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Earthquakes yield motions of massive rock layers accompanied by vibrations which travel in waves. This paper analyses the
possibility of G-type wave propagation along the plane surface at the interface of two different media which is assumed to be
heterogeneous and viscoelastic. The upper layer is considered to be viscoelastic and the lower half space is considered to be
an initially stressed heterogeneous half space. The dispersion equation, as well as the phase and group velocities, is obtained
in closed form. The dispersion equation agrees with the classical Love type wave. The effects of the nonhomogeneity of
the parameters and the initial stress on the phase and group velocities are expressed by means of a graph.

Keywords: G-type wave, dispersion equation, heterogeneity.

1. Introduction

Seismology is the study of earthquakes and seismic waves
that move through and around the Earth. Seismic waves
are the waves of energy that are caused by a sudden
breaking of rock within the Earth or an explosion. The
study of a G-type wave in a viscoelastic material plays a
central role in earth sciences including the construction
sector and geophysics. The G-type wave which is
a horizontally polarized surface wave with no vertical
components is some exceptional type of the Love wave.
The duration of the G-type wave is more than the duration
of the Love wave and the speed is high compared with
the Love wave. The Love wave which propagates for 60
to 300 s is known as a G-type wave. For this particular
period, the speed of wave is around 4.4 km/sec. Hool
and Kinne (1924) analyzed a reinforced concrete and
masonry structure which gave rise to reinforced materials.
Belfield et al. (1983) studied stress in elastic plates
reinforced by fibres lying in concentric circles. Sato
(1952) formulated the 6th generation of the Love and
other types of SH-waves. In the meantime, Gutenberg
(1953) developed the theory of G-type waves. Aki (1964)
examined the generation of G-type waves from the Niigata
earthquake of June 1964.

Chattopadhyay et al. (1986) carefully examined a
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generation of G-type waves. Chattopadhyay and Singh
(2012) studied the propagation of G-type seismic wave
in a fibre reinforced layer lying over a fibre reinforced
elastic half space. References can be made to Gutenberg
(1954), Lehman (1961) or (Mal) 1962, among others.
Chattopadhyay et al. (2010) studied the propagation of
G-type waves in a viscoelastic medium. The dispersion
equation and shear wave velocity were obtained using
the Laplace transform technique in that paper. Kundu et
al. (2014) studied the propagation of G-type waves in a
heterogeneous layer lying over the same heterogeneous
half space. In that paper, it is observed that the initial
stress has a dominant effect on the propagation of G-type
wave. The term “initial stress” is understood as stresses
developed in a medium before it is being used for the
study. Kaur et al. (2015) discussed the shear wave
propagation in a vertically heterogeneous viscoelastic
layer over a micro polar elastic half space. Recently,
Vishwakarma and Xu (2016) investigated the effect of a
rigid boundary on the G-type wave.

In the present paper, we have obtained the dispersion
equation for the G-type wave in a viscoelastic layer
lying over a heterogeneous elastic half space under an
initial stress. The variation in the half space is taken
as μ2 = μ2 (1− δ cos γz) and ρ2 = ρ2 (1− δ cos γz),
where δ is a small positive constant and γ is a real
depth parameter. With the law of variation, the equation
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Fig. 1. Geometry of the problem.

of motion reduces to Hill’s differential equation with
periodic coefficients which has been solved by Valeev’s
method. Valeev (1961) considered a certain class of
systems of linear differential equations with periodic
coefficients which have the property that, by means of
Laplace transform, they can be converted to systems of
linear difference equations, which in turn may be solved
by the method of the infinite determinant. The method of
solving Hill’s differential equation using the technique of
the infinite determinant has been successfully applied by
Chattopadhyay and Singh (2012) or Kundu et al. (2014),
among others.

2. Problem formulation and its solution

Consider a viscoelastic medium of thickness H lying
over a heterogeneous half space under an initial stress.
The x-axis is taken as the horizontal axis, the z-axis is
oriented vertically downwards and its origin is taken at
the interface of the layer and the half space. The variation
in rigidity and the density for the half space are

μ2 = μ2 (1− δ cos γz) ,
ρ2 = ρ2 (1− δ cos γz) ,

(1)

respectively, where δ is a small positive constant and γ is
a real depth parameter. We assume that the propagation
of a horizontally polarized surface wave is of a shear
type, propagating along the x-axis, so the displacement
components are u = 0, w = 0 and v = v (x, z, t). The
displacement components are assumed as (u1, v1, w1) and
(u2, v2, w2) for the upper medium and the lower half
space, respectively.

The equation of motion for the upper viscoelastic
layer is

(
μ1 + μ′

1

∂

∂t

)(
∂2v1
∂x2

+
∂2v1
∂z2

)
= ρ1

∂2v1
∂t2

, (2)

where the constant μ′
1 is the parameter used for the

effect of viscosity. Here v1, μ1 and ρ1 represent the
displacement component, rigidity and density for upper
media, respectively. The lower half space is considered to
be a heterogeneous half space. In the lower heterogeneous
half space under the initial stress, the displacement
v2 (x, z, t) satisfies the differential equation

∂

∂x

(
μ2 (1− δ cos γz)

∂v2
∂x

)

+
∂

∂z

(
μ2 (1− δ cos γz)

∂v2
∂z

)

− P

2

∂2v2
∂x2

= ρ2 (1− δ cos γz)
∂2v2
∂t2

. (3)

Assume that

v2 (x, z, t) = V2 (z) e
ik(x−ct) (4)

The boundary conditions are the following:
(i) The continuity of displacement requires that, at z = 0,

v1 = v2.

(ii) The continuity of stress requires that, at z = 0,

μ̄1
∂v1
∂z

= μ2 (1− δ cos γz)
∂v2
∂z

.

(iii) As the upper surface is stress free, at z = −H ,

∂v1
∂z

= 0, (5)

where μ̄1 = μ1 + iω1μ
′
1. Using separation of variables

twice in (2) for viscoelastic material, we get

v1 = A1 cos (ζ (z +A2)) e
ik(x−ct), (6)

where A1 and A2 are constants,

ζ =
(
k21 − k2

) 1
2 , k21 =

ρ1ω
2
1

μ̄1

and ω1 = kc, k is the complex wave number and c is the
phase velocity. As the upper surface is stress free, using
the boundary condition (iii) of (5), we get

v1 = A1 cos (ζ (z +H)) ei(kx−ω1t) (7)

Using the conditions (i) and (ii) of (5), we have

V2 (0) = A1 cos (ζH) , (8)

V ′
2 (0) =

−A1μ̄1ζ sin (ζH)

μ
(0)
2

, (9)
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where μ
(0)
2 = μ2 (1− δ). Using (3) and (4), the equation

of motion for the lower heterogeneous half space may be
written as

d2V2

dz2
+

(
ρ2c

2

μ2
+

(
P

2μ2
− 1

))
k2V2 (z)

+ e−iγz
(−δρ2

2μ2
k2c2V2 (z) +

δ

2
k2V2 (z)

− δ

2

d2V2

dz2
+

δγi

2

dV2

dz

)

+ eiγz
(−δρ2

2μ2
k2c2V2 (z) +

δ

2
k2V2 (z)

− δ

2

d2V2

dz2
− δγi

2

dV2

dz

)

= 0.

(10)

This is Hill’s differential equation which is solved by
Valeev’s method. We apply the Laplace transform with
respect to z. To this end, multiplying (10) by e−αz and
integrating with respect to z from 0 to ∞, we get∫ ∞

0

e−(α+iγ)z

(−δρ2
2μ2

k2c2V2 (z)

)
dz

+

∫ ∞

0

e−(α+iγ)z

(
δ

2
k2V2 (z)− δ

2

d2V2

dz2
− δγi

2

dV2

dz

)
dz

+

∫ ∞

0

e−(α−iγ)z

(−δρ2
2μ2

k2c2V2 (z) +
δ

2
k2V2 (z)

)
dz

+

∫ ∞

0

e−(α−iγ)z

(
− δ

2

d2V2

dz2
+

δγi

2

dV2

dz

)
dz

+

∫ ∞

0

e−αz
[d2V2

dz2
+

(
ρ2c

2

μ2
+

(
P

2μ2
− 1

))
k2
]

× V2 (z) dz = 0.

(11)

Let w (0) = V ′
2(0). Define the Laplace transform

of V2(z) as F (α) =
∫∞
0

e−αzV2(z)dz. Applying the
Laplace transform to (11), we get

F (α+ iγ)

[
−δρ2
2μ2

k2c2 +
δ

2
k2 − δ

2
(α+ iγ)2

+
δγi

2
(α+ iγ)

]
+ F (α− iγ)

[
−δρ2
2μ2

k2c2

+
δ

2
k2 − δ

2
(α− iγ)

2 − δγi

2
(α− iγ)

]

+
(
α2 − φ2

)
F (α) = ατ1 + τ2,

(12)

where τ1 = (1− δ)V2(0), τ2 = (1− δ)w(0) and

φ2 =

(
−ρ2c

2

μ2
+

(
1− P

2μ2

))
k2.

To find F (α), we replace α by α + iγj and then
dividing throughout by (iγj)n, j �= 0, we obtain the

following infinite system of linear algebraic equation in
the quantities F (α+ iγj), j = 1, 2, . . . :

(iγj)
−n

F (α+ iγ (j + 1))

×
[−δρ2
2μ2

k2c2 +
δ

2
k2 − δ

2
(α+ iγ (j + 1))2

+
δγi

2
(α+ iγ (j + 1))

]

+ (iγj)−n F (α− iγ (j + 1))

×
[−δρ2
2μ2

k2c2 +
δ

2
k2 − δ

2
(α− iγ (j + 1))2

− δγi

2
(α− iγ (j + 1))

]

+
(
α2 − φ2

)
F (α+ iγj)

= (α+ iγj) τ1 + τ2,

(13)

where α may be regarded as a parameter in the
coefficients. It should be noted that in order not to
consider the special case j = 0 separately, we include
(iγj)

−n
= 1 when j = 0. Solving the system of

difference equations, we obtain F (α) as the ratio of two
determinants, i.e., F (α) = Δ3/Δ4, where the values of
Δ3 and Δ4 are given in Appendix.

Neglecting δ2 and higher powers in Δ3, we get

s2nΔ3

= (ατ1 + τ2)
(
(α+ iγ)2 − φ2

)(
(α− iγ)2 − φ2

)

+ (τ1 (α− iγ) + τ2)
(
(α+ iγ)

2 − φ2
)

×
(
δρ2
2μ2

k2c2 − δ

2
k2 +

δγi

2
(α− iγ) +

δ

2
(α− iγ)

2

)

+ ((α+ iγ) τ1 + τ2)
(
(α− iγ)2 − φ2

)

×
(
δρ2
2μ2

k2c2 − δ

2
k2 − δγi

2
(α+ iγ) +

δ

2
(α+ iγ)

2

)
.

(14)

Neglecting the term δ2 and higher powers in Δ4, we get

s2nΔ4 =
(
(α+ iγ)2 − φ2

)(
(α− iγ)2 − φ2

)

× (α2 − φ2
)
.

(15)

Therefore, we have

F (α)

=
ατ1 + τ2
α2 − φ2

+
δ

2

V2(0) (α+ iγ) + w (0)

(α2 − φ2)
(
(α+ iγ)

2 − φ2
)

×
(
ρ2k

2c2

μ2
− k2 − γi (α+ iγ) + (α+ iγ)

2

)
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+
δ

2

V2(0) (α− iγ) + w (0)

(α2 − φ2)
(
(α− iγ)

2 − φ2
)

×
(
ρ2k

2c2

μ2
− k2 + γi (α− iγ) + (α− iγ)

2

)
.

(16)

Using the inverse Laplace transform, we have
V2 (z) =

∫ γ+∞
γ−∞ F (α) eαz dα. The residues at L1, L2,

L3 at the poles r = φ, r = φ + iγ, r = φ − iγ are given
respectively as

L1 =

(
φV2 (0) + w (0)

2φ

)(
(1− δ) +

δφ2

γ2 + φ2

)
eφz

− δM1

γ2 + 4φ2

(
w (0)− φV2 (0)

2φ

)
eφz

+
δV2(0)

2

γ2 + 2φ2

γ2 + 4φ2
eφz,

(17)

where

M1 =
ρ2k

2c2

μ2
− k2.

Similarly, we can find the residues at the poles r =
φ + iγ and r = φ − iγ. The above equation shows that
the conditions for a large amount of energy to be confined
near the surface are

w (0) + φV2 (0) = 0,

w (0)− φV2 (0) = 0, (18)

2φ2 + γ2 = 0. (19)

From these equations, we have

tan

((
c2

β̄2
1

− 1

) 1
2

kH

)
=

μ
(0)
2

μ̄1

(
1− P

2μ2
− ρ2c

2

μ2

) 1
2

(
c2

β̄2
1
− 1
) 1

2

,

(20)
where β̄1 = (μ̄1/ρ1)

1
2 . Equating real parts, we get

tan akH
(
1− (tanh bkH)

2
)

1 + (tan akH + tanh bkH)
2

=
μ2 (1− δ)

(
1− P

2μ2
− ρ2c

2

μ2

) 1
2

(aμ1 + bωμ′
1)

(aμ1 + bωμ′
1)

2
+ (aωμ′

1 − bμ1)
2 ,

(21)

where

a =

√√√√
(
F1 ±

√
F 2
1 + F 2

2

2

)
, b =

F2

2a
,

F1 =
ρ1c

2

μ1

(
1 +

(
ωμ′

1

μ1

)2) − 1

F2 =

ρ1c
2

μ1

ωμ′
1

μ1

1 +
(

ωμ′
1

μ1

)2 .

We consider only the positive sign. Now, from (19), we
have

kc =

√
μ2

2ρ2

(
2k2

(
1− P

2μ2

)
+ γ2

)
. (22)

Then the group velocity is given by

U =
d

dk
(kc) =

√
2k
(
1− P

2μ2

)
√
2k2

(
1− P

2μ2

)
+ γ2

. (23)

3. Particular cases

Case 1. When μ′
1 = 0, we have

tan

((
c2

β2
1

− 1

) 1
2

kH

)

=
μ2 (1− δ)

μ1

(
1− P

2μ2
− ρ2c

2

μ2

) 1
2

(
c2

β2
1
− 1
) 1

2

. (24)

Equation (24) represents the dispersion equation for the
propagation of the G-type wave in a viscoelastic layer
lying over a heterogeneous half space over real k.

Case 2. When P = 0, that is, when the initial stress is
absent, we have

tan

((
c2

β2
1

− 1

) 1
2

kH

)

=
μ2 (1− δ)

μ1

(
1− c2

β2
2

) 1
2

(
c2

β2
1
− 1
) 1

2

, (25)

where β2 =
√
μ2/ρ2.

Equation (25) represents the dispersion equation for
the propagation of the G-type wave in a viscoelastic layer
lying over a heterogeneous half space in the absence of
the initial stress.

Case 3. When δ = 0, we have

tan

((
c2

β2
1

− 1

) 1
2

kH

)
=

μ2

μ1

(
1− c2

β2
2

) 1
2

(
c2

β2
1
− 1
) 1

2

. (26)

Equation (26) represents the dispersion equation for the
propagation of the G-type wave in a viscoelastic layer
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lying over a homogeneous half space in the absence of
the initial stress.

Case 4. When μ2 = μ1, we have

tan

((
c2

β2
1

− 1

) 1
2

kH

)
=

(
1− c2

β2
2

) 1
2

(
c2

β2
1
− 1
) 1

2

. (27)

Equation (27) represents the dispersion equation for the
propagation of the G-type waves in a uniform viscoelastic
layer lying over a uniform homogeneous half space in the
absence of the initial stress.

4. Numerical computation

For graphical representation of the phase velocity of the
G-type wave, we have assumed

ρ2
ρ1

= 0.01,
μ2

μ1
= 0.1,

ωμ′
1

μ1
=

4π

9
.

Figures are plotted to show the effect of δ, and
P/2μ2 on the phase velocity. Figure 2 illustrates the
consequences of the initial stress on the group velocity
with respect to the scaled wave number. It is seen that, as
the value of the initial stress increases, the group velocity
decreases rapidly for a small variation. Figures 3 and
4 correspond to the occurrence of the phase velocity for
the propagation of the G-type wave in a viscoelastic layer
lying over a heterogeneous half space. Figure 3 displays
the effect of δ on the phase velocity with respect to the
dimensionless wave number. Note that when the value of
δ increases, the phase velocity decreases. Figure 4 reveals
the influence of the initial stress on the phase velocity with
respect to the dimensionless wave number. It is observed
that, as the value of P/2μ2 increases for a small variation,
the phase velocity decreases. Figures 5 and 6 correspond
to the case of the angular frequency and the wave number.
Figure 5 renders the effect of δ on the nondimensional
angular frequency. It is verified that when the value of δ
increases the angular frequency increases. Figure 6 shows
the effect of the initial stress on the angular frequency. It
is seen that when the initial stress increases, the angular
frequency increases.

5. Application

An important application of this work is to use its results
in prospecting for oil deposits. This is sometimes used to
detect the underlying structure of continental and oceanic
crusts. Seismologists study the Earth’s interior and its
vibrations. These are caused by the explosion and natural
ground vibrations which reflect off or are refracted by
subsurface features such as bedding planes. In this light,
this work will help us to understand the Earth’s interior.

Most of the ideas of seismic waves are conceptually
similar to sensing the world around us using light and
sound. The current work complements ongoing efforts to
build a numerical model suitable for the study of the crust
during an earthquake. The concept of this paper represents
the current state of the art in geological or earthquake
research and it can be applied successfully in numerous
studies of crustal deformations during an earthquake.

6. Conclusion

The dispersion equation for a G-type seismic wave in
viscoelastic media lying over a heterogeneous half space
has been obtained using a transformation technique and
Valeev’s method. The study certainly will be helpful
in understanding the cause of damages during large
earthquakes. It can also be useful to predict the nature of
long-period waves. From the numerical results, we may
conclude the following:

(i) The phase velocity increases as long as the
dimensionless wave number increases.

(ii) The group velocity increases as the scaled
wave-number increases.
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Fig. 2. Variation in P/2μ2 with respect to the group velocity
and the scaled wave number.
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