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It has always been a priority for all nations to reduce new HIV infections by implementing a comprehensive HIV prevention
programme at a sufficient scale. Recently, the ‘HIV counselling & testing’ (HCT) campaign is gaining public attention,
where HIV patients are identified through screening and immediately sent under a course of antiretroviral treatment (ART),
neglecting the time extent they have been infected. In this article, we study a nonlinear mathematical model for the trans-
mission dynamics of HIV/AIDS system receiving drug treatment along with effective awareness programs through media.
Here, we consider two different circumstances: when treatment is only effective and when both treatment and awareness
are included. The model is analyzed qualitatively using the stability theory of differential equations. The global stabilities
of the equilibria under certain conditions are determined in terms of the model reproduction number. The effects of changes
in some key epidemiological parameters are investigated. Projections are made to predict the long term dynamics of the
disease. The epidemiological implications of such projections on public health planning and management are discussed.
These studies show that the aware populations were less vulnerable to HIV infection than the unaware population.
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1. Introduction

HIV/AIDS continues to be a major public health issue that
disproportionately affects our human society. According
to WHO, there were approximately 34 million people
worldwide living with HIV/AIDS in 2014 and 36.7
million in 2015, meaning that the HIV cases increased by
7.94% globally in one year from the beginning of 2014 to
the end of 2015. WHO also reported that in the same time
period (2014–2015), the global coverage of antiretroviral
therapy ranged from 42% to 46%. Therefore, the fact
is that, although increasing emphasis is being placed and
people are under coverage of antiretroviral treatment, no
indicatory outcomes have been seen in positive prevention
of HIV (UDAIDS/WHO, 2014; UDAIDS/WHO, 2015).
One of the most significant reasons for this failure was
found as the ‘lack of awareness’ among people. Thus,
developing awareness levels among masses, especially in
the high risk infected category, is very important.

The HCT program is a scheme which directly takes
part in both ‘HIV prevention’ (through the knowledge
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of one’s HIV status) and ‘treatment of HIV infection’
(through knowing what to do in case one is positive).
Extensive research has been done based on the disease
dynamics with combinational drug therapy or using
other strategies, but continuing drug treatment along
with simultaneous awareness programs through media
is a novel conception which should be taken in our
consideration. The major question we ask here is: How
does such an initiative influence the course of HIV/AIDS
epidemic? In this paper we develop a mathematical model
that incorporates this intervention with the intention of
assessing the effectiveness of HCT and reduction in HIV
transmission due to treatment initiation.

Mathematical models, their analysis and results have
been used broadly in research into the epidemiology
of HIV/AIDS to improve our understanding of major
contributing factors to the pandemic. Incorporation of
interventions in these models has attracted significant
attention in recent years (Gumel et al., 2006; Roy, 2015;
Nyabadza, 2006; Cai et al., 2009; Elbasha and Gumel,
2006; Chatterjee et al., 2015). The epidemiology of
HIV/AIDS has moved beyond the virus and the risk
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factors associated with its transmission to a more detailed
observation of the mechanisms associated with the spread,
distribution and impact of interventions on the population.
Consequently, the impact of health policies, such as poor
access to care, delayed treatment or the use of screening
for asymptomatic cases can be evaluated.

Chatterjee and Roy (2012) formulated a basic
mathematical model to study the cellular infection for
HIV positive patients within the human immune system.
They showed that the controlled drug therapy in different
cases gives better understanding to control the diseases
progression or to get rid of the disease. In the work of
Tripathi et al. (2007), a model that considers infection
leading to asymptomatic HIV infectives who are later
screened and finally develop AIDS is presented without
interventions. A similar approach was considered earlier
by Hyman et al. (2003) with differential infectivity
and staged progression models. Al-arydah and Smith
(2015) considered a model where they investigated how
testing, educating HIV-positive cases, treatment and drug
resistance affects the HIV epidemic. Kiss et al. (2010)
proposed a model for a totally aware closed population
where the individuals are discriminated according to
their response towards the information available. As a
result, the spread of infection is controlled, leading to a
reduction in the number of individuals becoming infected.
Recently, Roy et al. (2015) formulated a model and
studied the effect of awareness programs through media
on the HIV disease dynamics in a variable population with
immigration.

In this present paper, we analyze an epidemic
model that provides HCT programs and also awareness
related programs through media campaigns in a variable
population with immigration. But these results will fall
into the non-network epidemic models category. We also
investigate a sub-case in Section 3, where it is assumed
that no HCT programs are provided and only ‘screening
& testing’ is available for the whole population. Lastly,
in Section 5, we compare both cases numerically to find
which system is more feasible and which factors have
significant roles to reduce the disease prevalence.

2. Model

2.1. System description. The model describes the
spread of HIV/AIDS in a high risk population. The total
sexually active population at time t, denoted by (N(t)), is
subdivided into six classes that are: unaware susceptibles
(S(t)), aware susceptibles (S+(t)), unaware and untreated
HIV infected individuals (I(t)), diagnosed and treated
infected individuals who have not yet developed to AIDS
(ID(t)), diagnosed and treated individuals with clinical
AIDS (IDA(t)) and aware infected individuals (I+(t)).
Therefore, N = S + S+ + I + ID + IDA + I+. Π is
the constant recruitment rate in the susceptible population

either by birth or immigration and d is the natural death
rate. dI , μI , μA and μ+ are the additional death rates for
I, ID , IDA and I+, respectively. The force of infection λ
is given by

λ = β
I + λiτ ID + λiτaIDA + λ+I+

N
, (1)

where β is the product of the effective contact rate
between susceptible and infected individuals that is
sufficient to result in HIV infection and the transmission
probability of HIV per contact; δτ = δ · τ is the rate at
which people are diagnosed and treated (δ = diagnosis
rate and τ = treatment rate); p is the proportion of
diagnosed individuals who have not yet developed to
AIDS (0 ≤ p ≤ 1); ν is the rate of progression
from HIV diagnosis to the AIDS class. Susceptible
individuals transfer from the unaware to the aware class
at a rate c and infected individuals move to the aware
class at a rate σx∈E , E = {i, iτ, iτa}. Note that we
ignore the interactions between aware individuals and
HIV infected subcases, because it is assumed that once
a person (with or without AIDS) becomes aware, he/she
will avoid being in contact with the infective and does not
get involved in any sexual relations or in any other means
that causes AIDS. But due to the lack of their memory, a
portion will transfer to the unaware class from the aware
population. We assume that θ1 and θ2 are the transfer
rates from aware to unaware for susceptible and infective
cases, respectively. The population movements between
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Fig. 1. Flow diagram of the system (2).
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different compartments are described in Fig. 1.
On the basis of the above assumptions, the dynamics

of the model are governed by the following system of
nonlinear ordinary differential equations:

dS

dt
= Π− (λ+ d+ c)S + θ1S+,

dS+

dt
= cS − (d+ θ1)S+,

dI

dt
= λS − (d+ dI + δτ + σi)I + θ2I+, (2)

dID
dt

= pδτI − (d+ μI + ν + σiτ )ID,

dIDA

dt
= (1− p)δτ I + νID − (d+ μA

+ σiτa)IDA,

dI+
dt

= σiI + σiτ ID + σiτaIDA − (d+ θ2

+ μ+)I+

with the positive initial conditions given by

S(0) = S0, S+(0) = S+0 , I(0) = I0,

ID(0) = ID0 , IDA(0) = IDA0 , I+(0) = I+0 . (3)

Since the above system represents population dynamics, it
is assumed that all the state variables are non-negative at
time t = 0 with I + λiτ ID + λiτaIDA + λ+I+ > 0 and
all other parameters of the model are non-negative.

2.2. Model properties. System (2) will be analyzed in
a domain D ⊂ R

6
+, where all feasible solutions enter the

region

D =

{
(S, S+, I, ID, IDA, I+) ∈ R

6
+ : 0 ≤ N ≤ Π

d

}
. (4)

Theorem 1. The solutions of system (2) with initial
conditions (3) satisfy S(t) > 0, S+(t) > 0, I(t) >
0, ID(t) > 0, IDA(t) > 0, I+(t) > 0 for all t > 0. The
region D ∈ R

6
+ is positively invariant and attracting with

respect to system (2).

Proof. From the first equation of (2) we have

Ṡ ≥ −(λ+ d+ c)S,

giving

S(t) ≥ S(0) exp
(
−

t∫
0

(λ(s) + d+ c) ds
)
> 0.

In a similar fashion we can show that
S+(t), I(t), ID(t), IDA(t) and I+(t) are all strictly
positive. Thus we can conclude that all solutions of
system (2) remain positive for all t > 0.

Now, we will show that all feasible solutions are
uniformly bounded in D. Using the fact that N = S +
S+ + I + ID + IDA + I+, we get

Ṅ = Π− dN − dII − μIID − μAIDA − μ+I+

≤ Π− dN.

Solving this differential equation, we have

0 ≤ N(t) ≤ Π

d
+N(0)e−dt,

where N(0) represents the initial value of the total
population at time t = 0. Thus, as t→ ∞, 0 ≤ N ≤ Π/d.
Therefore, it it clear from the above that Π/d is an upper
bound toN , providedN(0) ≤ Π/d. IfN(0) > Π/d, then
N will decrease to this level. Thus, all feasible solutions
of the system enter or remain in the region D. Further, the
existence, uniqueness and continuation results hold for the
system in this region. �

3. Sub-model analysis

In this section, we will examine the case when no HCT
programs are provided and only screening and testing is
available for the whole population, i.e.,

dS

dt
= Π− (λ + d)S,

dI

dt
= λS − (d+ dI + δτ )I, (5)

dID
dt

= pδτI − (d+ μI + ν)ID,

dIDA

dt
= (1− p)δτI + νID − (d+ μA)IDA,

where λ = β(I + λiτ ID + λiτaIDA)/N and N = S +
I + ID + IDA.

3.1. Disease-free equilibrium (DFE) and the repro-
ductive number. The sub-model (5) has a disease-free
equilibrium, obtained by setting right-hand sides of
system (5) to zero, given by

E0 = (S̄, Ī, ĪD, ĪDA) = (Π/d, 0, 0, 0).

The basic reproductive number can be established by
using the next generation operator (Van den Driessche and
Watmough, 2002). Using this approach, we have

F =

⎡
⎢⎢⎣

0
λS
0
0

⎤
⎥⎥⎦ ,

and

V =

⎡
⎢⎢⎣

(λ+ d)S −Π
(d+ dI + δτ )I

−pδτI + (d+ μI + ν)ID
−(1− p)δτI − νID + (d+ μA)IDA

⎤
⎥⎥⎦ .
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The infected compartments are I , ID and IDA. Thus the
matrices F and V for the new infection terms and the
remaining transfer terms are given by

F =

⎡
⎣ β βλiτ βλiτa

0 0 0
0 0 0

⎤
⎦ ,

V =

⎡
⎣ (d+ dI + δτ ) 0 0

−pδτ (d+ μI + ν) 0
−(1− p)δτ −ν (d+ μA)

⎤
⎦ .

Therefore, the model reproductive number is given by

R0 = ρ(FV −1)

= β

[
1

(d+ dI + δτ )
+

λiτpδτ
(d+ dI + δτ )(d+ μI + ν)

+
δτλiτa(ν + (1− p)(d+ μI))

(d+ dI + δτ )(d+ ν + μI)(d+ μA)

]
,

(6)

the spectral radius of the next generation matrix FV −1.

Thus, we have proved the following theorem on the
local stability of E0.

Theorem 2. The disease-free equilibrium E0 for the
system (5) is locally asymptotically stable wheneverR0 <
1 and unstable otherwise.

Remark 1. It is to be noted that if λiτp(d + dI)(d +
μA) + λiτa[ν(1 − p)(d+ μI)] < d+ μI + ν, then

∂R0

∂δτ
< 0.

This implies that as long as λiτp(d + dI)(d + μA) +
λiτa[ν(1 − p)(d + μI)] < d + μI + ν, antiretroviral
treatment will have a significant input in HIV/AIDS
control.

3.1.1. Global stability of E0. We now use Theorem 1
of Castillo-Chavez et al. (2002) to show the global
stability of the DFE for the system (5), which can be stated
as described in the following theorem.

Theorem 3. Rewrite system (5) in the form

X ′(t) = H(X,Y ),

Y ′(t) = G(X,Y ), G(X,Y ) = 0 (7)

where X = (S) and Y = (I, ID, IDA) with X ∈ R+ de-
noting (its component) the number of uninfected individ-
ual and Y ∈ R

3
+ denoting (its components) the number

of infected individuals. Assume that following conditions
are satisfied:

(H1) For X ′(t) = H(X∗, 0), X∗ is globally

asymptotically stable,

(H2) G(X,Y ) = AY − Ĝ(X,Y ), Ĝ(X,Y ) ≥ 0

for (X,Y ) ∈ D. (8)

Then the fixed pointE0 = (X0, 0), where X0 = (Π/d), is
a globally asymptotically stable point of model system (5),
provided R0 < 1.

We consider H(X, 0) = [Π− dX ],

A =

⎡
⎣ β − (d+ dI + δτ )

pδτ
(1− p)δτ

βλiτ βλiτa
−(d+ μI + ν) 0

ν −(d+ μA)

⎤
⎦ ,

Ĝ(X,Y ) =

⎡
⎣ β(I + λiτ ID + λiτaIDA)(1− S/N)

0
0

⎤
⎦ .

Therefore,
Ĝ(X,Y ) ≥ 0

for all

(X,Y ) ∈
{
(I, ID, IDA) ∈ R

3
+ : N ≤ Π

d

}
.

As a result, the conditions of Theorem 1 of
Castillo-Chavez et al. (2002) are satisfied, and we
can conclude the result in the next theorem.

Theorem 4. The disease-free equilibrium E0 for system
(5) is globally asymptotically stable whenever R0 < 1.

3.2. Endemic equilibrium point (EE). The endemic
equilibrium point of the system (5) is given by
E∗(S∗, I∗, I∗D, I

∗
DA), where

S∗ =
Π

λ∗ + d
,

I∗ =
Πλ∗

(λ∗ + d)(d + dI + δτ )
,

I∗D =
Πρδτλ

∗

(λ∗ + d)(d + dI + δτ )(d+ μI + ν)
,

I∗DA =
Πδτλ

∗[(1− p)(d+ μI + ν)) + pν]

(λ∗ + d)(d + μA)(d+ dI + δτ )(d+ μI + ν)
,

N∗ =
Π[1 + λ∗ψ]
λ∗ + d

,
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with

ψ =
1

(d+ dI + δτ )
+

pδτ
(d+ dI + δτ )(d+ μI + ν)

+
δτ [(1− p)(d+ μI + ν) + pν]

(d+ dI + δτ )(d+ μI + ν)(d + μA)
.

Substituting S∗, I∗, I∗D and I∗DA into the equation
λ = β(I + λiτ ID + λiτaIDA)/N , we obtain a quadratic
polynomial whose roots are λ∗ = 0 and λ∗ =
(R0 − 1)/ψ. The case λ∗ = 0 gives the disease free
equilibrium discussed in Section 3.1.

Note that R0 > 1 implies λ∗ > 0. Thus, we can
conclude the following result.

Theorem 5. Whenever R0 > 1, the disease-free equilib-
rium (DFE) E0 becomes unstable and the endemic equi-
librium point (EE) exists.

3.2.1. Local stability of the EE. The variational
matrix around the endemic equilibrium point E∗ is

J(E∗) =

⎡
⎢⎢⎣

−m11 −m12 −m13 −m14

m21 m22 m23 m24

0 m32 −m33 0
0 m42 m43 −m44

⎤
⎥⎥⎦

with m11 = d + λ∗,m12 = βS∗/N∗,m13 = m23 =
βλiτS

∗/N∗,m14 = m24 = βλiτaS
∗/N∗,m22 =

βS∗/N∗ − (d + dI + δτ ),m32 = pδτ ,m33 =
(d + μI + ν),m42 = (1 − p)δτ ,m43 = ν and
m44 = d+ μA.

The characteristic equation corresponding to the
above matrix is

�4 +A1�
3 +A2�

2 +A3�+A4 = 0,

where

A1 = m11 −m22 +m33 +m44,

A2 = m33m44 +m12m21 − (m22m33 +m22m44

+m23m32 +m24m42),

A3 = m2
21m33 +m2

21m44 +m21m13m32

+m21m14m42 − (m22m33m44 +m23m32m44

+m24m32m43 +m24m42m33),

A4 = m12m21m33m44 +m21m13m32m44

+m21m14m32m43 +m21m14m42m33

− (m11m22m33m44 +m11m23m32m44

+m11m24m32m43 +m11m24m42m33).

Thus, using the Routh–Hurwitz criterion, we can conclude
the following result.

Theorem 6. The system (5) around the endemic equilib-
rium E∗ is locally asymptotically stable if A1 > 0, A3 >
0, A4 > 0 and A1A2A3 > A2

3 +A2
1A4.

3.2.2. Global stability of the EE. To prove the global
stability of the endemic equilibrium, we assume that the
population does not change significantly over time and
the relation Π = dN + dII + μIID + μAIDA holds.
While this may not be true for the case of South Africa
at the present moment, evidence of a declining population
growth due to HIV/AIDS mortality has been observed
(Statistics, 2006) and a stagnation of the population
growth is forecasted. This allows the force of infection to
be driven by a normalized mass action incidence function.
To attain the full characterization of endemic equilibrium,
we construct a Lyapunov function and the results thus
found are stated in the following theorem whose proof is
given in Appendix A.

Theorem 7. The endemic equilibrium E∗ is globally
asymptotically stable if Π = dN + dII +μIID +μAIDA

and R0 > 1.

Therefore, from the above discussion we have found
the existence conditions for both the equilibrium states:
the disease-free state and the endemic state. The value
of the basic reproduction number and the critical rate of
transmission are calculated. We have also proved the
local and global stabilities for the disease-free equilibrium
and the global stability for the endemic equilibrium. In
the next section, we will analyze our complete model
system (2).

4. Full model analysis

4.1. Disease-free equilibrium (Ea
0 ) and the re-

productive ratio (Ra
0 ). System (2) has a disease-free

equilibrium obtained by setting the right-hand sides of the
equations of system (2) to zero, given by

Ea
0 : (S0, S0

+, I
0, I0τ , I

0
DA, I

0
+)

=

(
Π(d + θ1)

d(d+ θ1 + c)
,

Πc

d(d+ θ1 + c)
, 0, 0, 0, 0

)
.

To find the basic reproductive number, the previous
technique is used here (applying Van den Driessche and
Watmough (2002)). The matrices for the new infection
and transition terms are represented by

F1 =

⎡
⎢⎢⎣
β βλiτ βλiτa βλ+
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

V1 =

⎡
⎢⎢⎣

P1 0 0 −θ2
−pδτ P2 0 0

−(1− p)δτ −ν P3 0
−σi −σiτ −σiτa P4

⎤
⎥⎥⎦ ,
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where P1 = (d + dI + δτ + σi), P2 = (d + μI + ν +
σiτ ), P3 = (d+ μA + σiτa), P4 = (d+ μ+ + θ2).

Therefore, the reproductive number, Ra
0 , for model

system (2) is given by

Ra
0 = β

1 + λiτQ1 + λiτaQ2 + λ+Q3

P1 + θ2Q3
, (9)

where

Q1 = pδτ/P2,

Q2 = [(1− p)P2 + νp]δτ/P2P3

Q3 = [σi + σiτQ1 + σiτaQ2]/P4.

This implies the following result.

Theorem 8. The disease-free equilibrium Ea
0 for the

system (2), is locally asymptotically stable whenever

Ra
0 = β

1 + λiτQ1 + λiτaQ2 + λ+Q3

P1 + θ2Q3
< 1

and unstable if

Ra
0 = β

1 + λiτQ1 + λiτaQ2 + λ+Q3

P1 + θ2Q3
> 1.

4.2. Endemic equilibrium point (EE). We now
analyze the endemic equilibrium of model (2). The
endemic equilibrium E∗∗(S∗∗, S∗∗

+ , I∗∗, I∗∗D , I∗∗DA, I
∗∗
+ )

of model (2) can be obtained as follows:

S∗∗ =
Π(d+ θ1)

λ∗∗(d+ θ1) + d(d + c+ θ1)
,

S∗∗
+ =

cS∗∗

d+ θ1
,

I∗∗ =
λ∗∗S∗∗

(P1 + θ2Q3)
, (10)

I∗∗D = Q1I
∗∗,

I∗∗DA = Q2I
∗∗,

I∗∗+ = Q3I
∗∗,

N∗∗ = S∗∗ + S∗∗
+ + I∗∗ + I∗∗D + I∗∗DA + I∗∗+ .

Substituting (10) in (1), we get a quadratic equation
in λ∗∗, given by

λ∗∗
[
λ∗∗ − β(d + θ1 + c)

(d+ θ1)
[
Ra

0 − β (1+Q1+Q2+Q3)
(P1+θ2Q3)

]
]
= 0.

(11)
The case λ∗∗ = 0 yields the disease free equilibrium,
discussed in Section 4.1. For the second solution, Ra

0 >
β(1 + Q1 + Q2 + Q3)/(P1 + θ2Q3) implies λ∗∗ > 0.
Therefore, we can conclude the following result.

Theorem 9. The endemic equilibrium for system (2) ex-
ists if

Ra
0 > max

{
1,
β(1 +Q1 +Q2 +Q3)

(P1 + θ2Q3)

}

.

4.2.1. Local stability of the EE (E∗∗). For the local
stability test of the EE of system (2), we will utilize
centre manifold theory as described by Castillo-Chavez
and Song (2004). In order to apply the centre manifold
theory, we make the following changes of variables:

S = x1, S+ = x2, I = x3, ID = x4,

IDA = x5, I+ = x6,

so that

N =

6∑
n=1

xn. (12)

Thus, system (2) can be written as

dx1
dt

= f1 = Π− (λ+ d+ c)x1 + θ1x2, (13)

dx2
dt

= f2 = cx1 − (d+ θ1)x2, (14)

dx3
dt

= f3 = λx1 − (d+ dI + δτ + σi)x3

+ θ2x6, (15)

dx4
dt

= f4 = pδτx3 − (d+ μI + ν + σiτ )x4,

(16)

dx5
dt

= f5 = (1− p)δτx3 + νx4 − (d+ μA,

+ σiτa)x5 (17)

dx6
dt

= f6 = σix3 + σiτx4 + σiτax5

− (d+ θ2 + μ+)x6, (18)

where

λ =
β

N
(x3 + λiτx4 + λiτax5 + λ+x6).

If β is taken as the bifurcation parameter and we
consider Ra

0 = 1, then for β = β∗∗ the Jacobian matrix
for the DFE has zero as an eigenvalue, with the right
eigenvector

u = (u1, u2, u3, u4, u5, u6)
T

and the left eigenvector

v = (v1, v2, v3, v4, v5, v6)
T ,
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where

u1 = u1 > 0,

u2 =
c

d+ θ1
u1,

u3 = u3 > 0,

u4 =
pδτ

d+ μI + ν + σiτ
u3,

u5 =
(1− p)δτ (d+ μI + ν + σiτ ) + νpδτ

d+ μI + ν + σiτ
u3, (19)

u6 =
σiu3 + σiτu4 + σiτau5

d+ μ+ + θ2
,

and

v1 = v1 > 0,

v2 =
θ1

d+ θ1
v1,

v3 =
d(d+ c+ θ1)

d+ θ1
v1,

v4 =
1

d+ dI + θ2

[
dθ2(d+ c+ θ1)

d+ θ1

+
βλ+(d+ θ1)r

d+ c+ θ1

]
v1, (20)

v5 =
1

d+ μA + σiτa

[
βλiτa(d+ θ1)r

d+ dI + θ1

+
σiτa

d+ dI + θ2

[
dθ2(d+ c+ θ1)

d+ θ1

+
βλ+r

d+ c+ θ1

]]
v1,

v6 =
1

d+ μI + ν + σiτ

[βλiτa(d+ θ1)r

d+ dI + θ1
v1

+ νv5 + σiτ v6

]
,

with

r =
d(d+ c+ θ1)

d+ θ1
− 1.

Moreover, the bifurcation coefficient

b =

6∑
k,i=1

vkui
∂2fk(0, 0)

∂xi∂β∗

= v3[u3 + λiτu4 + λiτau5 + λ+u6]

(21)

is always positive, since u3, u4, u5, u6, v3 > 0. It
follows from the work of Bhunu et al. (2009) that when
β < βcritical, there exists a unique stable disease-free
equilibrium; and when β changes from β < βcritical to β >

βcritical, the disease-free equilibrium becomes unstable
and the endemic equilibrium changes from negative to
positive. This implies that the system (2) is locally
asymptotically stable around the pointE∗∗. Thus we have
the following result.

Theorem 10. For a sufficiently close Ra
0 > 1, the unique

endemic equilibrium (EE), E∗∗, is locally asymptotically
stable.

4.2.2. Global stability of the EE (E∗∗). To prove the
global stability of the endemic equilibrium, we assume
that the population does not change significantly over
the modelling time and the relation Π = dN + dII +
μIID + μAIDA + μ+I+ holds. To attain the full
characterization of endemic equilibrium, we construct
a Lyapunov function and the results thus found are
stated in the following theorem whose proof is given in
Appendix B.

Theorem 11. The endemic equilibrium E∗∗ is globally
asymptotically stable if Π = dN + dII + μIID +
μAIDA + μ+I+ and Ra

0 > 1.

4.3. Model persistence. Uniform persistence of
system (2) implies that there exists a constant ψ >
0 such that any solution starting with initial value
(S0, S0

+, I
0, I0D, I

0
DA, I

0
+) satisfies

lim inf
t→∞ S(t) ≤ ψ,

lim inf
t→∞ S+(t) ≤ ψ,

lim inf
t→∞ I(t) ≤ ψ,

lim inf
t→∞ ID(t) ≤ ψ,

lim inf
t→∞ IDA(t) ≤ ψ,

lim inf
t→∞ I+(t) ≤ ψ. (22)

Now, we construct the Lyapunov function following
Korobeinikov and Maini (2004) as

L(S, S+, I, ID, IDA, I+)

= ω1(S − S∗∗ lnS) + ω2(S+ − S∗∗
+ lnS+)

+ ω3(I − I∗∗ ln I) + ω4(ID − I∗∗D ln ID)

+ ω5(IDA − I∗∗DA ln IDA)

+ ω6(I+ − I∗∗+ ln I+). (23)

The derivative of L along the solution path is given by

L′(S, S+, I, ID, IDA, I+)

= ω1(S − S∗∗)
S′

S

+ ω2(S+ − S∗∗
+ )

S′
+

S+
+ ω3(I − I∗∗)

I ′

I
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+ ω4(ID − I∗∗D )
I ′D
ID

+ ω5(IDA − I∗∗DA)
I ′DA

IDA

+ ω6(I+ − I∗∗+ )
I ′+
I+

≤ −ω1(S − S∗∗)(λ + d+ c)− ω2(S+ − S∗∗
+ )

× (d+ θ1)− ω3(I − I∗∗)(d+ dI + δτ + σi)

− ω4(ID − I∗∗D )(d+ μI + ν + σiτ )

− ω5(IDA − I∗∗DA)(d+ μA + σiτa)

− ω6(IDA − I∗∗DA)(d+ θ2 + μ+),

≤ χ[(S − S∗∗) + (S+ − S∗∗
+ ) + (I − I∗∗)

+ (ID − I∗∗D ) + (IDA − I∗∗DA) + (IDA − I∗∗DA)],

(24)

where χ is the minimum value of ωk, k = 1, . . . , 6.
Therefore, L(S, S+, I, ID, IDA, I+) is a Lyapunov
function, as

L(S, S+, I, ID, IDA, I+) > 0

and
L′(S, S+, I, ID, IDA, I+) = 0

at E∗∗. Since S(t), S+(t), I(t), ID(t), IDA(t), I+(t) ∈
L1 are continuous and bounded with derivatives in L∞,
we get

(S − S∗∗) + (S+ − S∗∗
+ ) + (I − I∗∗) + (ID − I∗∗τ )

+ (IDA − I∗∗DA) + (IDA − I∗∗DA) → 0 (25)

as t→ ∞ (Barbalat, 1959). Thus, from (24) we get

L′(S, S+, I, ID, IDA, I+) ≤ 0

and we conclude from the Lyapunov–LaSalle properties
that system (2) uniformly persists.

5. Numerical simulations

To study the dynamical behaviours of models (2)
and (5), we perform numerical computations with the
initial values S(0) = 150, S+(0) = 15, I(0) =
50, ID(0) = 30, IDA(0) = 20 and I+(0) = 10.
The set of parameter values is given in Table 1.
These values are collected from different peer reviewed
international journals, and the rest are hypothetical
parameters relevant to HIV/AIDS. This set of parameter
values is constant throughout the numerical experiments
except the value of δτ and σx∈E , E = {i, iτ, iτa}.
The modifying transmission parameters are given in
Table 1, in which the values represent λjβ for j ∈
{iτ, iτa,+}. Numerical simulations have been performed
using MATLAB (version 7.6.0). We will start by
investigating the sensitivity of R0 and Ra

0 for each
parameter.

5.1. Sensitivity analysis. In this section, we use
sensitivity analysis to investigate the impact of various
intervention measures. By this method, we can identify
the parameters that have high impact on the basic
reproductive ratio, as well as on the HIV transmission.
Here we derive the sensitivity index by using partial rank
correlation coefficients (PRCCs) of the basic reproductive
ratio with respect to the parameters. According to
Abiodun et al. (2013), the normalized forward sensitivity
index of R0 with respect to a parameter m is defined as
follows:

ΠR0
m =

∂R0

∂m
× m

R0
. (26)

In Fig. 2, PRCCs are plotted for each input parameter
for the model system (5). This demonstrates that R0 is
most negatively sensitive to the diagnosis and treatment
rate, δτ , meaning that if we increase the diagnosis and
treatment rate, that can reduce new cases and HIV
prevalence. In Fig. 3, R0 is drawn as a function of δ and
τ , which describes the significant dependence of R0 on
these parameters.

Figure 4(a) exhibits that δτ and θ2 are two parameters
that are negatively correlated with the reproductive
number Ra

0 for system (2). A sharp decrease can be seen
in the values of Ra

0 with variations in δτ and θ2 (see
Fig. 4(b)). This indicates that the model with treatment

Table 1. List of parameters used for the systems (2) and (5).
Parameter Assigned value Reference

(day−1)

Π 12 Samanta et al. (2014),
Misra et al. (2011)

β 0.0025 Samanta et al. (2014),
Roy et al. (2015)

λiτ 0.0019 Smith et al. (2010)
λiτa 0.0015 Smith et al. (2010)
λ+ 0.0021 Assumed
d 0.005 Hove et al. (2009)
dI 0.007 Hove et al. (2009)
μI 4.713×10−4 Roy et al. (2015)
μA 8.712×10−4 Roy et al. (2015)
μ+ 0.007 Roy et al. (2015)
ν 3.178×10−4 Roy et al. (2015)
δτ 8.329 ×10−4 Roy et al. (2015)
c 0.00125 Roy et al. (2015)

Misra et al. (2011)
p 0.65 Assumed
σi 0.0015 Roy et al. (2015)
σiτ 0.0022 Assumed
σiτa 0.0017 Assumed
θ1 0.0052 Roy et al. (2015)

Misra et al. (2011)
θ2 0.0015 Roy et al. (2015)



A comparative study between two systems with and without awareness in controlling HIV/AIDS 345

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

β d d
I δ

τ
λ

i τ ρ μ
i

ν λ
i τ a

μ
A

Fig. 2. Partial rank correlation coefficients indicate that the rate
at which people are diagnosed and treated (δτ = δ · τ )
is most sensitive to R0. This means that the value of R0

will decrease when δ and τ are increased.

Fig. 3. Graph of R0 as a function of δ and τ .

and awareness is more feasible and has a more significant
result than the model system without awareness.

5.2. Numerical results. We vary the population
densities with respect to time (see Fig. 5), keeping all
parameters fixed as same as in Table 1 except the values
of σi, σiτ , σiτa, θ1 and θ2. To show the advantage
of awareness on the disease transmission that changes
the epidemic trend, we vary the population densities
with and without awareness in Fig. 5. Here, solid
trajectories indicate the changes in population densities
when treatment is only effective and dotted trajectories
indicate the case when both treatment and awareness
are included. Figure 5 indicates that after 500 days,
the susceptible population S(t) is increased by 20.85%,
while the infected population (I(t)), the screened but
non-clinical AIDS population (ID(t)) and the population
screened with clinical AIDS (IDA(t)) are decreased by
11.43%, 11.89%, 11.99%, respectively. It is worth
mentioning here that as we increase the values of σi, σiτ
and σiτa, the percentage of all infected classes reduces.
Since Ra

0 is a function of σi, σiτ and σiτa, the disease
transmission rate can be controlled by varying these

parameter values. However, the disease cannot be
eradicated from the system, since the proper isolation of
the disease transmission, i.e., β = 0 from the infectious
disease and/or the permanent immunity are not possible.

In Fig. 6, we plot the total susceptible population
along the horizontal axis and the total infected population
along the vertical axis for system (2). This figure shows
the global stability around the endemic equilibrium point.
For β = 0.00285 and other fixed values of parameters
as listed in Table 1, we obtain the interior equilibrium
E∗∗(182, 62). We choose different initial values

(165, 64), (170, 55), (175, 68), (180, 54),

(185, 62), (195, 54), (200, 60)

and draw the phase portrait of system (2). We observed
that all trajectories initiated from different initial values
converge to the endemic equilibrium point E∗∗(182, 62),
which clearly indicates that the endemic equilibrium is
globally asymptotically stable.

6. Discussion and conclusions

In this article, we deal with a non-linear mathematical
model that incorporates the effect of drug-dosing along
with the influence of media, where we measure the
success of knowledge by its ability to reduce the risk of
infection. We compare our model with a sub-model where
it is assumed that no awareness programs are provided
and only screening & testing is available for the whole
population. We have studied the impact of awareness
as a novel intervention for HIV/AIDS control. In the
modelling process, it is assumed that media campaigns
create awareness regarding personal protection as well
as control the disease spread. As a result, behavioural
changes (transfer from unaware to aware) occur within
the human population, which results in the formation of
a new class, i.e., the aware class. Individuals of this class
not only protect themselves from the infection, but being
aware they also take part in reducing HIV/AIDS by taking
precautions.

Our analytical study shows that the basic
reproduction number,R0, which determines the existence
of the disease, contains awareness related parameters.
As a result, the persistence of the disease depends on the
rate of public consciousness. Awareness among people
reduces the infection rate, shortens the rate of disease
transmission and cuts down the size of the disease.
Numerical simulations, which are very realistic, add an
extra dimension to our analytic conclusions. Our results
show that in presence of awareness in the population
makes the disease transmission difficult and shorter. If
awareness is provided along with treatment, then the
HCT program will control the disease more rapidly. As a
result, the best strategy is treating HIV/AIDS with proper
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implementation of awareness programs through media.
But in a practical sense, the disease remains endemic,
because low education, ignorance in taking precautions,
social problems, immigration, etc. play negative roles
in the system. We discuss a model that captures some
important features and we believe these findings may help
in controlling AIDS through awareness.
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Appendix A

Proof of Theorem 7
To study the global stability of the endemic equilibrium,
we construct the Lyapunov function

V =
(
S − S∗ − S∗ ln

S

S∗
)
+ φ1

(
I − I∗ − I∗ ln

I

I∗
)

+ φ2

(
ID − I∗D − I∗D ln

ID
I∗D

)
+ φ3

(
IDA − I∗DA

− I∗DA ln
IDA

I∗DA

)
. (A1)

Its derivative is

V ′ =
(
1− S∗

S

)
dS

dt
+ φ1

(
1− I∗

I

)
dI

dt

+ φ2

(
1− I∗D

ID

)
dID
dt

+ φ3

(
1− I∗DA

IDA

)
dIDA

dt
.

(A2)

At the endemic equilibrium point, we have

Π = (λ∗ + d)S∗,

d+ dI + δτ =
λ∗S∗

I∗
,

d+ μI + ν =
pδτI

∗

I∗D
,

d+ μA =
(1 − p)δτI

∗

I∗DA

+
νI∗D
I∗DA

.

Now we let
S

S∗ = w,
I

I∗
= x,

ID
I∗D

= y
IDA

I∗DA

= z

(A3)

and evaluate the components of the derivative of the
Lyapunov function so that(

1− S∗

S

)
dS

dt

= −dS
∗

w
(1− w)2 + ς

(
1− 1

w

)
(1− wx)S∗I∗

+ ςλiτ

(
1− 1

w

)
(1− wy)S∗I∗D

+ ςλiτa

(
1− 1

w

)
(1 − wz), (A4)

φ1

(
1− I∗

I

)
dI

dt

= φ1ς
(
1− 1

x

)
(wx− x)S∗I∗

+ φ1ςλiτ

(
1− 1

x

)
(wy − x)S∗I∗D

+ φ1ςλiτa

(
1− 1

x

)
(wz − x)S∗I∗DA, (A5)

φ2

(
1− I∗D

ID

)
dID
dt

= φ2pδτ

(
1− 1

y

)
(x− y)I∗, (A6)

φ3

(
1− I∗DA

IDA

)
dIDA

dt

= φ3(1− p)δτ

(
1− 1

z

)

(x− z)I∗ + φ3ν
(
1− 1

z

)
(y − z)I∗. (A7)

http://www.statssa.gov.za/
publications
http://www.who.int/hiv/en/
http://www.who.int/hiv/en/
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Substituting (A5)–(A7) in (A2) we get

dV

dt
= −dS

∗

w
(1 − w)2 +G(w, x, y, z), (A8)

We choose

φ1 = 1, φ2 =
λiτ ςS

∗I∗D
pδτ I∗

,

φ3 =
λiτaςS

∗I∗DA

(1 − p)δτI∗ + νI∗D
so that the expression for G(w, x, y, z) in (A8) becomes

G(w, x, y, z)

= ςS∗I∗
(
2− 1

w
− w

)
+ ςλiτS

∗I∗D

(
2− 1

w
− wy

x

)

+ ςλiτaS
∗I∗DA

(
2− 1

w
− wz

x

)

− xδτ

[
φ2p

I∗

y
+ φ3(1 − p)

I∗

z

]

− y
φ3νI

∗
D

z
− zφ3[(1− p)δτI

∗ + νI∗D]. (A9)

Note that the terms (2 − 1/w − w), (2 − 1/w − wy/x)
and (2 − 1/w − wz/x) are less than or equal to zero
by the arithmetic mean-geometric mean inequality. This
implies that G ≤ 0 with equality only if S = S∗, I =
I∗, ID = I∗D and IDA = I∗DA. Therefore, dV/dt ≤ 0 and
by LaSalle’s extension, we can conclude that the point is
globally asymptotically stable.

Appendix B

Proof of Theorem 11

We will use same approach as in Appendix A. To study
the global stability of the endemic equilibrium for the
system (2), we use the Lyapunov function

Va =
(
S − S∗ − S∗ ln

S

S∗
)
+
(
S+ − S∗

+ − S∗
+ ln

S+

S∗
+

)

+ ψ1

(
I − I∗ − I∗ ln

I

I∗
)

+ ψ2

(
ID − I∗D − I∗D ln

ID
I∗D

)

+ ψ3

(
IDA − I∗DA − I∗DA ln

IDA

I∗DA

)

+ ψ4

(
I+ − I∗+ − I∗+ ln

I+
I∗+

)
.

(B1)

We set
S+

S∗
+

= u,
I+
I∗+

= v

and the corresponding derivative of the Lyapunov function
is given as

V ′
a =

(
1− S∗

S

)
dS

dt
+

(
1− S∗

+

S+

)
dS+

dt

+ ψ1

(
1− I∗

I

)
dI

dt
+ ψ2

(
1− I∗D

ID

)
dID
dt

+ ψ3

(
1− I∗DA

IDA

)
dIDA

dt
+ ψ4

(
1− I∗+

I+

)
dI+
dt

,

(B2)

where(
1− S∗

S

)
dS

dt

= −(d+ c)
S∗

w
(1− w)2 − θ1

S∗
+

u
(1− u)2

+ ςS∗I∗
(
1− 1

w

)
(1− wx)

+ ςλiτS
∗I∗D

(
1− 1

w

)
(1 − wy)

+ ςλiτaS
∗I∗DA

(
1− 1

w

)
(1 − wz)

+ ςλ+S
∗I∗+(1−

1

w
)(1− wu), (B3)(

1− S∗
+

S+

)
dS+

dt
= cS∗

(
1− 1

u

)
(w − u), (B4)

ψ1

(
1− I∗

I

)
dI

dt

= ψ1θ1
I∗+
v
(1− v)2

+ ψ1

(
1− 1

x

)
[ς(wx − x)S∗I∗

+ ςλiτ (wy − x)S∗I∗D + ςλiτa(wz − x)S∗I∗DA

+ ςλ+(wu − x)S∗I∗+], (B5)

ψ2

(
1− I∗D

ID

)
dID
dt

= φ2pδτ

(
1− 1

y

)
(x− y)I∗,

(B6)

ψ3

(
1− I∗DA

IDA

)
dIDA

dt

= ψ3(1− p)δτ

(
1− 1

z

)
(x− z)I∗

+ ψ3ν(1 − 1

z
)(y − z)I∗, (B7)

ψ4

(
1− I∗+

I+

)
dI+
dt

= ψ4

(
1− 1

v

)
[σi(x − v)I∗ + σiτ (y − v)I∗D

+ σiτa(z − v)IDA]. (B8)
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Now, substituting (B3)–(B8) in (B2), we get

V ′
a = −(d+ c)

S∗

w
(1− w)2 − θ1

S∗
+

u
(1− u)2

+ ψ1θ1
I∗+
v
(1− v)2 +Ga(w, x, y, z, u, v), (B9)

where

Ga(w, x, y, z, u, v)

= G1a(w, x, y, z, u, v) +G2a(w, x, y, z, u, v).
(B10)

We choose ψ1 = 1 and the coefficients ψ2, ψ3 and
ψ4 can be obtained from the following expressions:

ψ3νI
∗
D + ψ4σiτ I

∗
D − ψ2ρδτI

∗ = 0,

ψ4σiτaI
∗
DA − [(1− p)δτ I

∗ + νI∗D]ψ3 = 0,

ψ2ρδτ I
∗ + ψ3(1− p)δτI

∗ + ψ4σiI
∗

− ςλiτS
∗I∗D − ςλiτaS

∗I∗DA − ςλ+S
∗I∗+ = 0,

so that

ψ2 =
1

ρδτI∗

(
νσiτaI

∗
DAI

∗
D

(1− p)δτ I∗ + νI∗D
+ σiτ I

∗
D

)
ψ4,

ψ3 =
σiτaI

∗
DA

(1− p)δτI∗ + νI∗D
ψ4,

ψ4 =
ς(λiτS

∗I∗D + λiτaS
∗I∗DA + λ+S

∗I∗+)
νσiτaI∗

DAI∗
D

(1−p)δτI∗+νI∗
D
+

(1−p)δτσiτaI∗
DAI∗

(1−p)δτ I∗+νI∗
D+σiI∗ + σiτ I∗D

.

It is important to note that

G1a(w, x, y, z, u, v)

= 2ς [S∗I∗ + λiτS
∗I∗D + λiτaS

∗I∗DA + λ+S
∗I∗+]

+ [ψ2ρδτ + ψ3(1− p)δτ + ψ4σi]I
∗

+ (ψ3ν + ψ4σiτ )I
∗
D + ψ4σiτaI

∗
DA + ςλ+S

∗I∗+u
+ cS∗w + cS∗ + ςλiτS

∗I∗y + ςλiτaS
∗I∗DAz,

G2a(w, x, y, z, u, v)

= −ςS∗I∗
(
w +

1

w

)
− ςλiτS

∗I∗D

(
1

w
+
wy

x

)

− ςλiτaS
∗I∗DA

(
1

w
+
wz

x

)
− ςλ+S

∗I∗+

(
1

w
+
wu

x

)

− cS∗
(
u+

w

u

)
−
(
ψ2ρδτ

x

y
+ ψ3(1− p)δτI

∗x
z

+ ψ4σiI
∗x
v

)
I∗ −

(
ψ3ν

y

z
+ ψ4σiτ

y

v

)
I∗D

− ψ4σiτa
z

v
I∗DA − ψ4(σiI

∗ + σiτ I
∗
D + σiτaI

∗
DA)v.

Substituting the values of ψ2, ψ3 and ψ4 in
Ga(w, x, y, z, u, v), we get

Ga(w, x, y, z, u, v)

= ςS∗I∗
(
2− w − 1

w

)
+ ςλiτS

∗I∗D

(
2− 1

w
− wy

x

)

+ ςλiτaS
∗I∗DA

(
2− 1

w
− wz

x

)

+ ςλ+S
∗I∗+

(
2− 1

w
− wu

x

)

+G−(w, x, y, z, u, v),

where G−(w, x, y, z, u, v) < 0. Therefore,
Ga(w, x, y, z, u, v) is less than or equal to zero
by the arithmetic mean-geometric mean inequality,
which implies Ga ≤ 0 with equality only if
S = S∗, S+ = S∗

+, I = I∗, ID = I∗D , IDA = I∗DA and
I+ = I∗+. Hence we prove that the endemic equilibrium
point for the system (2) is globally asymptotically stable
by LaSalle’s extension.
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