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This paper presents an alternative approach to the task of control performance assessment. Various statistical measures
based on Gaussian and non-Gaussian distribution functions are evaluated. The analysis starts with the review of control
error histograms followed by their statistical analysis using probability distribution functions. Simulation results obtained
for a control system with the generalized predictive controller algorithm are considered. The proposed approach using
Cauchy and Lévy α-stable distributions shows robustness against disturbances and enables effective control loop quality
evaluation. Tests of the predictive algorithm prove its ability to detect the impact of the main controller parameters, such as
the model gain, the dynamics or the prediction horizon.
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1. Introduction

The presented work integrates different research
areas: model predictive control (MPC) (Camacho and
Bordons, 1999; Maciejowski, 2002; Tatjewski, 2007),
control performance assessment (CPA) (Jelali, 2006)
and statistics (Eisenhart, 2006). A rationale originates
from practical aspects of advanced process control (APC)
implementations. Good control performance plays crucial
role in achieving benefits by any installation (Ordys
et al., 2007). An improperly chosen control philosophy
or a poor tuning deteriorate overall process performance.
Moreover, industrial processes are mostly time varying
complex systems. The results should not only be reached
but also sustained. On-line performance monitoring and
diagnostic start to play increasingly important role and
become an inevitable element of good practice. This
effect is even more visible in process optimization (PO)
and APC (Smuts and Hussey, 2011) solutions, where
regulation is more sensitive due to the operation close to
constraints. Profound knowledge is needed for proper
design, implementation and tuning.

Contemporary industrial control systems rely mainly
on proportional-integral-derivative (PID) regulation.
However, the improvements achievable with the PID
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algorithm are limited. APC techniques gain common
acceptance. Advanced MPC algorithms compute the
control signal on the basis of an embedded process model.
While the model supports controller with prediction,
optimization is used to calculate control rule minimizing
costs and satisfying constraints. The MPC approach
is very flexible, e.g., it makes it possible to control
processes described by both linear (Tatjewski, 2014) and
nonlinear models (Ławryńczuk, 2015; Tatjewski, 2007),
may use on-line set-point optimization (Tatjewski, 2010)
and may incorporate fault tolerant methods (Yang and
Maciejowski, 2015). Generalized predictive control
(GPC) is one of MPC algorithms. It was introduced
by Clarke et al. (1987a) with several further extensions
(Clarke et al., 1987b) and specific analyses (Clarke
and Mohtadi, 1989). Although the algorithm is well
established and there are a lot if reported successful
implementations, its tuning and performance assessment
is a challenging task. The selection of this algorithm
is brought about by the fact that the parameters of
the internal model, like gain, delay or time constant
have a clear engineering meaning and are thus easily
understood and interpreted by the control engineer during
the assessment procedure.

The subject of CPA has been investigated for several
years. It is important, as a bulk of process control
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loops perform poorly. 60% of all SISO loops have poor
tuning and even more of them (85%) an improper control
structure (Jelali, 2013). The research started in the 1960s,
getting popularity in 1989 with the minimum variance
(MinVar) index (Harris, 1989). A real development
using varying approaches, mostly MinVar, started and
continues.

Mathematicians offer many different statistical
approaches for data analysis. The Gaussian approach
with normal probability distribution functions (PDFs) is
the most popular one in control engineering. However,
there are a lot of other distributions established in
other contexts and offering attractive interpretations.
Observation of control properties in many industrial
examples (Domański, 2015) shows that the reality is not
uniform. Controller variables and disturbances often
cannot be rationally explained with standard linear and
Gaussian approximations.

This paper tries to restore attractive features of other
methods. Various statistical factors of non-Gaussian
distributions are confronted and compared with the
standard approach using the Gaussian normal distribution.
Several different relations are analyzed, such as the impact
of the GPC control horizon and misfits of gain, delay
and time constant in the controller embedded model.
Undisturbed and disturbed scenarios are considered to
evaluate the robustness of selected indexes.

The proposed and evaluated methods show
effectiveness against standard Gaussian factors. They
are able to detect optimal values for main parameters
of the GPC algorithm, like the internal model gain and
dynamics or the prediction horizon. Proper detection is
able also in the case of strong disturbances added into the
loop.

Our analysis starts with the presentation of used
algorithms and methods. The GPC algorithm is presented
in Section 2, while Section 3 covers CPA approaches and
evaluated indexes with a detailed description of statistical
measures in Section 3.3). Main part of the paper includes
data analysis for several simulation scenarios of a GPC
loop (Section 4). The paper concludes in Section 5 with
the discussion of results and open issues to be addressed
in further research.

2. Generalized predictive control

2.1. Predictive control formulation. Let the input of
the process (MV manipulated variable) be denoted by u
and the output of the process (CV controlled variable)
by y. In contrast to the classical PID controller, which
calculates at the current discrete sampling instant k only
the value of the manipulated variable for the current
instant, i.e., u(k), in MPC algorithms (Tatjewski, 2007) at
each consecutive sampling instant k a whole set of future

control increments is calculated

�u(k) = [�u(k|k) . . .�u(k +Nu − 1|k)]T . (1)

The number of decisions variables is determined by the
control horizon, Nu, and the increments are defined by

�u(k + p|k)

=

{
u(k|k)− u(k − 1) if p = 0,

u(k + p|k)− u(k + p− 1|k) if p ≥ 1.

It is assumed that �u(k+ p|k) = 0 for p ≥ Nu, i.e.,
u(k+p|k) = u(k+Nu−1|k) for p ≥ Nu. The increments
in the future values of the manipulated variable (1) are
calculated from an optimization problem, in which the
predicted control quality is maximized and the constraints
are taken into account. Typically, the predicted control
quality is defined as forecast control errors, i.e., the
differences between the set-point, ysp(k + p|k), and the
predicted process output, ŷ(k+p|k), for p = N1, . . . , N2,
where N1 and N2 determine the beginning and the end of
the prediction horizon, respectively. Assuming that there
are constraints imposed on the range of the MV defined by
the real numbers umin, umax, the constraints imposed on
the rate of change of the MV defined by �umin, �umax

and the constraints imposed on the range of the predicted
controlled variable defined by ymin, ymax, the general
MPC optimization problem is

min
�u(k)

{
J(k) =

N2∑
p=N1

(yref(k + p|k)− ŷ(k + p|k))2

+

Nu−1∑
p=0

λ(�u(k + p|k))2
}
,

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

�umin ≤ �u(k + p|k) ≤ �umax, p = 0, . . . , Nu − 1,

ymin ≤ ŷ(k + p|k) ≤ ymax, p = N1, . . . , N2.
(2)

The optimization problem (2) is solved on-line. As
a result, future control increments (1) are calculated, but
only the first element of the sequence is actually applied
to the process, i.e., u(k) = �u(k|k) + u(k − 1). At
the next sampling instant, k + 1, the prediction is shifted
one step forward and the whole procedure is repeated.
The second part of the minimized cost-function J(k) is
a penalty term (λ > 0 is a weighting coefficient), which
may be used to slow down the trajectories, but primarily
it is used to obtain good numerical properties of the
MPC optimization problem. If the MPC optimization
problem takes into account the constraints imposed on
the predicted process output, it may be necessary to
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enforce the existence of the feasible set, e.g., by softening
such constraints, when the set of possible solutions to
the MPC optimization problem is empty (Maciejowski,
2002; Tatjewski, 2007). For further description, the MPC
optimization problem (2) is expressed compactly in a
vector-matrix notation

min
�u(k)

{
‖ysp(k)− ŷ(k)‖2 + ‖�u(k)‖2Λ

}
,

subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax,

−�umax ≤ �u(k) ≤ �umax, (3)

ymin ≤ ŷ(k)�u(k) ≤ ymax.

where the norms are defined as ‖x‖2 = xTx and
‖x‖2A = xTAx, the set-point trajectory vector ysp(k) =

[ysp(k +N1|k) . . . ysp(k +N2|k)]T, the predicted
trajectory vector ŷ(k) = [ŷ(k +N1|k) . . . ŷ(k +N2|k)]T
and the vectors which define the output constraints, i.e.,

ymin =
[
ymin . . . ymin

]T
, ymax = [ymax . . . ymax]

T, are
of length N2 − N1 + 1. The vectors which define the

input constraints, i.e., umin =
[
umin . . . umin

]T
, umax =

[umax . . . umax]
T, �umax = [�umax . . .�umax]

T and
the vector u(k − 1) = [u(k − 1) . . . u(k − 1)]

T are of
length Nu, the matrices Λ = diag(λ, . . . , λ) and

J =

⎡
⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1

⎤
⎥⎥⎥⎦ , (4)

is an Nu ×Nu matrix.

2.2. Generalized predictive control implementation.
In all MPC algorithms a dynamic model of the controlled
process is used to predict the future values of the output
variable, ŷ(k + p|k), over the prediction horizon, i.e., for
p = N1, . . . , N2. In the GPC algorithm the model of the
process has the form of the discrete difference equation

A(q−1)y(k) = B(q−1)u(k − 1) +C(q−1)
ε(k)

� , (5)

where the polynomials in the q−1 shift operator are

A(q−1) = 1 + a1q
−1 + . . .+ anAq

−nA , (6)

B(q−1) = b1q
−1 + . . .+ bnBq

−nB , (7)

C(q−1) = 1 + c1q
−1 + . . .+ cnCq

−nC . (8)

Here ε(k) denotes the white noise vector with zero mean
and � = 1 − q−1 stands for the backward-difference
operator (1/� means integration). The model (5) may

be called auto-regressive integrated moving average with
exogenous input (ARIMAX) or controlled auto-regressive
integrated moving average (CARIMA) (Tatjewski, 2007).
Assuming that the process is affected by an integrated
white noise (C(q−1) = 1) the model (5) becomes

A(q−1)y(k) = B(q−1)u(k − 1) +
ε(k)

� . (9)

The above model is often used in practical
implementations of the GPC algorithm since the
assumption that C(q−1) = 1 enables easy derivation of
prediction equations when compared with the general case
C(q−1) �= 1, i.e., when the integrated noise is colored.
The model (9) is used to derive the prediction equation
(Clarke et al., 1987a)

ŷ(k) = G�u(k) + y0(k), (10)

where the so-called dynamic matrix G (calculated once,
off-line) of dimensionality (N2−N1+1)×Nu consists of
the step-response coefficients of the model (9) and the free

trajectory y0(k) =
[
y0(k +N1|k) . . . y0(k +N2|k)

]T
(calculated at each sampling instant k) is evaluated from

y0(k) = FyPG(k) +GPG�uPG(k), (11)

where the vectors yPG(k) = [y(k) . . . y(k − nA)]
T and

uPG(k) = [�u(k − 1) . . .�u(k − nB)]
T are of length

nA + 1 and nB, respectively, and the matrices F and
GPG, of dimensionalities (N2 − N1 + 1) × (nA + 1)
and (N2 − N1 + 1) × nB are calculated from the model
equation (9) by solving Diophantine equations (Clarke
et al., 1987a; Tatjewski, 2007). From Eqns. (10) and (11),
the GPC prediction equation is derived

ŷ(k) = G�u(k) + FyPG(k) +GPG�uPG(k). (12)

It is necessary to point out that the future predictions
of the CV are linear functions of the calculated decision
vector �u(k) according to the GPC prediction equation
(12) and the free trajectory depends only on the past.
Using (12), from the general MPC optimization problem
(3), we obtain the GPC minimization task

min
�u(k)

{∥∥∥ysp(k)−G�u(k)− FyPG(k)

−GPG�uPG(k)
∥∥∥2 + ‖�u(k)‖2Λ

}
,

subject to

umin ≤ J�u(k) + u(k − 1) ≤ umax,

−�umax ≤ �u(k) ≤ �umax,

ymin ≤ G�u(k) + FyPG(k)

+GPG�uPG(k)�u(k) ≤ ymax. (13)

As the prediction equation (12) is linear in terms of the
vector �u(k), the obtained optimization problem (13)
is of the quadratic programming (QP) type, i.e., the cost
function is quadratic and all constraints are linear.
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3. Control performance assessment

Control engineers use various approaches to assess
quality. Their methods originate from personal
experience. Benchmarking was introduced for business
processes in the late 1970s (Cross and Iqbal, 1995) and the
first reported loop performance assessment was done by
Åström for a paper machine in 1967 (Åström, 1967). The
development of CPA tools pursued. It gained big attention
in 1989 (Harris, 1989) with the introduction of the
performance index based on the MinVar approach. Now
research covers many different aspects of control, such
as nonlinear behavior (Horch and Isaksson, 1998), large
scale systems (Paulonis and Cox, 2003), predictive control
(Schäfer and Cinar, 2004), SISO (Hugo, 2006) and MIMO
structures (Zhuo, 2009), valve stiction (Choudhury et al.,
2008), oscillations (Srinivasan and Rengaswamy, 2012)
and many others. Industrial approaches are mostly in the
form of financial or technical KPIs (Thornhill and Shah,
2005). Nowadays we observe approaches unequal to the
above ones using a nonlinear data analysis approach. They
are not based on Gaussian assumptions (Domański, 2016).

Concluding, there exist many CPA approaches,
methodologies and algorithms. We may distinguish five
main classes of methods:

1. time-domain indexes based on the step test response,
such as delay, undershoot, rising, maximum and
settling time, overshoot, peak amplitude, etc.;

2. time-domain approaches using control error signal,
as for instance integral indexes, i.e., the mean integral
square error (MISE), the integral of absolute error
(IAE), the amplitude index (AMP), etc.;

3. MinVar indexes originating from Harris’ approach;

4. statistical measures based on signal (control error,
output) time series analysis with different PDFs
factors, such as the standard deviation, scaling,
skewness, position, etc.;

5. others such as wavelet, fractal or entropy measures.

This paper will focus on a comparison of standard
approaches and non-Gaussian statistical measures.

3.1. Time domain CPA methods. Traditional step
test measures, although very informative, have a limited
industrial applicability. Industry hardly agrees to disturb
a normal operation with testing experiments. On the
other hand, the integral indexes are extremely popular
and widely used. For further analysis three of them will
be evaluated and compared: the MISE, IAE and AMP
(Spinner et al., 2014).

As the difference between the MISE and IAE is
rather minor, they are often used interchangeably without

a deeper reflection. However, in the literature we may
find some interesting comments. Seborg et al. (2010)
showed that tuning to minimize the MISE punishes large
deviations from the set-point, but also produces aggressive
actions. On the other hand, Shinskey (2002) suggested
that the IAE has the closest relationship to economic
considerations. In the present analysis both will be
calculated and compared.

3.2. Minimum variance CPA. The standard form of
the MinVar index is calculated from

Hindex =
σ2
minV ar

σ2
y

=

τ−1∑
i=0

f2
i

∞∑
i=0

f2
i

. (14)

where fi denotes the coefficients of the impulse response
from the noise-to-output transfer function and they need
to be estimated for instance with an ARMA model. Often
the normalized version of Eqn. (14) is used,

Nindex = 1− σ2
y

σ2
minV ar

. (15)

This index is very informative and constructive. But its
evaluation may be practically limited by the assumption
that the process structure, at least its delay, has to be
known.

3.3. Statistical indexes. Statistical properties of the
Gaussian normal distribution form a very popular set of
KPIs. The mean value xo and the standard deviation σ are
commonly used. A non-zero mean value of the control
error indicates whether the loop witnesses steady-state
error. Furthermore, the standard deviation informs about
the accuracy of set-point tracking. These measures
are frequently supplemented with higher order statistics.
Skewness

skewness (x) =
1

Nσ3

N∑
i=1

(xi − x̄)
3
, (16)

is a measure of PDF asymmetry. It informs about a
positive or a negative bias from the mean value. For a
symmetrical distribution it is equal to zero. If it is below
zero, there are more negative values in data. While it is
positive, we face the opposite situation. Kurtosis

kurtosis (x) =
1

Nσ4

N∑
i=1

(xi − x̄)
4 − 3 (17)

is a shape descriptor. It measures data concentration.
The higher kurtosis, the more scattered data are and the



Assessment of the GPC control quality using non-Gaussian statistical measures 295

0

1000

2000

3000

4000

5000

-0.1 -0.05 0 0.05 0.1

n
u

m
b

e
r 

o
f 

d
a

ta

control error

Histogram with Gaussa & Cauchy & Levy α-stable PDF

Gauss: x0=-0.00 : σ=0.33 
Cauchy: x0=0.00 : γ=0.01 

α-stable: α=0.86 : β=0.01 : γ=0.01 : δ=-0.00

Fig. 1. Control error variable histogram with a fat tale shape
best fitted with an α-stable PDF.

distribution function shape is flatter. Small values result
in a slender PDF.

We have to check whether or not variable properties
are Gaussian. Such tests may be simply performed
graphically through visual inspection of the histogram
(see Fig. 1). We may calculate the mean square
error between histogram and normal PDF fitted to data.
Additionally, normality may be validated through specific
tests, such as Kolmogorov–Smirnov (KS) normality
test. Another approach is to check the normality
hypothesis through skewness, kurtosis or α stability.
Besides, one may use other tests: Smirnov–Cramer von
Mises (Cramer, 1928), Anderson–Darling (Anderson and
Darling, 1954), Shapiro–Wilk (Shapiro and Wilk, 1965),
Lilliefors (Lilliefors, 1967).

A review of industrial loops (Domański, 2015)
showed that only a minority (≈ 6%) have normal
properties. It was discovered that a majority have fat tails
of a Lévy α-stable (> 60%) or a Cauchy distribution
(≈ 30%). This is probably caused by the complex
nature of real industrial loops with non-linear and time
varying cross coupling, nonlinearities, variable delays
and frequent human interventions. It has been decided
to evaluate the fitting of other probabilistic distribution
functions to cover these aspects: Cauchy, Lévy α-stable,
Laplace, the unbounded Johnson function (SU ) and the
generalized extreme value (GEV).

3.3.1. Cauchy PDF. The Cauchy distribution is
described by the following density function:

PDFδ,γ (t) =
1

πγ

(
γ2

(t− δ)2 + γ2

)
, (18)

where δ ∈ R denotes a location and γ > 0 is a scale
factor.

3.3.2. α-stable distributions. Another interesting
alternative for a good fitting might be the Lévy α-stable
distribution characteristics equation

PDFα,β,δ,γ (t) = exp {iδt− |γt|α (1− iβl (t))} , (19)

where

l (t) =

{
sgn (t) tan

(
πα
2

)
if α �= 1,

−sgn (t) 2
π ln |t| if α = 1.

Here 0 < α ≤ 2 is called the stability index, |β| ≤ 1
is skewness, δ ∈ R is the location and γ > 0 is a scale
factor.

3.3.3. Laplace PDF. The Laplace distribution is
sometimes called the double exponential distribution. It
forms a function of differences between two independent
variables with identical exponential distributions. Its
probability density function is given by

PDFμ,b =
1

2b
e−

|x−μ|
b , (20)

where μ ∈ R is a location and b > 0 is a scale parameter.

3.3.4. Unbounded Johnson function SU . The
Johnson SU distribution is a four-parameter family of
probability functions. It was proposed as a transformation
of normal distribution with the PDF function given by

PDFγ,ξ,δ,λ =
δ

λ
√
2π

1√
1 +

(
x−ξ
λ

)2
× e−

1
2 (γ+δ sinh−1( x−ξ

λ ))
2

, (21)

where γ ∈ R and δ > 0 are PDF shape parameters, ξ ∈ R

is a distribution location and λ > 0 is a scale factor.

3.3.5. Generalized extreme value distribution. The
GEV distribution is a family of continuous PDFs
developed within extreme value theory to combine
properties of different distributions. Its distribution
function is described by the following formula:

PDFμ,σ,ξ =
1

σ
t (x)

ξ+1
e−t(x), (22)

where

t (x) =

{(
1 +

(
x−μ
σ

)
ξ
)− 1

ξ if ξ �= 0

e−
x−μ
σ if ξ = 0

,

μ ∈ R is a location, σ > 0 a scale and ξ ∈ R a shape
factor.

There are efficient algorithms (Borak et al., 2011)
to fit the PDF to the histogram. In this paper
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the Cauchy parameter calculation uses maximum
likelihood estimation (MLE) from the Octave successive
quadratic programming solver (Axensten, 2006).
Furthermore, α-stable fitting applies the regression
method (Koutrouvelis, 1980). Laplace and GEV
estimation also uses MLE and the Johnson fitting is done
with moments method (Hill et al., 1976).

4. Simulations

4.1. Simulation example. In order to demonstrate
the usefulness of the discussed approach, the following
continuous-time dynamic system is considered:

G(s) =
K

(T1s+ 1)(T2s+ 1)
e−T0s, (23)

where the nominal parameters are K = 2, T0 = 4, T1 =
3, T2 = 10. Assuming the sampling period 0.5 sec., the
discrete-time version of the transfer function (23) is

(1+a1q
−1+a2q

−2)y(k) = (b8q
−8+b9)u(k−1), (24)

where a1 = −1.7977× 10−1, b2 = 8.0520× 10−1, b8 =
7.7574× 10−3, b9 = 7.2169× 10−3 and the order of the
model dynamics is defined by nA = 2, nB = 9. During
GPC simulations, the constraints imposed on the range of
the MV are taken into account, umin = −1, umax = 1,
as well as the constraints of the change rate: �umin =
−0.05, �umax = 0.05.

After tuning it is found out that the control horizon
should be Nu = 3, the prediction horizon should be
defined by N1 = 9, N2 = 25, the penalty term should
be λ = 0.5. For the tuning of the GPC algorithm
no plant-model mismatch is assumed, i.e., the model is
perfect. The simulation control loop is also expanded
with disturbances. A disturbance z(t) with α-stable PDF
characteristics is added before the process, while Gaussian
noise d(t) is added at the process output.

Four scenarios are run to check how disturbances and
the modeling mismatch affect control quality:

(Sc1) The real process gain value differs from that of the
model used for GPC design, K = 2. Seven different
model gains are applied: 0.4, 0.8, 1.2, 2.0, 2.8, 3.2,
3.6.

(Sc2) The GPC applied prediction horizon length varies
from the tuned one N2 = 25. Six other lengths are
also considered: 10, 12, 15, 20, 25, 30, 35.

(Sc3) The real process delay value differs from that of the
model used for GPC design, T0 = 8. Nine different
process delays are used: 4, 5, 6, 7, 8, 9, 10, 11, 12.

(Sc4) The real value of the time constant, T2, is different
from the tuning model one T2 = 10. Seven different
values are checked: 0.5, 1, 5, 10, 15, 20, 40.

Three different scenarios of disturbances are
considered in addition to the above experiments. Two
types of disturbances are considered. A Gaussian signal
added at the process output is used to model measurement
noise. A long-tail stochastic process modeled with a Lévy
α-stable probabilistic distribution function models main
process disturbances. A review of many industrial control
loops has shown that a majority of them were showing
long-tail properties with the best function fitting by stable
distributions (Domański, 2016). The other assumptions
are as follows:

1. The process is not exposed to any disturbance.

2. The control loop is affected by additive input
disturbances in the form of random values with a
normal distribution and an amplitude of 0.008.

3. The control loop is affected by additive input
disturbances in the form of random values. It has
a α-stable distribution with an amplitude of 0.04.

Additionally, the nominal GPC control loop is simulated
with different noise characteristics, i.e.,

1. no disturbances,

2. three levels of normal noise (small, medium, large),

3. stability factors α = 1.5, 1.75, 2 of α-stable
distribution (α = 2 means independent realizations).

For better visualization, two sample trends are added in
Fig. 2.

Scenarios are used to answer the following questions:

(H0) Are the measures robust to disturbance properties?
Can we evaluate loop quality despite disturbances?

(H1) Does the set-point have any impact on the results of
the loop quality assessment?

(H2) Can we identify whether the GPC gain is
appropriate?

(H3) Can we estimate if the GPC horizon is set properly?

(H4) Can we confirm whether the GPC delay is
appropriate?

(H5) Can we say anything about the GPC embedded
model dynamics (internal model time constant)?

Loop quality assessment is made with measures based
on the control error trend (MISE, IAE, AMP), standard
and normalized MinVar and statistical factors of Gaussian,
Cauchy, α-stable, Laplace, Johnson SU and GEV PDFs.
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Fig. 2. Example time trends for a case with significant long-tail
disturbance and ideal parameters.
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Fig. 3. Example time trends for a gain mismatch and a Gaussian
disturbance.

4.2. Results. Presentation and discussion of the results
is organized systematically according to the hypotheses
H0, . . . , H5. The indexes are grouped according to the
role they play in distribution shaping. We may distinguish:

• Location factors visualize the average value of the
distribution. In our case of control error, it shows
how effectively the set-point is tracked by the process
variable. Thus we expect the zero mean value
for a good loop. Any non-zero number would
reflect steady-state error or other loop problems,
such as actuator nonlinearities or frequent manual
interventions.

These are the following: Gauss xo, Cauchy and Lévy
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δ, Laplace and GEV μ and SU factor ξ.

• Distribution scale parameters reflect data dispersion
(variability). In our case we prefer that value to be
as small as possible. Unfortunately, we hardly know
its minimum (achievable) value and we have to base
monitoring on the relative values. We may only see
whether it is getting better or worse.

As for selected PDFs, we have Gauss σ, Cauchy and
Lévy γ, Laplace b, GEV σ and factor δ for SU .

• For some of the distributions we have additional
shape factors. They include information about
skewness, slenderness or fat tails. In this group we
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count the Lévy α stability factor responsible for tails
and the β skewness parameter, GEV ξ shape factor,
γ and δ for SU distribution. All the PDFs are fitted to
control error histograms for all simulated scenarios.
Example situations are sketched in Figs. 4 and 5.
They show that histograms of simulated control error
feature fat-tail properties. Additionally, it may be
noticed that histogram properties are only reflected
by a α-stable distribution.

4.2.1. Location estimation. The results of 162
simulations with different GPC parameters and loop
disturbance profiles are included in one file and a
statistical comparison of the obtained results is performed.
According to the zero steady-state error assumption, all
should detect the value equal to zero. Unfortunately, SU

and GEV parameters do not reflect exactly the statistical
mean value. For that purpose, for both of them the mean
value is calculated

meanSU = ξ − λ exp

(
δ−2

2

)
sinh

(γ
δ

)
, (25)

and

meanGEV = μ− σ

ξ
+

σ

ξ
· Γ (1− ξ) . (26)

Table 1 shows position estimates with the mean,
minimum, maximum and variance for each parameter.
We see that only the Johnson SU distribution fails, while
all the others properly estimate the control error mean
within satisfactory limitations, despite loop disturbances.
The position estimates are independent of other CPA
measures. From that perspective there is no reason to
compare them with other indexes.

The correlation table (without Johnson SU ) is
presented as Table 2. High correlations with absolute
values larger than 0.8 are highlighted. The main
observation is that estimates keep different properties of
the histogram and in the case of loop disturbances they
may behave in an unlikely manner. Actually, only Laplace
and Gauss are exactly the same.

4.2.2. Scaling estimates. All 162 simulations are
analyzed. The assumption is that the scaling factors
should reflect control error variability. However, similarly
to the mean value analysis data for SU and the GEV,
the distributions have to be recalculated as their standard
deviations are

stdevSU =

√
λ2

2
(exp (δ−2)− 1)

×
√(

exp (δ−2) cosh

(
2γ

δ

)
+ 1

)
, (27)

and

stdevGEV =

√
σ2

ξ2
(Γ (1− 2ξ)− Γ2 (1− ξ)), (28)

respectively.
Table 3 includes the mean, the minimum, the

maximum and the variance for each scaling factor. In that
case, the interpretation is not so straightforward as in the
previous case. Control error variability exists and should
be detected. The main observation is that they behave with
different schemes.

It is interesting to see how they are interconnected.
Their cross correlations are calculated and shown in
Table 4 for that purpose. We see that both Cauchy and
Lévy γ parameters address very similar features. It is
interesting to see that the Laplace scaling factor is also
similar. We notice that SU and GEV distributions most
probably reflect unlikely phenomena. Further, they will
be confronted with other quality indexes (Section 4.2.6).

4.2.3. Shaping parameters. Finally, a similar
comparison is made for shaping parameters (Table 5). The
mean, minimum, maximum and variance for each of the
parameter are calculated. We notice that these parameters
are varying in a wide range. Kurtosis changes from a
value close to zero up to large numbers. Also the Gauss
skewness factor is characterized by the mean close to
zero (as expected) varying from a negative to a positive
number. These changes are connected with the noise
and the disturbance character equivalent to performed
scenarios.

We also see that the Lévy stability parameter α
varies between 0 and 2, but without reaching 2. The
estimates cover the whole parameter feasible range. Here
α = 2 means an uncorrelated stochastic process and
with β = 0, γ = δ = 1 the distribution becomes
normal. We also see that the Lévy skewness β is almost
always close to zero with limits similar to those of the
Gaussian distribution. Examination of data files show
that the scenarios closest to Gaussian are those with the
perfect model and a limited magnitude of disturbances
(or none). On the other hand, the smallest values of the
stability factor happen for scenarios with models farthest
from ideal ones.

We also see that the k factor of the GEV distribution
does not vary much and thus it is the least informative and
may be skipped from further investigation. The effect of
Johnson SU shaping factors is unclear.

Analysis of data included in Table 6 shows that
selected parameters are not cross correlated significantly
and as such can be still considered potential candidates for
loop quality assessment, except of the k factor of the GEV.
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Table 1. Position factors for control error distributions.
G.xo C.δ Lev.δ Lap.μ SU.ξ meanSU GEV.μ meanGEV

average −0.0018 0.0001 0.0008 −0.0018 −0.1918 −0.1874 −0.1560 0.0193
min −0.0208 −0.0099 −0.0353 −0.0208 −2.1434 −1.7752 −0.1955 −0.0176
max 0.0017 0.0026 0.0750 0.0017 0.0640 0.0007 −0.1334 0.0299

variance 0.0000 0.0000 0.0001 0.0000 0.3005 0.2239 0.0002 0.0000

Table 2. Correlations between position factors for control error distributions.
G.xo C.δ Lev.δ Lap.μ GEV.μ meanGEV

G.xo 1
C.δ 0.8430 1

Lev.δ 0.2902 0.2745 1
Lap.μ 1 0.8430 0.2902 1

GEV.μ 0.5867 0.4051 0.1255 0.5867 1
meanGEV 0.8244 0.6489 0.1659 0.8244 0.7536 1

Table 3. Review of scaling factors for control error distributions.
G.σ C.γ Lev.γ Lap.b SU.δ stdevSU GEV.σ stdevGEV

average 0.3968 0.0653 0.0665 0.2140 1.7572 0.6737 0.4335 0.2066
min 0.3305 0.0010 0.0000 0.1247 0.0000 0.3305 0.3902 0.1712
max 0.5016 0.2313 0.3064 0.3545 2.9494 3.3074 0.5239 0.2898

variance 0.0011 0.0056 0.0069 0.0026 0.1698 0.5256 0.0008 0.0006

Table 4. Correlations between scaling factors for control error distributions.
G.σ C.γ Lev.γ Lap.b SU.δ stdevSU GEV.σ stdevGEV

G.σ 1
C.γ 0.3652 1

Lev.γ 0.3523 0.9923 1
Lap.b 0.7151 0.9057 0.8934 1

SU.δ −0.0344 0.0541 −0.0034 0.0470 1
stdevSU 0.5998 0.6237 0.5951 0.7536 −0.2670 1

GEV.σ 0.9618 0.1373 0.1208 0.5159 −0.0370 0.4536 1
stdevGEV 0.9493 0.1230 0.0996 0.4979 −0.0080 0.4595 0.9968 1

Table 5. Review of shape factors for control error distributions.
G.kurtosis G.skewness Lev.α Lev.β Lap.b SU.γ SU.λ GEV.ξ

average 4.9672 −0.0703 0.8757 0.0023 0.2140 0.0398 0.9239 −0.2060
min 0.3530 −0.1136 0.0926 −0.1041 0.1247 −0.2515 0.0000 −0.2599
max 9.8533 0.0426 1.8450 0.0717 0.3545 0.1508 4.1221 −0.1864

variance 2.7282 0.0008 0.1982 0.0009 0.0026 0.0045 0.7554 0.0001

Table 6. Correlations between shape factors for control error distributions.
G.kurtosis G.skewness Lev.α Lev.β SU.γ SU.λ GEV.ξ

G.kurtosis 1
G.skewness −0.7153 1

Lev.α −0.5662 0.6183 1
Lev.β 0.5723 −0.3479 −0.3512 1

SU.γ 0.3360 −0.0876 −0.1658 0.3933 1
SU.λ −0.6369 0.4928 0.3599 −0.5063 −0.7005 1

GEV.ξ 0.6412 −0.2629 0.0076 0.4207 0.3083 −0.2712 1
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4.2.4. Normality tests. For all scenarios the normality
hypothesis is rejected by both skewness and α stability
tests. Here Kolmogorov–Smirnov, Anderson-Darling,
Shapiro–Wilk and Lilliefors rejected the normality
hypothesis in all cases. Smirnov–Cramer von Mises
rejected it in 110 cases out of 162 scenarios.

Additionally, fitting indexes in the form of the mean
square error between the PDF value and the histogram are
calculated. This shows that Gauss, the GEV and Johnson
SU are never best fitted. Laplace succeeded in 3 cases
(2%) with the optimal model and minimal error scenarios.
Cauchy happened to be the best in 13 (8%) cases (mostly
scenarios without disturbances and dynamics misfitting in
the GPC internal model), while Lévy won the rest 146
(90%) scenarios. The above results confirm observations
of industrial data (Domański, 2015), where the normal
distribution is better only in approximately ≈ 6% cases.

4.2.5. Conclusion of statistical comparisons. We
may formulate initial observations:

1. There are statistical factors aiming at the distribution
position. It is observed that the Johnson unbounded
function SU is not appropriate for that task, while
the GEV distribution requires additional calculation
of the mean value. The Laplace mean value is exactly
equal to the Gaussian. Gauss, Cauchy and Lévy give
almost similar results with the smallest sensitivity on
simulated scenarios.

2. The Cauchy and Lévy distributions are very close to
each other from the perspective of the shape factor.
Simultaneously, their γ factors are similar to the
scale parameter b of the Laplace PDF.

3. GEV parameters, both σ and the standard deviation
are very close to Gaussian σ.

4. Johnson SU seems to reflect an unlikely feature.

5. Shaping factors reflect other aspects of data.

6. Gauss, the GEV and Johnson SU are not good
choices as we consider normality testing and
distribution fitting to histograms.

7. A further analysis will aim at dynamical properties
of the responses and thus the following distribution
parameters will be further considered: Gauss σ,
Cauchy γ, Lévy α and γ, and Laplace b.

4.2.6. Comparison between PDF factors and CPA
measures. At first all the indexes are correlated with
each other to see if there is any consistency. This
analysis is made on all available data (see Table 7).
High correlations with absolute values larger than 0.8 are
highlighted.

We see that Laplace transform does not say much,
as its b scale parameter is highly correlated with both
Cauchy and Lévy. Additionally both the Harris indexes
Hindex and Hindex are of different origins. Classical
integral measures, such as the AMP, IAE and MISE, are
cross correlated with each other, but not with statistical
factors. We see that the PDF scale and shape parameters of
non-Gaussian functions are closely coupled. Additionally,
the Lévy stability parameter α seems to keep similar
information (tail fatness versus distribution slenderness).

4.2.7. H0: The impact of disturbances. One of the
main features of a perfect loop quality assessment should
be the ability to detect and identify controller tuning
goodness despite any disturbances that might obscure
investigation. From the perspective of the controller, the
value of measure should be invariant. We are considering
13 scenarios of different disturbances (see Table 8).

The analysis starts with a comparison of the mean
and variance between undisturbed and disturbed cases.
Six simulations are considered: the optimal GPC model
with horizons equal to 12 and 25, the internal model with
too small gain K = 1.6 for both horizons. Analogously,
simulations are run with too large gain K = 2.4 for both
the horizons.

The disturbance effect on the normal standard
deviation (σ) is presented in Fig. 6. It seems that
the standard deviation is not a perfect choice. There
is clear distinction between the parameters and robust
measure evaluation for a better controller (larger horizon).
However, we see significant variations impacted by
disturbances for a too short horizon.

Next, Fig. 7 shows the same diagram for the Cauchy
distribution scaling. We see an opposite situation.
For a longer horizon (theoretically better GPC), the
detection is poorer than in the short horizon case, when
measure shows better performance and is not violated by
disturbances.

Two other figures present the disturbance impact on
two α-stable factors, i.e., α (Fig. 8) and γ (Fig. 9).
They present similar features to the Cauchy distribution.
A very clear separation is visible for the worse tuning
of the controller despite disturbances. Conversely, GPC
regulation with the optimal model is not well detected.

A similar analysis is sketched for the Harris index
(Fig. 10), the AMP (Fig. 11), IAE (Fig. 12) and MISE
(Fig. 13). It is very clear that the Harris indexes and the
AMP are completely not robust against disturbances. The
Harris histogram is highly and randomly scattered. The
only visible pattern is that for each disturbance scenario
the index has the highest value for optimal gain. On
the contrary, the AMP shows a clear effect similar to α
behavior. The histogram is grouped according to the value
of the PDF stability parameter. It is strongly dependent
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Table 7. Correlation table for PDF measures and CPA indexes.
G.σ C.γ Lev.α Lev.γ Lap.b Hindex Nindex AMP IAE MISE

G.σ 1
C.γ 0.3485 1

Lev.α 0.1100 0.8608 1
Lev.γ 0.3373 0.9924 0.8813 1
Lap.b 0.7022 0.9059 0.6902 0.8943 1

Hindex 0.2077 0.2253 0.1302 0.2563 0.2632 1
Nindex −0.0291 −0.0102 −0.1375 −0.0071 −0.0228 0.2221 1

AMP 0.1866 −0.3234 −0.3144 −0.3229 −0.1842 −0.1312 0.2534 1
IAE 0.2106 −0.2667 −0.2625 −0.2614 −0.1339 −0.0979 0.2477 0.9918 1

MISE 0.2920 −0.2870 −0.3042 −0.2836 −0.1122 −0.0857 0.2342 0.9886 0.9938 1

Table 8. Scenarios for disturbance invariance investigation.
DistScen z(t) d(t)

D0 — —
D α = 2.00, Ampl = average —
D2 α = 1.50, Ampl = average —
D4 α = 1.75, Ampl = average —
D5 α = 2.00, Ampl = large —
D6 α = 1.50, Ampl = large —
D7 α = 1.75, Ampl = large —
D8 — α = 2.00, Ampl = average
D9 — α = 1.50, Ampl = average
D10 — α = 1.75, Ampl = average
D11 — α = 2.00, Ampl = large
D12 — α = 1.50, Ampl = large
D13 — α = 1.75, Ampl = large

on that. Observations show that these measures are not
recommended in the case of disturbances and noises.

The review of histograms for integral measures IAE
and MISE shows clear consistency in the drawings. The
IAE detects wrong GPC tuning in a relatively better way
than the MISE, especially for the worse controller model
tuning.

The analysis presented in this section verified the
potential robustness of the given loop quality measures
against the disturbances embedded in the loop. It
seems that the parameters are mostly able to detect
controller misfitting despite disturbances. However,
some of them are too sensitive with a highly biased
detection. Especially, Harris and AMP measures witness
that effect. Thus the following indexes will be taken into
consideration in the further analysis:

• statistical parameters: Gauss standard deviation σ, α
and γ of stable distribution and Cauchy’s γ,

• integral indexes: the IAE and MISE.

4.2.8. H1: The effect of the set-point profile. During
the evaluation of the previous results, suspicions appeared
that some of them may have been biased by the shape
of the set-point. In the first case the set-point is in the
form of a rectangular wave with varying amplitude. There
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is a second set of the same experimental results with
a set-point filtered by a first order filter to exclude that
effect.

Exclusion of the possible effect that a set-point
character may affect results, especially the lengths of
the transient period versus steady-state, is checked in
the experiment below. The percentage error for each
simulated measure is calculated as

Δη = 100 · η
rect − ηfilt

ηrect
[%], (29)
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D0 D1 D2 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D0 D1 D2 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

EXPERIMENT

α (Levy)

K=2.0 K=1.6 K=2.4

horizon = 25

horizon = 12

Fig. 8. Disturbance impact of the α-stable PDF on α.

0

0.05

0.1

0.15

0.2

0.25

D0 D1 D2 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D0 D1 D2 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

EXPERIMENT

γ (Levy)

K=2.0 K=1.6 K=2.4

horizon = 25

horizon = 12

Fig. 9. Disturbance impact of the α-stable PDF on γ.

where ηrect denotes the measure for a rectangular
set-point and ηfilt the same index for a filtered set-point.
Next, the minimum, the maximum, the mean and the
standard deviation of the measure errorΔη are determined
for each index. Results are presented in Table 9.

The comparison of the set-point effect reveals further
issues. We compare the PDF range (scale) parameters,
i.e., Gauss σ and γ of Cauchy and Lévy. We see that the
error for the Gaussian standard deviation is several times
larger than its counterpart for the fat-tail scalings. Even
if we consider higher variability for γ, it would be safer
to use a non-Gaussian distribution. The Lévy α-stable
distribution will be further analyzed as both of them give

Table 9. Measure errors statistical properties.
MIN MAX MEAN STD.DEV

G.σ 8.76 12.10 10.78 0.73
C.γ −6.53 7.04 1.77 3.31
L.α −39.16 28.40 −3.25 9.47
L.γ −10.64 7.62 1.65 3.47
IAE 6.09 12.46 9.98 1.74
MISE 16.75 22.73 20.39 1.31
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similar results.
It is additionally confirmed by the fact that a stable

distribution is better fitted to the control error histograms
than the other ones. Calculation of the fitting quality
square error confirms it for all but one scenarios. This is a
clear effect of the dominating fat tail property. We also
see that the stability parameter has the largest standard
deviation (variability). For safety, this will be also
excluded from further investigations.

A comparison of two integral indexes favors the
IAE. It has a halved mean value with a relatively similar
standard deviation. Thus the MISE index will be also
excluded from the further analysis. Concluding hitherto
evaluations, the statistical parameters γ of the stable
distribution and the index IAE are left for examination.

4.2.9. H2: The impact of the model gain. The
simulation experiments to verify the hypothesis are
organized as follows. We try to answer the question if
selected measures can detect a proper selection of the
GPC controller embedded model gain. Nine different gain
values are tested: 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6.
For each of the gains three different disturbance scenarios
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are tested: no disturbances, Gaussian noise added before
the process and a α-stable disturbance plugged after the
controller.

The real value of model gain is 2.0. Thus, the
plots should be able to find that value. It is very
clearly seen that the curves for each of the measures
have extrema indicating that point. Both γ (Fig. 14)
and the IAE (Fig. 15) correctly detect the value. All
curves show good consistency. Detection of the optimal
controller (the one that uses the exact model) does not
depend on disturbances despite significant disturbance
characteristics. The curves are almost the same.

4.2.10. H3: The impact of the model delay. A similar
analysis is used to verify if selected measures can detect a
proper GPC embedded model delay. Nine different delay
values are tested: 4, 5, 6, 7, 8, 9, 10, 11, 12. Three
different disturbances are tested as in the previous case.

The real value of the model delay is 8.0. It is
expected that plots should enable finding out this value.
Unfortunately, detection is not straightforward. It works
only in one case, i.e., when there are no disturbances in
the loop. It is especially clearly seen for the statistical

index of the stable PDF γ (Fig. 16) and the IAE (Fig. 17).
The curve for the undisturbed loop is in compliance with
our expectation. First the index diminishes up to the
ideal value and than starts to rise in a linear way. We
may clearly point out an optimal value of the delay and
additionally see that the increasing of the model delay
constantly degrades control. However, simultaneously
similar indexes for disturbed loops are just flat. The
measures are constant independently of the model delay.
It seems that loop disturbances (whatever they are) screen
model delay misfitting.

We notice that a proper model delay value is hardly
detected. Especially strange behavior is observed in the
presence of disturbances. All the curves flatten and show
nothing. This effect has to be further addressed.

4.2.11. H4: The impact of model dynamics. The
same methodology is repeated to verify if selected
measures can detect proper GPC embedded model
dynamics. Seven values for time constant T2 are tested:
0.5, 1, 5, 10, 15, 20, 40 with three different disturbances
as previously.

The real value of the model delay is 10. We may
notice two different relations. For the stable PDF γ
(Fig. 18) and the IAE (Fig. 19) we see a clear ability to
show the right value. Strangely, both curves have similar
shapes. The IAE is more exact and γ tends for slight
overestimation.

We see that too small values of dynamics do not
significantly deteriorate control quality (in the sense of
the measure considered). On the contrary, for high
values of T2 the curve rapidly increases suggesting fast
degradation of control quality. This behavior indicates
that underestimated dynamics is not that dangerous for
GPC control in contrast to the opposite case. We also
observe that detection for disturbed loops is better than for
the undisturbed one. This is in contrast to the model delay
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Fig. 14. Dependence of the Lévy distribution γ on the GPC em-
bedded model gain.
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Fig. 16. Dependence of the Lévy distribution γ on the GPC em-
bedded model delay.

impact case. It seems that more excited signals enable
dynamics misfit effect exposure.

4.2.12. H5: The impact of the GPC prediction
horizon. Finally, similar analysis is used to check the
proper GPC prediction horizon detection. Seven different
horizons are tested: 10, 12, 15, 20, 25, 30, 35 with three
different applied disturbances (as previously).

In this case different results are expected. Theoretical
speculations about the predictive controller clearly say
that the horizon should not be too short against the process
delay and the dominant time constant. On the contrary, too
large horizons will only result in larger calculation efforts.

In the figures for γ (Fig. 20) and the IAE (Fig. 21)
we explicitly see that effect. The curve rapidly decreases
up to a value of ∼ 20 and after that it saturates. This
means that there is no reason to increase the GPC horizon
above that. We are unable to improve control performance
behind this value. This effect is detected despite loop
disturbances. A proper horizon value is identified in all
cases.

4 5 6 7 8 9 10 11 12
no 0.034 0.033 0.024 0.007 0.002 0.016 0.067 0.126 0.174
Gauss 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006
Levy 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
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Fig. 17. Dependence of the IAE on the GPC embedded model
delay.

0.5 1 5 10 15 20 40
no 0.000 0.000 0.000 0.000 0.002 0.006 0.059
Gauss 0.012 0.011 0.007 0.006 0.005 0.008 0.059
Levy 0.013 0.013 0.008 0.006 0.007 0.010 0.060

0.00
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TIME CONSTANT T2 in GPC controller

γ of Levy stable distribution

Fig. 18. Dependence of the Lévy distribution γ on the GPC em-
bedded model time constant T2.

5. Conclusions and further research

This paper presents research on alternative, statistical
control performance assessment measures used to identify
the control quality of a SISO loop with the GPC controller.
The analysis has been based on simulation results. All
measures considered have been calculated using the
control error variable. It is the best loop signal available
for the analysis. First, its optimal value is zero, so
any non-zero mean value at once indicates steady-state
error. Any skewness clearly suggests asymmetric control,
possibly due to the process nonlinearities or constraints.
Finally, it should not be subject to any external trends
unlike the process output and no detrending is required.

Various measures have been and analyzed to evaluate
these, which are invariant to the loop external environment
(disturbances, set-point, etc.). This analysis selected two
robust indexes: the scaling parameter of the α-stable
distribution and the integral of the absolute error index.
They are used to verify the ability of the GPC tuning
quality detection. The following controller parameters
have been analyzed: model gain, delay, dynamics (time
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0.5 1 5 10 15 20 40
no 0.001 0.001 0.001 0.002 0.005 0.014 0.083
Gauss 0.012 0.011 0.007 0.006 0.008 0.015 0.083
Levy 0.014 0.013 0.009 0.008 0.010 0.017 0.083

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
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Fig. 19. Dependence of the IAE on the GPC embedded model
time constant T2.

10 12 15 20 25 30 35
no 0.216 0.178 0.024 0.000 0.000 0.000 0.000
Gauss 0.216 0.179 0.022 0.006 0.006 0.006 0.006
Levy 0.216 0.179 0.028 0.008 0.006 0.006 0.007

0.00

0.05

0.10

0.15

0.20

0.25

HORIZON in GPC controller

γ of Levy stable distribution

Fig. 20. Dependence of the Lévy distribution γ on the GPC
horizon.

constant) and controller prediction horizon. Comparison
of the obtained results allows us to present following
conclusions:

(a) Minimum variance indexes (standard and
normalized) fail as their assessment effectiveness is
strongly influenced by loop disturbances.

(b) Verification of the statistical properties of the control
error has shown that though the normal approach is
invariant to disturbances, it is biased by the character
of the set-point signal. The same reason caused
rejection of the stability parameter of the stable
distribution function. Further analysis showed that
scale factor of the α-stable distribution seems to be
the most robust. It is also proven through the control
error histogram. It is strongly fat-tailed, so the
Gaussian distribution fails to catch its characteristics.

(c) Standard indexes have also been evaluated. The
amplitude index failed due to its strong dependence
on loop disturbances. The mean square error and
the absolute error indexes are compared. Following

10 12 15 20 25 30 35
no 0.193 0.166 0.038 0.003 0.002 0.002 0.002
Gauss 0.194 0.167 0.040 0.008 0.006 0.006 0.007
Levy 0.193 0.167 0.043 0.010 0.008 0.008 0.008
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0.20

HORIZON in GPC controller

IAE performance index

Fig. 21. Dependence of the IAE on the GPC horizon.

to literature suggestions, it is shown that the
absolute error index is less invariant to the set-point
characteristics.

(d) Two of selected indexes proved their detection
abilities. The scaling factor and the integral of the
absolute error index are able to detect model gain
and dynamics misfit together with the GPC horizon
selection. They only had problems with the model
delay. In that case any loop disturbance is screening
detection.

(e) The detection ability fails with the model delay
misfit. It worked only in the ideal case of no
disturbances. Any kind of disturbances interferes
with identification and produces flat curves. This
subject requires a detailed analysis.

The proposed approach offers new effective tools
that can be used by practitioners during realization
of industrial projects. The exchange of the standard
deviation with the scaling factor is an easy way to improve
the assessment of control loops equipped with predictive
controllers.

The presented analysis opens new areas for further
investigation. The problem in delay misfit detection
should be reviewed. Statistical properties of the control
error signal also require attention. This analysis should
incorporate not only simulation, but also a review of real
industrial data. Especially the aspect of long-tails needs
to be addressed.
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Schäfer, J. and Cinar, A. (2004). Multivariable MPC system
performance assessment, monitoring, and diagnosis, Jour-
nal of Process Control 14(2): 113–129.

Seborg, D.E., Mellichamp, D.A., Edgar, T.F. and Doyle, F.J.
(2010). Process Dynamics and Control, Wiley, Hoboken,
NJ.

Shapiro, S.S. and Wilk, M.B. (1965). An analysis of
variance test for normality (complete samples), Biometrika
52(3–4): 591–611.

Shinskey, F.G. (2002). Process control: As taught vs. as
practiced, Industrial and Engineering Chemistry Research
41(16): 3745–3750.

Smuts, J.F. and Hussey, A. (2011). Requirements for
successfully implementing and sustaining advanced
control applications, ISA POWID Conference, Research
Triangle Park, NC, USA, pp. 89–105.

Spinner, T., Srinivasan, B. and Rengaswamy, R. (2014).
Data-based automated diagnosis and iterative retuning of
proportional-integral (PI) controllers, Control Engineering
Practice 29: 23–41.

Srinivasan, B. and Rengaswamy, R. (2012). Automatic
oscillation detection and characterization in closed-loop
systems, Control Engineering Practice 20(8): 733–746.

Tatjewski, P. (2007). Advanced Control of Industrial Processes,
Structures and Algorithms, Springer, London.

Tatjewski, P. (2010). Supervisory predictive control and on-line
set-point optimization, International Journal of Applied
Mathematics and Computer Science 20(3): 483–495, DOI:
10.2478/v10006-010-0035-1.

Tatjewski, P. (2014). Disturbance modeling and state estimation
for offset-free predictive control with state-space process
models, International Journal of Applied Mathemat-
ics and Computer Science 24(2): 313–323, DOI:
10.2478/amcs-2014-0023.

http://www.mathworks.com/matlabcentral/
fileexchange/11749-cauchy/


Assessment of the GPC control quality using non-Gaussian statistical measures 307

Thornhill, N.F. and Shah, S.L. (2005). New directions in control
loop assessment and diagnosis, Computing & Control En-
gineering Journal 16(4): 18–22.

Yang, X. and Maciejowski, J.M. (2015). Fault tolerant control
using Gaussian processes and model predictive control, In-
ternational Journal of Applied Mathematics and Computer
Science 25(1): 133–148, DOI: 10.1515/amcs-2015-0010.

Zhuo, H. (2009). Research of performance assessment
and monitoring for multivariate model predictive control
system, 4th International Conference on Computer Science
& Education, Nanning, China, pp. 509–514.
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