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Equilibrium analysis in autonomous evolutionary models is of central importance for developing long term treatments. This
task typically includes checks on the existence and stability of some equilibria. Prior to touching on the stability, one often
attempts to determine the existence where the basic reproductive number R0 plays a critical role as a threshold parameter.
When analyzing a nontrivial equilibrium (e.g., an endemic, boundary, or coexistence equilibrium) where R0 is explicit,
we usually come across a typical result: if R0 > 1, then a nontrivial equilibrium exists in the biological sense. However,
for more sophisticated models, R0 can be too complicated to be revealed in terms of the involving parameters; the task of
relating the formulation of a nontrivial equilibrium toR0 thus becomes intractable. This paper shows how to mitigate such
a problem with the aid of functional analysis, adopting the framework of a nonlinear eigenvalue problem. An equilibrium
equation is first to be transformed into a canonical equation in a lower dimension, and then the existence is confirmed under
several conditions. Three models are tested showing the applicability of this approach.
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1. Introduction

Guaranteeing the existence of a nontrivial equilibrium in
relation to the basic reproductive number R0, especially
within small-sized autonomous models, is easy since R0

is explicit. For example, the basic reproductive number of
the following SIR model:

Ṡ = μ(N − S)− β

N
SI + κR,

İ =
β

N
SI − (γ + μ)I,

Ṙ = γI − (κ+ μ)R,

where N := S + I + R is constant, is given by R0 = β/
(γ + μ). How we arrive at this formula will be explained
shortly. Simple algebraic substitutions reveal the so-called
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endemic equilibrium,(
N

R0
,
(κ+ μ)(R0 − 1)N

(γ + κ+ μ)R0
,

γ(R0 − 1)N

(γ + κ+ μ)R0

)
,

whose existence in the biological sense is confirmed if
R0 > 1.

Now let us ask the following questions. What
happens if the model is extended to become so
complicated, e.g., with more dimension or variables, that
R0 can no longer be represented explicitly in terms of
parameters? Does the existence still hold for R0 > 1? If
so, does the corresponding nontrivial equilibrium preserve
positivity in all components? Does the existence always
hold for every autonomous model? Relevant samples
related to these questions that can be of consideration
are, e.g., epidemic models including many patches (Arino
et al., 2005) and many virus strains (Aguiar et al., 2013).

In this communication, we present several materials
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from functional analysis that help boost the work on
relating the existence of a nontrivial equilibrium to the
basic reproductive number in some autonomous models.
In an abstract setting, the corresponding models of interest
would have to be of the following fashion:

ẋ(t) = f(x(t); ξ), t ∈ R+, x(0) = x0 ∈ Ω. (1)

In detail, x : [0,∞) → R
n, f : Rn → R

n are the state
and the autonomous vector field of the system (1), ξ is
the vector of involved parameters, defined on a compact
subset of Rq

+, and x0 is the initial condition. The set Ω ⊆
R

n is a positively invariant manifold with respect to the
semi-flow generated from the system (1) for a given f .

The first important key determinant towards
successful implementation of the current framework is
the ability to perform some substitutions and Taylor
expansions such that the equilibrium equation

f(x; ξ) = 0

transforms into

(id− λL)xI + ω(xI , λ) = 0.

The resulting new form

(id− λL)xI + ω(xI , λ) = 0 (2)

is what we will repeatedly mention throughout the text as
the canonical equation. The rationale behind considering
(2) as such a canonic is the fact that this type of
equation has appeared in some studies of nonlinear
eigenvalue problems, including those we cite in this paper
(Rabinowitz, 1971; 1977, Ma and Wang, 2005; Cushing,
1998). Here, xI ∈ R

p denotes another state variable
of size p (where p ≤ n), considered to be a collection
of chosen elements of x. In epidemic models, this state
variable xI can be seen as a collection of the exposed
and infective compartments. As far as (2) is concerned,
L : Rp → R

p represents a p×p matrix whose components
are of the involving parameters ξ and ω : Rp × R → R

p

represents a vector-valued function of size p of the state
variable xI and ξ. The new parameter λ : E → R :
ξ �→ λ(ξ) is a continuous function of the parameters. The
direct relationship between λ and ξ suggests to leave the
arguments of ω as defined in (2); meanwhile it is assumed
that

(A1) ‖ω(xI , λ)‖ = O (‖xI‖2
)

as xI → 0

uniformly for all λ in some compact subsets of R. Since
we are now working on finite dimensional Euclidean
spaces, the corresponding norm to use is just the 2–norm,
unless it is stated otherwise.

Since xI = 0 solves the canonical equation (2), we
call the tuples (0, λ) for λ ∈ R trivial solutions. Among

infinitely many trivial solutions, we are interested in a
point (0, λ0) (see Definition 1) from which the canonical
equation (2) bifurcates a nontrivial solution (xI , λ), where
xI 	= 0. In relation to the main objective in this paper, our
aim is to show that by first identifying the point (0, λ0)
in a close relation to the matrix L, conditions that certify
the existence of a nontrivial (positive) solution of the
canonical equation can be imposed. How R0 then comes
into play is inferred when R0 is the largest eigenvalue of
L, which we will discuss later. Together with some other
apparent conditions, these give us the scope within which
this approach can work.

We shall add several notes regarding the limitations
of the current approach. First and foremost, this approach
is meant for ODE-based autonomous models, even though
it may also be valid for non-autonomous models with
periodic parameters (see, e.g., Wijaya et al., 2016). The
validity may be an instant check due to the similar
behavior of equilibria in an autonomous model and
periodic solutions in its non-autonomous counterpart, but
we would rather leave it as an open research problem.
Second, this approach is highly dependent on the
applicability of the next generation method to determine
the basic reproductive number (van den Driessche and
Watmough, 2002). Therefore, this approach may not
even work for simple models—classical examples are
the growth model, the logistic model, and the standard
Lotka–Volterra model. We would, however, refer the
reader to the original paper by van den Driessche and
Watmough (2002) for some epidemic models and to
Wijaya et al. (2016; 2014) for a population dynamic
model amenable to the next generation method.

We shall also mention that since this approach
is concerned with the existence analysis, which never
broaches the stability issue, it does not consider unwanted
behavior of the model system (1) such as if it admits
a solution that ceases to exist on a subset of [0,∞) or
if it admits non-unique solutions. In a nutshell, the
only focus of this approach is to guarantee the existence
of a nontrivial solution of a given system of nonlinear
equations.

2. Background

2.1. Basic reproductive number. In population
dynamic models, the basic reproductive numberR0, often
referred to as the basic offspring number, determines
not only the local stability of the extinction equilib-
rium, but also the existence of the coexistence equilib-
rium (Cushing, 1998; van den Driessche and Watmough,
2002; Wijaya et al., 2014; 2016). The literature reveals
a crowd-pleasing definition of the basic reproductive
number, when considering models for a single species,
as the expected number of newborns over the course
of that species’s average lifetime period. In disease
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epidemics, the definition of the basic reproductive
number can be extended as the number of infected
individuals within an average illness period after a single
infective individual interacts with its own in a completely
susceptible population. The threshold value for this
number is 1, where if R0 < 1, then the population of
individuals (or the population of infective individuals, in
the case of epidemics) often evolves towards extinction,
i.e., the origin. If R0 > 1, then the population of
individuals (resp., infective individuals) evolves towards
some nonzero constant vector.

In epidemiology, an equilibrium whose infective
compartments are zero is known as a disease-free equi-
librium, whereas that whose infective compartments
are nonnegative (positive) is known as a boundary
equilibrium (resp., an endemic equilibrium). For
autonomous models where the sub-population of infective
compartments and that of healthy compartments are
separable, the basic reproductive number can be derived
via the next generation method as proposed by van den
Driessche and Watmough (2002). The formulation
requires computation of the spectral radius of the next gen-
eration matrix, whose dimension is equal to the number
of compartments in the infective sub-population. In
most cases the matrix is not nilpotent (though sparse)
making computation of the spectral radius nontrivial.
It becomes even less possible to reveal the explicit
formulation of R0 in terms of parameters if the number
of infective compartments is extended to an arbitrarily
high value. Technical problems do not occur until one
relates the existence of a nontrivial equilibrium to the
basic reproductive number R0.

Let us recall the definition of R0 based on the next
generation method by first subdividing the state x into
two sub-populations: the sub-population of individuals
bringing the key characteristics of interest (growth factor
or disease) xI and the rest xU . In population dynamic
models, xI mostly serves as the whole state variables,
leaving out xU nil. In epidemic models, xI would
cover all the infective compartments (and in some
models with the exposed compartments) while xU is the
collection of susceptible and recovered compartments.
The disease-free equilibrium, denoted by x0, is nothing
but any equilibrium of (1) where xI = 0. Let F (x) and
V (x) be respectively the vector-valued functions of new
infection and of the difference between the outflows and
inflows taken from the framework of the next generation
method (see the work of van den Driessche and Watmough
(2002) for details), with which one must have

ẋI = F (x)− V (x). (3)

Denote by F := ∂xF |x=x0 and V := ∂xV |x=x0 the
derivatives of those functions evaluated at the disease-free
equilibrium (or the origin, in the case for population
dynamic models). Thus, the next generation matrix is

defined in terms of the two matrices:

G := FV−1. (4)

Concurrently, the basic reproductive number is defined as
the spectral radius (denoted by ρ(·)) of the next generation
matrix G:

R0 := max {|λ| : det(G − λ id) = 0} . (5)

Another formula for the spectral radius is due to Gelfand
(1941), and it is given by

R0 = lim
m→∞‖Gm‖1/m. (6)

Note that we will use the latter formulation for some
inequality problems in Section 5.

2.2. Steps towards finding the point of interest.

2.2.1. Implicit function theorem. The basic tool with
which we will continue is the implicit function theorem.
It basically concerns solvability of the implicit equation

g(x, y) = 0 (7)

in some neighbourhood of a point (x0, y0). Details on the
problem structure are given as follows.

Theorem 1. Let X ,Y,Z be Banach spaces. Let g : D →
Z be some function such that g(x0, y0) = 0 for an open
set D ⊂ X × Y and a tuple (x0, y0) ∈ D. Additionally,
suppose that g ∈ Cm(D) for any 1 ≤ m ≤ ∞, and the
derivative ∂yg(x0, y0) has a bounded inverse. Then, there
exists a neighbourhoodUy(y0) ⊂ Y and a neighbourhood
Ux(x0) ⊂ X such that x ∈ Ux(x0) admits a unique solu-
tion of (7) given by y = Φ(x) ∈ Uy(y0), where Φ is also
of Cm(Ux(x0)).

We shall clarify this with the argument that the
notation ∂(·) is used as the (Fréchet) derivative of a
function, in contrast to the boundary of a set ∂(·). We
would also use the overline notation for the closure Q =
Q∪ ∂Q.

The forthcoming discussion goes more into details
of the process of finding a point (0, λ0) in light of the
following definition.

Definition 1. (Ma and Wang, 2005) The canonical
equation (2) is said to bifurcate from (0, λ0) for a fixed
λ0 ∈ R a nontrivial solution (xI , λ) if there exists

a sequence of solutions
(
x(j)
I , λ(j)

)
j∈N

of the equation

where not all x(j)
I are zero such that limj→∞ x(j)

I = 0
and limj→∞ λ(j) = λ0.
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Clearly, direct computation of the sequence of
solutions (branching solutions) would tend to answer
the questions in this research, while this is considered
a hard task in general. Our aim is to identify the
closed form of λ0 (how it is related with the canonical
equation) and confirm the existence of branching solutions
around (0, λ0) with the aid of topological degree
theory (Krasnoselskii and Zabreiko, 1984; Ma and Wang,
2005; Nirenberg, 2001). Note that due to the nature of the
canonical equation (2), we only consider degree theory for
the finite dimensional case.

2.2.2. Brouwer degree. We borrow some notation and
definitions from the work of Ma and Wang (2005). Let
us fold the left-hand side of the canonical equation into
a function g(xI) := xI − λLxI + ω(xI , λ), where it is
now independent of λ. Let Q ⊆ R

p be an open set and
g : Q → R

p, where p ≤ n. In conjunction with (A1),
it is easy to see that g is a C∞ function. Let s ∈ R

p be
a point such that s /∈ g(∂Q). A point x∗

I is called regu-
lar if ∂xIg(x

∗
I) is invertible, otherwise it is called critical.

The aforementioned point s is called a regular value if
either g−1(s) = ∅ or all points xI ∈ g−1(s) are regular,
otherwise it is called a critical value. The Brouwer degree
of the function g in an open set Q with respect to a point
s, denoted by a map B : C1(Q;Rp) × Q × R

p → Z, is
defined as in the work of Ma and Wang (2005) by

B(g,Q, s)

:=

⎧⎪⎪⎨
⎪⎪⎩

∑
xsI∈g−1(s)

sign det(∂xI g(x
s
I)), s regular value,

B(g,Q, s∗), s critical value,

s∗ regular value,

where, due to the latter definition, ‖s − s∗‖ <
d(s, g(∂Q)). Note that d(s, A) = infa∈A‖s − a‖ is the
standard topological distance between a point and a set.
Let x∗

I be an isolated singular value of g, i.e., g(x∗I) = 0,
and suppose that the there exists δ > 0 such that no point
in the open ball B(x∗

I ; δ) makes g zero. The so-called in-
dex of g at x∗I is defined as

ind(g, x∗I) = B(g,U(x∗
I), 0), (8)

where U(x∗
I) is a neighborhood of x∗

I . Moreover, we have
previously known that xI = 0 is a singular point of g and it
is indeed isolated with the aid of (A1). Then, the following
theorem is concerned with the index of g at 0. Let us
first denote by α(μ), σ(A) the algebraic multiplicity of
an eigenvalue μ and the spectrum of eigenvalues of A,
respectively.

Theorem 2. (Krasnoselskii and Zabreiko, 1984; Ma and
Wang, 2005) Let us rewrite g = id −H while 0 is a sin-
gular value of g. If 1 is not an eigenvalue of ∂xIH , then 0

is isolated and

ind(g, 0) = (−1)γ ,

where
γ =

∑
i:μi∈σ(∂xIH(0))∩(0,1)

α(μi).

If the index of g changes in the value for which
λ changes around a λ0, then (0, λ0) is a point from
which the canonical equation (2) bifurcates a nontrivial
solution (cf. Ma and Wang, 2005). In what follows we
will discover the closed form of λ0 by investigating the
index of a function h that has a lower dimension than g, for
which finding nontrivial solutions of h = 0 is equivalent
to finding those of the canonical equation g = 0.

2.2.3. Lyapunov–Schmidt reduction. In an adapta-
tion to Theorem 2 we have to first impose the following
assumptions, where the further result will also settle the
explanation:

(B1) The inverse λ−1
0 is an eigenvalue of the matrix L of

the canonical equation.

(B2) The algebraic multiplicity of λ−1
0 is odd.

(B3) λ−1 is not an eigenvalue of L.

Here we will see that (0, λ0) is a such a point
in Definition 1 with the aid of the Lyapunov–Schmidt
reduction technique (Golubitsky and Schaeffer, 1985;
Rabinowitz, 1977). Let us decompose R

p = Y ⊕ Y ⊥,
where Y := ker (id− λ0L) and therefore dim(Y ) =
α(λ−1

0 ) < p, Y ⊥ denotes the orthogonal complement
of Y in R

p. Now any xI ∈ R
p can be represented as

xI = yI + y′I , where yI ∈ Y and y′
I ∈ Y ⊥. Let us

introduce two canonical projections P : R
p → Y and

P⊥ := id−P : Rp → Y ⊥. Observe that for any yI ∈ Y ,
LyI = λ−1

0 yI . This is evidence that we can split the
canonical equation (2) into two parts:

(id− λλ−1
0 )yI + Pω(yI + y′

I , λ) = 0, (9)

(id− λL)y′
I + P⊥ω(yI + y′

I , λ) = 0, (10)

with (9) being α(λ−1
0 )-dimensional. Furthermore, the

left-hand side of (10) is clearly differentiable near
(yI , y′

I , λ) = (0, 0, λ0) and equals 0 at that point. As
far as (B3) is concerned, the derivative of the left-hand
side of (10) with respect to y′I evaluated at (0, 0, λ) for λ
near λ0 is just the isomorphism id − λL, and therefore it
has a bounded inverse. By the implicit function theorem,
there exists a neighborhoodU(0, λ0) ⊂ Y ×R and a C∞

function Φ defined there such that y′I = Φ(yI , λ). Now,
still by Eqn. (10), we know that Φ solves

Φ(yI , λ) = −(id− λL)−1P⊥ω(yI +Φ(yI , λ), λ)
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with ω enjoying (A1), which implies ‖Φ‖ = O(‖yI‖2) as
yI → 0 uniformly for all λ near λ0. Consequently, the
eigenvalue problem (2) is now equivalent to finding yI in
U(0) ⊂ Y originated from (9):

h(yI , λ) := (id− λλ−1
0 )yI + Pω(yI +Φ(yI , λ), λ)

= 0, (11)

where λ is near λ0 (see Rabinowitz, 1977). By the
topological index theorem (Theorem 2) on the basis of
(B2) and (B3), we immediately obtain

ind(h, 0) =

{
(−1)0 = 1, λ > λ0,

(−1)α(λ
−1
0 ) = −1, λ < λ0.

This shows that (11) bifurcates from (0, λ0) a nontrivial
solution. This conclusion also holds for the canonical
equation (2) by the aforementioned equivalence.

We will further discuss the behavior of branching
nontrivial solutions near (0, λ0) and show how certain
conditions can lead some of them to have positive
magnitude. In conjunction with the conditions (B1)–(B3),
we will investigate the case where we replace λ−1

0 with the
basic reproductive number R0. We noted that the oddness
of the algebraic multiplicity of R0 as required in (B2) is
hard to achieve unless not only is R0 an eigenvalue of L,
but R0 has also to be the largest eigenvalue of L. Then,
the oddness can simply be replaced by its simplicity.

3. Simplicity of the basic reproductive
number

Let (1) be any model that is amenable to the next
generation method and has a canonical equation (2) such
that the following conditions hold:

(C1) R0 is the largest eigenvalue of the matrix L.

(C2) L is nonnegative and bounded, in the sense that each
element of L never has a pole in the set where all the
parameters are defined.

(C3) λ−1 is not an eigenvalue of L.

The only goal in this section is to prove the following
theorem.

Theorem 3. Suppose the conditions (C1)–(C2) hold.
Then, the basic reproductive number R0 is simple and as-
sociated with a nonnegative eigenvector of L.

We will organize the proof based on the fact that
the nonnegative matrix L can be to which a sequence of
positive matrices having simple spectral radii converges.
Before doing so, we shall include several supporting
lemmas.

Lemma 1. (Continuity of polynomial roots) (Ortega,
1932) Let pn

b (λ) := λn +
∑n−1

j=0 bn−jλ
j be a poly-

nomial of degree n having s distinct roots λ1, . . . , λs

(1 ≤ s ≤ n) with the corresponding algebraic mul-
tiplicities α1, . . . , αs. Then, for any ε > 0 such that
all disks D(λ1; ε), . . . ,D(λs; ε) are disjoint, there exists
δ = δ(ε) > 0 such that the polynomial pn

a(λ) := λn +∑n−1
j=0 an−jλ

j , where |an−j − bn−j | < δ for all j, has a

root λ̃i ∈ D(λi; ε) with algebraic multiplicity exactly αi,
for all i = 1, . . . , s.

It might be simpler to use the notation pn
b (λ) and

pn
a(λ) for the polynomials, where n and b can flexibly

change. Recall the matrix L in the canonical equation.
We define

L(μk) := L+ μkJ,

where Jij = 1 if Lij = 0 and Jij = 0 if Lij > 0,
(μk)k∈N ⊂ (0,∞) a monotonically decreasing sequence
converging to 0. A glimpse over the structure of J
confirms that J is bounded. We then get the following
result.

Lemma 2. Let Al
1, . . . , A

l
m be p × p real matrices such

that Al
i ∈ {L, μkJ} where l extends from 1 to 2m and

1 ≤ m ≤ p. Suppose that l = 2m admits Al
1 = · · · =

Al
m = L. Let us write the characteristic polynomial of L

and L(μk) as pp
a(λ) and λp +

∑p−1
j=0 b

k
p−jλ

j := pp
bk
(λ),

respectively. Then, the following assertions hold true:

(i) All unique combinations Al
1A

l
2 · · ·Al

m for all l <
2m have trace less than some positive definite func-
tion of m multiplied by μk for all k ≥ min{k :
μk < 1}.

(ii) |Tr(L(μk)
m)−Tr(Lm)| is bounded above by some

positive definite function of m multiplied by μk for
all k ≥ min{k : μk < 1}.

(iii) |bkp−j − ap−j | are also bounded by some positive
definite function of j multiplied by μk, for all j ∈
{0, . . . , p− 1} and for all k ≥ min{k : μk < 1}.

Proof.
Part (i). Let F be the Jordan normal form of Al

1A
l
2 · · ·Al

m

such that there exists a nonsingular P from which

Tr(Al
1A

l
2 · · ·Al

m) = Tr(PFP−1) = Tr(P−1PF )

= Tr(FP−1P ) = Tr(F ).

This gives

Tr(Al
1A

l
2 · · ·Al

m)

=
∑

λ∈σ(Al
1A

l
2···Al

m)

λ

≤ p ρ(Al
1A

l
2 · · ·Al

m) ≤ p ‖Al
1A

l
2 · · ·Al

m‖1
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≤ p

m∏
j=1

∥∥Al
j

∥∥
1

for all l < 2m. Now write k∗ := min{k : μk < 1}.
Since Al

1A
l
2 · · ·Al

m contains μkJ of order at least 1, then,
together with boundedness of ‖L‖1 and ‖J‖1, there exists
a bounded positive definite function cl(m) such that

Tr(Al
1A

l
2 · · ·Al

m) ≤ μkcl(m), k ≥ k∗.

Part (ii). From 3, it holds for all 1 ≤ m ≤ p that

|Tr(L(μk)
m)− Tr(Lm)|

≤
∣∣∣∣∣
2m−1∑
l=1

Tr(Al
1 · · ·Al

m)

∣∣∣∣∣+ |Tr(Lm)− Tr(Lm)|

≤ μk

2m−1∑
l=1

cl(m) := μkc(m), k ≥ k∗,

where c(m) is clearly bounded positive definite.

Part (iii). Using Fadeeva’s formula as in, e.g., the work
of Zadeh and Desoer (1963), one can determine the
coefficients a1, · · · , ap (the same way as in bk1 , · · · , bkp)
by the following recursive formula:

a1 = −Tr(L), a2 = −1

2

(
Tr(L2) + a1Tr(L)

)
,

aj = −1

j

(
Tr(Lj) + a1Tr(L

j−1) + · · ·
+ aj−1Tr(L)) , 3 ≤ j ≤ p.

Note that one must replace L with L(μk) in the last
formula in order to compute bk1 , . . . , b

k
p. We shall reveal

the fact that Tr(Lm) ≤ p ‖Lm‖1 ≤ p ‖L‖m1 < ∞
for finite p and Tr(L(μk)

m) ≤ p ‖L + μkJ‖m1 ≤
p maxi∈{0,...,m}

(
m
i

)‖L‖i1‖μkJ‖m−i
1 < ∞ for all 1 ≤

m ≤ p and finite p. We now conclude that |aj |, |bkj | are
bounded for all finite j. Then we obtain for all k ≥ k∗,

|bk1 − a1| = |Tr(L(μk))− Tr(L)|
≤ μkc(1) =: μkd(1),

|bk2 − a2| ≤ 1

2

{|Tr(L(μk)
2)− Tr(L2)|

+ |a1||Tr(L(μk))

− Tr(L)|+ |bk1 − a1||Tr(L(μk))|
}

≤ 1

2

{
μkc(2) + |a1|μkd(1)

+ |Tr(L(μk))|μkd(1)
}
=: μkd(2),

|bkj − aj | ≤ 1

j

{|Tr(L(μk)
j)− Tr(Lj)|

+

j−1∑
l=1

|al||Tr(L(μk)
l)

− Tr(Ll)|+
j−1∑
l=1

|bkl − al||Tr(L(μk)
l)|}

≤ 1

j

{
μkc(j) +

j−1∑
l=1

|al|μkcl

+ |Tr(L(μk)
l)|μkd(l)

}
=: μkd(j), 3 ≤ j ≤ p,

which completes the proof. �

Corollary 1. |bkp−j − brp−j | are bounded by some positive
definite function of j multiplied by |μk − μq|, for 0 ≤ j ≤
p− 1 and for some large k, r.

Now we have all what we need to prove Theorem 3.

Proof. (Theorem 3) We shall divide the proof into
two main parts: (i) that R0 is simple and (ii) that R0

associates with a nonnegative eigenvector. The first part
follows directly from Lemmas 2 and 1. Suppose that
λ1(k), . . . , λs(k) (1 ≤ s ≤ p) are the eigenvalues
of L(μk) with the corresponding algebraic multiplicities
α1, . . . , αs, i.e., they are the roots of pp

bk
(λ). Now

choose ε > 0 small enough such that all disks
D(λ1(k); ε), . . . ,D(λs(k); ε) are disjoint. Then, there
exists δ > 0 such that |ap−j − bkp−j | < δ for all j ∈
{0, . . . , p − 1}, where a1, . . . , ap are the coefficients of
the polynomial pp

a(λ).
We can define

k∗∗ := min{k ≥ k∗ : μk max
j∈{1,...,p}

d(j) < δ}

for d(j), k∗ given as in Lemma 2. This means |ap−j −
bkp−j | ≤ μk maxj∈{1,...,p} d(j) < δ for all k ≥ k∗∗,
and therefore pp

a(λ) is the characteristic polynomial of L.
Furthermore, the Perron–Frobenius theorem guarantees
that ρ(L(μk)) is simple for all 1 ≤ k < ∞, and so is
R0 = ρ(L). This shows that we can choose a decreasing
sequence of positive numbers (εk)k≥K that converges to
0 for K sufficiently large, so that there is a sequence of
positive numbers (δk)k≥K . In return, we can point out
a sequence of positive numbers (ck)k≥K where ck < ∞
such that εk ≤ ckμk for all K ≤ k < ∞.

For the second part, it follows from the
Perron–Frobenius theorem that not only is ρ(L(μk))
simple, but it also associates with a positive eigenvector
v(μk), where ‖v(μk)‖ = 1 for all k < ∞. Let
us take k ≥ K . Let v be a normal vector, i.e.,
‖v‖ = 1, such that (L − R0id)v = 0. Let
us define some projection P := 〈v(μk), v〉v and
therefore P⊥ := v(μk) − P such that 〈P, P⊥〉 =
〈P, v(μk)〉− ‖P‖2 = 〈v(μk), v〉2 −〈v(μk), v〉2‖v‖2 = 0
and ‖P + P⊥‖ = ‖v(μk)‖ = 1. Our aim is to
prove that there exists a sequence of bounded positive
numbers (dk)k≥K such that ‖P⊥‖ ≤ dkμk towards
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the following destination. If this premise holds, then
by means of ‖P + P⊥‖ = ‖v(μk)‖ = 1, we gain
0 ≤ 1 − |〈v(μk), v〉| = 1 − ‖P‖ ≤ ‖P⊥‖ ≤ dkμk.
Consequently, as k → ∞, we have v(μk) → v due to the
squeeze theorem.

To show that ‖P⊥‖ ≤ dkμk, we first assume that
v(μk) 	= v since otherwise everything boils down to
triviality. Let us introduce an auxiliary matrix B(μk) :=
L(μk) − ρ(L(μk))id such that B(μk)v(μk) = 0, and for
simplicity B := B(0). In light of the distinction between
v(μk) and v, we immediately confirm that Bv(μk) 	= 0,
or there exists ε0 > 0 such that ‖Bv(μk)‖ = ε0. At
the expense of making a contradiction, let us first suppose
that ‖BP⊥‖ < ε1‖P⊥‖ for all ε1 > 0. This is equivalent
to stating that ‖Bv(μk)‖ < ε1‖v(μk) − 〈v(μk), v〉v‖ ≤
2ε1 := ε for all ε > 0, which is no longer valid for any
ε ≤ ε0. Eventually, there must exist a small ε > 0 such
that ‖BP⊥‖ ≥ ε‖P⊥‖. Together with

BP⊥ = Bv(μk)−BP = Bv(μk)− 〈v(μk), v〉Bv︸ ︷︷ ︸
=0=B(μk)v(μk)

= (B −B(μk))v(μk),

these facts reveal that

‖P⊥‖

≤ ‖(B −B(μk))v(μk)‖
ε

≤ |R0 − ρ(L(μk))|+ ‖J‖μk

ε
≤
(
ck
ε

+
‖J‖
ε

)
︸ ︷︷ ︸

:=dk

μk

for all k ≥ K . At this stage we have shown that v(μk) →
v. Continuity of the root in the first part, together with the
fact that all v(μk) are positive for all k < ∞, makes an
argument that v is therefore nonnegative. �

We can also check by irreducibility that if a
nonnegative matrix L has R0 as the simple largest
eigenvalue, then R0 associates with a positive eigenvector.
A nonnegative matrix L is said to be reducible if it is
permutationally similar to a block upper triangular matrix
and irreducible if it is not reducible. To some extent,
it is considered easier to see if a nonnegative matrix
is irreducible by investigating its corresponding directed
graph. To any nonnegative matrix L = (lij)i,j=1,...,p we
can derive a directed graph D(L) containing a set of p
vertices v1, . . . , vp and a set of directed edges vi → vj
(i 	= j) whose cost to go from vi to vj is represented
by lij . If lij = 0, we can say there is no directed edge
from vi to vj . What we then refer to as a path is a
collection of one or more directed edges; for example,
we may call vi → vj → vk a path from vi to vk. The
directed graph of a nonnegative matrix L is said to be
strongly connected if for any vertices vi, vj in D(L) there

exists a path from vi to vj . In other words, a strongly
connected directed graph possesses vertices that can be
accessed from any other vertices. The following lemma
gives, instead of permutation, another way to check if a
matrix is irreducible.

Lemma 3. A nonnegative matrix L is irreducible if and
only if the corresponding directed graph D(L) is strongly
connected.

Following this lemma is an important complement to
Theorem 3 that opens a way to see the positivity of the
eigenvector that associates with R0.

Theorem 4. (Perron–Frobenius theorem for irreducible
nonnegative matrices) If a nonnegative matrix L is irre-
ducible, then ρ(L) is a simple eigenvalue of L and asso-
ciates with a positive eigenvector called a Perron vector.

Note that the last theorem only gives a sufficient
condition. If the irreducibility test fails, then this does not
always mean that the spectral radius cannot associate with
a positive eigenvector.

4. Notes on global bifurcation

Let us stick to the conditions (C1)–(C3). The following
theorem is well known as the Rabinowitz global
bifurcation theorem. It basically amounts to reviewing the
properties of branching solutions near the point (0,R−1

0 )
in more detail.

Theorem 5. (Rabinowitz, 1971) Denote by

Σ0 := {(xI , λ) ∈ R
p × R : xI 	= 0, (xI , λ) solves (2)}

the set of nontrivial solutions to (2) and by Σ a bounded
open subset of Rp×R containing (0,R−1

0 ). Let ω be con-
tinuous and compact on Σ and R0 be the largest eigen-
value of L; then there exists a continuum of solutions
C ⊂ Σ0 where (0,R−1

0 ) ∈ C, and either (i) C meets ∂Σ
or (ii) C meets (0,R−1), where R0 	= R is another eigen-
value of L with odd algebraic multiplicity.

To adapt to the theorem, we have designated

Σ := Q0 × (−1, 1), (12)

where Q0 ⊂ R
p is a bounded open subset containing 0.

Choosing
R0 > 1 (13)

immediately confirms (0,R−1
0 ) ∈ Σ. As for Theorem 5,

there exists a continuum of solutions C containing
the trivial solution (0,R−1

0 ) that meets either ∂Σ or
another trivial solution (0,R−1), where R is another
eigenvalue of L with odd algebraic multiplicity. The
forthcoming remarks identify the closed form of the
nontrivial solutions in C, which is

xI(t) = tv + u(t), λ(t) = R−1
0 − χ(t), (14)
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where v is the right eigenvector of L associated with R−1
0 ,

t ∈ R\{0} and limt→0±(xI(t), χ(t)) = (0, 0). In the
case of u being O(t2) as t → 0, the initial direction of the
solution xI on the chosen domain (0,∞) is determined by
∂txI |t=0 = v.

To proceed, consider the following rearrangement of
the canonical equation:

0 = (id−R−1
0 L)xI + (R−1

0 − λ)LxI + ω(xI , λ). (15)

Let w and v be respectively the left and right eigenvectors
of R−1

0 L associated with the eigenvalue 1. For any
xI ∈ R

p there exists t ∈ R and u ∈ span{v}⊥ such that
xI = tv + u, as desired. The next crucial step is checking
the order of u with respect to t. From (15) we obtain
w′((R−1

0 −λ)LxI+ω(xI , λ)) = −w′(id−R−1
0 L)xI = 0,

confirming (R−1
0 − λ)LxI + ω(xI , λ) ∈ span{w}⊥.

This tells us that for each defined xI ∈ R
p, making

(R−1
0 − λ)LxI + ω(xI , λ) ∈ span{w}⊥, there exists

a point u ∈ span{v}⊥ such that xI = tv + u. This
exposition leads to the existence of a linear transformation
Δ : span{w}⊥ → span{v}⊥ mapping (R−1

0 − λ)LxI +
ω(xI , λ) into u (cf. Cushing, 1998). Decomposing xI , the
very last assertion means

u = (R−1
0 − λ)LtΔv

+ (R−1
0 − λ)LΔu+Δω(tv + u, λ). (16)

Let χ := R−1
0 − λ, which is deduced to be

t-dependent. Clearly, the function Θ in Θ(u, t, χ) = 0 as
a short-hand writing of (16) is infinitely differentiable by
(A1), and the derivative is given by ∂uΘ(0, 0, 0) = id. By
the implicit function theorem, there exists a neighborhood
U(0, 0) ⊂ R × R and a C∞ function u = u(t, χ)
defined there solving (16). Equation (16) also tells us that
u(0, χ) = 0 for χ in that neighborhood. Furthermore,
taking the derivative of (16) with respect to t results in

∂tu = ∂tχLtΔv + χLΔv + ∂tχLΔu+ χL∂uΔu∂tu

+ ∂ωΔω(∂tω + ∂uω∂tu− ∂λω∂tχ),

where we obtain the specification ∂tu(0, 0) = 0 by (A1).
Taking the first derivative of (16) with respect to χ, we
have

∂χu = LtΔv + LΔu+ ∂ωΔω(∂uω∂χu− ∂λω)

such that ∂χu(0, 0) = 0. The Taylor expansion u(t, χ) =
u(0, 0)+∂tu(0, 0)t+∂χu(0, 0)χ+O(‖(t, χ)‖2) suggests
that u = O(t2) uniformly for χ near 0, as desired.
Moreover, we know that w′(χLxI + ω) = w′(χLtv +
χLu + ω) = 0 with ω enjoying (A1). By the implicit
function theorem, there exists a neighborhood U(0) ⊂ R

and a χ = χ(t) of C∞ solving the last equation for
t ∈ U(0), satisfying χ(0) = 0. This gives us extra
information concerning the desired property of χ.

Summarizing what we have done so far, we get our
main result.

Theorem 6. Let (1) be any model that is amenable to the
next generation method and has a canonical equation (2)
where (C1)–(C3) hold. Then the basic reproductive num-
ber R0 is simple and associates with a nonnegative eigen-
vector v 	= 0 of L. If R0 > 1 is sufficiently near λ−1,
then there exists a nonnegative nontrivial solution of the
canonical equation whose magnitude is drifted by v. Fur-
thermore, if L is irreducible, then there exists a strictly
positive nontrivial solution.

5. Examples

To see how this approach works, we consider three models
(M1), (M2) and (M3) whose transmission diagrams are
depicted as in Fig. 1.

(M1) describes the dynamics of a mosquito
population based on the age and indoor–outdoor
classification (Wijaya et al., 2014). The population is
divided into 5 compartments: indoor egg E1, outdoor
egg E2, indoor larva L1, outdoor larva L2, and adult
A. Every egg is supposed to transform into a larva at
the rates of transition α1 (indoor) and α2 (outdoor) while
a larva transforms into a pupa at the rates β1 (indoor)
and β2 (outdoor). Under the limitation of logistics,
larvae that live side by side compete for food with the
competition rates σ1, σ2. We denote by μ the growth
rate of eggs, where the probabilistic term p distinguishes
the growth rate of indoor eggs. The natural death rates
are denoted by η1, . . . , η5. For the sake of applying
treatments, it is assumed that an amount of larvicide is
disposed into indoor water vessels at the rate u1 for killing
larvae and partly eggs (indicated by q). Also, fumigation
is performed at the rate u2 to kill adults. We shall
add the following specifications to justify some variables
regarding (M1) in Table 1: s1 := μp, s2 := μ(1 − p),
s3 := α1, s4 := α2, s5 := β1, s6 := β2 and d1 :=
α1 + η1 + qu1, d2 := α2 + η2, d3 := β1 + η3 + u1,
d4 := β2 + η4, d5 := η5 + u2,

a1 :=
d3
σ1

− s1s3s5
d1d5σ1

a2 :=
d4
σ2

− s2s4s6
d2d5σ2

.

We assume that

a1 > 0, a2 > 0.

According to Wijaya et al. (2014, Theorem 3.3), the
classical direct calculation confirms the existence of a
coexistence equilibrium providing R0 > 1.

(M2) describes a host-vector model for dengue
epidemics including vaccination treatment. It captures
the dynamics of host compartments: susceptible S,
infective I , recovered R and vaccinated C; and vector
compartments: susceptible U and infective V . We
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E1 L1

A

L2E2

(M1)

α1

β1
μp

μ(1− p)

α2

β2

qu1 σ1L1

u1 + η3

η1

η2

η4

σ2L2

u2η5

S I

RC

U V

(M2)

αbV

γκu
S

μ μ

μμ

βdI

η η

Λh+ρN
S

Λv+δM
U

Vσ

S

Vσ

S

...

...

Ii

U

Ii+1

U

...

Ri

Ri+1

...

Vσ

Si

Vσ

Si+1

...

...

Iij

I(i+1)j

...

...

R

R

...

(M3)

α
N

α
N

α
N

α
N

β
N

β
N

β
N

β
N

γ

γ

ν

ν

α
N

α
N

α
N

α
N

γ

γ

Fig. 1. Three sample models. →, ↑,←, ↓: transitions to other compartments or to deaths, �: contact, ���, ���: transitions due to
contacts.

assume that each newborn is susceptible, contributed
by constant recruitments at the rates Λh (host) and Λv

(vector), respectively, and additional growth factors at the
rates ρ and δ. A susceptible host and, respectively, a
susceptible vector that are in contact with an infective
vector and an infective human clinically move to the
infective compartments along with the driving forces of
infection whose rates are α, β. The terms b, d stand for the
average biting rate of an infective vector to a susceptible
host and that of a susceptible vector to an infective host,
respectively. An infective host can experience recovery
at the rate γ. Due to loss of immunity, a recovered host
moves back to the susceptible compartment at the rate
κ. Moreover, a constant portion u of susceptible hosts
is treated using vaccination from which they immediately
move to the vaccinated compartment. The average natural
death rates for both host and vector populations are given
by μ and η, respectively. For reasons of well-posedness,
we shall assume that all the parameters are positive and

μ > ρ, η > δ, Λh > u.

We denote by N := S + I + R + C and M := U +
V the size of the total host population and that of the
total vector population, respectively. A computer algebra
system, e.g., Maple, was able to show up an endemic
equilibrium of (M2). The equilibrium happens to be of a
long expression for which we cannot determine its explicit
relationship with R0 and omit writing here.

(M3) describes a dengue epidemic model wherein
n ≥ 2 strains of dengue virus actively contribute to

new infections among humans. Assume that the host
population admits a constant size N from time to time.
This constant population is then subdivided into several
compartments: susceptible S, infected by the i-th strain
Ii, recovered from the i-th strain Ri, susceptible to other
strains except the i-th strain Si, infected by the j-th strain
after the i-th strain Iij , and fully recovered R. We assume
that any host only can get infected by a maximum of two
strains during the average lifetime period.

Additionally, the notion of co-infection, i.e., that
a host can be infected by viruses from two or more
different strains at the same time, is not admitted in the
model. In the vector population, the population size M
is subdivided into susceptible U and co-infected from all
strains indicated by a set of strain indices σ ∈ 2〈n〉\{0},
denoted by Vσ , where 〈n〉 := {1, . . . , n}. For example,
V{1,3,10} represents the number of vectors co-infected
by the first strain, third, and tenth strain, respectively.
We assume that any newborn in the host population is
susceptible at the given birth rate μ; any human dies at
the rate μ, too. Any vector dies at the rate η. The other
parameters include the infection rates α, β, the recovery
rate γ, and the loss-of-immunity rate κ.

Assume that in each contact with Vσ , a susceptible
host can get infected by all strains in σ, with
the probability pσi when subjected to the i-th strain.
Furthermore, the probability of getting infected by only
the i-th strain, i.e., when σ = {i}, must be equal to 1.
Therefore, we may define
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pσi :=

{
1, {i} = σ,

∈ (0, 1), i ∈ σ

and for fixed σ we have∑
i∈σ

pσi = 1.

As far as the compartment Iij is concerned, the growth
of Iij is supplemented by the contact between Si and Vσ ,
where σ contains j, with the underlying probability qσij .
This probabilistic term is defined as

qσij :=

{
1, {j} = σ

∈ (0, 1], j ∈ σ

and for fixed i and σ ∑
j: j∈σ

qσij = 1.

Moreover, for the sake of simplicity, we assume
that all contacts between U and Ii will give rise to Vσ

as long as σ contains i. Along with this assumption,
we shall introduce the probabilistic terms riσ , sijσ , where
riσ ∈ (0, 1) if i ∈ σ and sijσ ∈ (0, 1) if j ∈ σ and i 	= j,
satisfying

for fixed i :
∑

σ: i∈σ

riσ = 1 and
∑

σ: j∈σ

sijσ = 1.

In the same way as before, the contacts between U and
Iij also give rise to Vσ , which bring into use sijσ while
taking into consideration that only viruses with the j-th
strain indeed reside in Iij .

In its entirety, the model (M3) is given by

Ṡ = μN −
∑

σ∈2〈n〉\∅

α

N
SVσ − μS, (17a)

İi =
∑

σ: i∈σ

α

N
Spσi Vσ − (γ + μ)Ii, (17b)

Ṙi = γIi − (ν + μ)Ri, (17c)

Ṡi = νRi −
∑

σ:σ ={i}

α

N
SiVσ − μSi, (17d)

İij =
∑

σ: j∈σ

α

N
Siq

σ
ijVσ − (γ + μ)Iij , (17e)

Ṙ = γ
∑
i∈〈n〉

∑
j∈〈n〉
j =i

Iij − μR, (17f)

U̇ = Λ−
∑
i∈〈n〉

β

N
U
(
Ii +

∑
j∈〈n〉
j =i

Iij

)
− ηU, (17g)

V̇σ =
∑
i: i∈σ

(
β

N
UriσIi

)

+
∑
j: j∈σ

∑
i: i=j

(
β

N
Usijσ Iij

)
− ηVσ, (17h)

where i, j ∈ 〈n〉, j 	= i and σ ∈ 2〈n〉\∅.
It is immediate to unfold the two matrices F and V

from the framework of the next generation method,

F =

(
0 F12

F21 0

)
and V =

( V11 0
0 V22

)

where

F12 =

⎛
⎜⎜⎜⎜⎝

α 0

. . .
0 α

αp
{1,2}
1 αp

{1,3}
1 ··· αp

〈n〉
1

αp
{1,2}
2 0 ··· αp

〈n〉
2

...
...

. . .
...

0 0 ··· αp〈n〉
n

0 0

⎞
⎟⎟⎟⎟⎠ ,

F21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β
N U0r1{1} 0

. . .
0 β

N U0rn{n}

(F21)12

β
N U0r1{1,2}

β
N U0r2{1,2} ··· 0

β
N U0r1{1,3} 0 ··· 0

...
...

. . .
...

β
N U0r1〈n〉

β
N U0r2〈n〉 ··· β

N U0rn〈n〉

(F21)22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

U0 = Λ/η, V11 = (γ + μ)id, and V22 = η id.

Then, we have the next generation matrix

G =

⎛
⎝ 0 F12

η

F21

γ+μ 0

⎞
⎠ .

We will see that the basic reproductive number R0 is not
only the spectral radius of G but also the largest eigenvalue
of G and that of the matrix L.

Lemma 4. For the model (M3), the basic reproductive
number R0 is an eigenvalue of the next generation matrix
G and is positive (G is not a nilpotent matrix).

Proof. That R0 is apparently an eigenvalue of G
was already shown by, e.g., Horn and Johnson (2013,
Theorem 8.3.1).

Now let us prove the positivity of R0. First of
all, it is essential to highlight several facts regarding
nonnegative matrices. If P,Q are two nonnegative
matrices, where P ≤ Q holds componentwisely, then
for any induced norm ‖·‖ there exists a nonnegative
vector y, where ‖y‖ = 1 such that ‖P‖ := ‖Py‖ ≤
‖Qy‖ ≤ ‖Q‖. Moreover, one can immediately see
that Pm ≤ Qm componentwisely for any m ≥ 1.
Combining the previous expositions, we have ‖Pm‖ ≤
‖Qm‖. Now we will use this result to justify the main
problem. Set r := min{α/κ, βU0/(N(γ + μ))} and
a matrix H = Hij := rGij(

∑
i Gij)

−1 such that
H ≤ G componentwisely and

∑
iHij = r for all j.
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Moreover, (1, . . . , 1)′ is an eigenvector of H′ associated
with the eigenvalue r. We know that ρ(H) ≤ ‖H‖1 =
‖H′‖∞ = r. Since r is an eigenvalue of H′, we get
r ≤ ρ(H′) = ρ(H) by the fact that H and H′ have
the same spectra of eigenvalues. Therefore, ρ(H) = r.
From the aforementioned monotonicity of nonnegative
matrices with respect to any induced norm, we conclude
that ‖Gm‖ ≥ ‖Hm‖ ⇔ ‖Gm‖ 1

m ≥ ‖Hm‖ 1
m for all m ≥

1. The last inequality applies due to the fact that the root
function is also a monotonic function. By the continuity
of the induced matrix norms and the root function for
positive real numbers, we have R0 = ρ(G) ≥ r > 0
in the limit. �

Through the model (M3) we will demonstrate how
we obtain L and ω. Zeroing the right-hand side of (17a),
we immediately obtain

S =
μN

μ+
∑

σ∈2〈n〉\∅
α
N Vσ

, (18)

where in a neighborhood of xI = 0

S = μN

⎛
⎝ 1

μ
− 1

α
N μ2

∑
σ∈2〈n〉\∅

Vσ +O (‖xI‖2
)
⎞
⎠ .

(19)
Furthermore, using the result from (17c),

Ri =
γ

ν + μ
Ii, (20)

from (17d) we obtain

Si =

νγ
ν+μIi

μ+
∑

σ: σ ={i}
α
N Vσ

, (21)

where in a neighborhood of xI = 0

Si =
νγ

ν + μ
Ii

⎛
⎝ 1

μ
− 1

α
N μ2

∑
σ: σ ={i}

Vσ +O (‖xI‖2
)⎞⎠ .

(22)
As far as the susceptible mosquito compartment is
concerned, we have from (17g)

U =
Λ

η +
∑

i∈〈n〉
β
N

⎛
⎜⎝Ii +

∑
j∈〈n〉
j =i

Iij

⎞
⎟⎠
, (23)

where in a neighborhood of xI = 0

U = Λ
(1
η
− 1

β
N η2

∑
i∈〈n〉

(
Ii +

∑
j∈〈n〉
j =i

Iij

)
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+O(‖xI‖2
))

. (24)

We are now substituting (19), (22), and (24) to
the equilibrium equations from (17b), (17e), and (17h),
respectively, in order to derive the canonical equation.
Owing to (17b), we obtain for all i ∈ 〈n〉

0 = Ii − α

N(γ + μ)

∑
σ: i∈σ

Spσi Vσ

= Ii − α

γ + μ

∑
σ: i∈σ

(
1

− 1
α
N μ

∑
σ∈2〈n〉\∅

Vσ +O (‖xI‖2
) )

pσi Vσ

= Ii − α

γ + μ

∑
σ: i∈σ

pσi Vσ +O (‖xI‖2
)
. (25)

Meanwhile, from (17e) we obtain for all i, j ∈ 〈n〉, where
j 	= i,

0 = Iij − α

N(γ + μ)

∑
σ: j∈σ

Siq
σ
ijVσ

= Iij − ανγ

N(γ + μ)(ν + μ)
Ii
∑

σ: j∈σ

( 1
μ

− 1
α
N μ2

∑
σ: σ ={i}

Vσ +O (‖xI‖2
) )

qσijVσ

= Iij +O (‖xI‖2
)
. (26)

Finally, from (17h) we obtain for all σ ∈ 2〈n〉\∅

0 = Vσ − β

Nη
U

⎛
⎝∑

i: i∈σ

riσIi +
∑
j: j∈σ

∑
i: i=j

sijσ Iij

⎞
⎠

= Vσ − β

Nη

(
U0 − U0

β
N η

∑
i∈〈n〉

(
Ii +

∑
j∈〈n〉
j =i

Iij

)

+O (‖xI‖2
) )⎛⎝∑

i: i∈σ

riσIi +
∑
j: j∈σ

∑
i: i=j

sijσ Iij

⎞
⎠

= Vσ − βU0

Nη

⎛
⎝∑

i: i∈σ

riσIi +
∑
j: j∈σ

∑
i: i=j

sijσ Iij

⎞
⎠

+O (‖xI‖2
)
. (27)

In light of (25), (26), and (27), the canonical equation
now has the form⎛
⎜⎜⎜⎜⎝id− λ

⎛
⎝ 0 F12

γ+μ

F21

η 0

⎞
⎠

︸ ︷︷ ︸
L

⎞
⎟⎟⎟⎟⎠ xI + ω(xI , λ) = 0, (28)

where
λ = 1 and ‖ω‖ = O(‖xI‖2).

Observe that L already resembles the next generation
matrix G.

Now we are showing that R0 is also the largest
eigenvalue ofL. By using all possible positive eigenvalues
τ , we shall decompose G − τ id as
⎛
⎝ −τ id F12

η

F21

γ+μ −τ id

⎞
⎠

=

( −τ id 0

F21

γ+μ id

)⎛
⎝ id − 1

τ
F12

η

0 −τ id + 1
τ

F21

γ+μ
F12

η

⎞
⎠

such that

det(G − τ id) = det

(
−τ id +

1

τ

F21

γ + μ

F12

η

)
,

after taking account of the different dimensions of the
identity matrices ids used in the formulation. In the same
way as for the matrix L, we have

det(L− τ id) = det

(
−τ id +

1

τ

F21

η

F12

γ + μ

)
.

Therefore, it now follows that

R0 = max
τ>0

{τ : det(G − τ id) = 0}

= max
τ>0

{
τ : det

(
−τ id +

1

τ

F21

(γ + μ)

F12

η

)
= 0

}

= max
τ>0

{
τ : det

(
−τ id +

1

τ

F21

η

F12

(γ + μ)

)
= 0

}

= max
τ>0

{τ : det(L− τ id) = 0} ,

which leads us to the desired conclusion.
Additionally, the irreducibility test over the matrix L

shows that the matrix is indeed reducible. This stems from
the fact that F12 contains rows whose entire entries are
zero, and so does F12/(γ + μ). By means of zero rows,
there are no ways to go from the vertices indexed by the
rows to the other vertices.

6. Concluding remarks

An alternative approach to relate the existence of a
nontrivial equilibrium (coexistence, boundary or endemic
equilibrium) to the basic reproductive number was
proposed. The approach was due to transforming the
equilibrium equation f(x; ξ) = 0 inherent from an
autonomous model into a canonical equation (id −
λL)xI + ω(xI , λ) = 0. The basic reproductive number
R0 was calculated using the next generation method. Our
final result shows that if (i) R0 is the largest eigenvalue



On the existence of a nontrivial equilibrium in relation to the basic reproductive number 635

of L, (ii) the matrix L is nonnegative and bounded with
respect to all possible values of ξ in some compact set, (iii)
λ−1 is not an eigenvalue of L, and (iv) R0 > 1 is close
enough to λ−1, then there exists a nonnegative nontrivial
solution of the canonical equation. Additionally, if the
matrix L is irreducible, then there exists a strictly positive
nontrivial solution of the canonical equation.

The components of the canonical equation and the
basic reproductive numbers as well as their associated
eigenvectors for the three models (M1), (M2) and (M3)
are given in Table 1. We shall mention that the nonlinear
parts ω for (M2) and (M3) are too complicated to write
but happen to be O(‖xI‖2) as xI → 0. Moreover, the
table gives us evidence that the eigenvectors are positive,
except that from (M3), where the corresponding matrix
L is reducible. Moreover, R0 > 1 does not always
mean that λ−1 (in the three models it is apparently given
by 1) is not an eigenvalue of L. Exclusion of λ−1

from the spectrum of L remains to be assumed in all
the models. Also, we have to make sure that the off-xI
compartments, in the case (M2): S,R,C, U and of
(M3): S,R1, . . . , Rn, S1, . . . , Sn, U , in the equilibrium
cannot be negative as xI is nonnegative (or positive).
Apparently, they are not based on our calculations, while
excluded from our presentation here.
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