has the form

HA12 = H

[
0 1
3 −18

]

= A22 + αN −D =

[
1 4
3 2

]
.

(37)

Its solution is

H =

[
10 1

3
20 1

]
. (38)

Using (16), we obtain in our case

F = Aα −HA12

=

[
4 4
3 6

]
−
[

10 1
3

20 1

] [
0 1
3 −18

]

=

[
3 0
0 4

]
.

(39)

The desired reduced-order perfect observer is
described by

[
0 1
0 0

]
x̂i+1

=

[
3 0
0 4

]
x̂i

+
i+1∑

j=2

(−1)j+1

(
0.5
j

)[
0 1
0 0

]
xi−j+1

+ f2(x̄i, ui) +

[
10 1

3
20 1

]
ȳi. (40)

�

5. Concluding remarks

Reduced-order perfect fractional descriptor nonlinear
observers for fractional descriptor discrete-time nonlinear
systems have been proposed. Conditions for the
existence of the reduced-order perfect observers have been
established (Theorem 2). A procedure for designing the
reduced-order perfect observers has been proposed and
illustrated with a numerical example.

An open problem is the extension of those
considerations to fractional continuous-discrete nonlinear
systems and to positive continuous-time and discrete-time
nonlinear systems.
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