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Input-output linearization by state feedback is applied to a flux-controlled active magnetic bearing (AMB) system, operated
in the zero-bias mode. Two models of the AMB system are employed. The first one is described by the third-order
dynamics with a flux-dependent voltage switching scheme, whereas the second one is the fourth-order system, called self-
sensing AMB, since it does not require the measurement of the rotor position. In the case of that system we had to find
the flat outputs to guarantee its stability. The proposed control schemes are verified by means of numerical simulations
performed within the Matlab environment.
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1. Introduction

Feedback linearization is a well-known and conceptually
simple set of techniques for control systems with smooth
nonlinearities. The essence of the approach is to
compensate the nonlinearities and make the system, in the
closed-loop, behave as a linear one. There exist various
problem statements which are applicable to different
system classes. The linearity is achieved either for
(extended) state equations or only for input-output (i/o)
equations. The feedback is looked for in the class of state
or output (measurement) feedbacks; in both cases static
and dynamic feedbacks are sought. Moreover, the system
itself may be described either by state or i/o equations. It
has to be noticed that not all nonlinear i/o equations can
be transformed into state equations. In addition to these
mainstream approaches, there exist numerous different
problem statements, including approximate linearization.

Note that the possibility to linearize all state
equations depends on restrictive integrability conditions
and as such the approach is applicable only to a limited
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subclass of nonlinear systems (Isidori, 1995; Conte et al.,
2007; Nijmeijer and van der Schaft, 1990). For i/o
linearizability the solvability conditions are milder; the
only requirements are right invertibility and stability of
zero dynamics (Nijmeijer and van der Schaft, 1990).

In case the zero dynamics are unstable for original
system outputs, it is possible to look for another set of
‘virtual’ outputs with respect to which the system has
stable zero dynamics. The related approach is to search
for the so-called flat outputs that will result in a system
without zero dynamics (Lévine, 2009; Sira-Ramírez and
Agrawal, 2004). In general, the problem of finding
flat outputs is not an easy task and still lacks a good
constructive general solution. Nevertheless, for the
special case we will face in this paper—the static
state feedback linearizable system—there exists a simple
method to find flat outputs. Once these are found, there
is no need to use the exact linearization technique with
complicated state transformation, but it is enough to apply
the i/o linearization method to these ‘virtual’ outputs.

AMB models, linearized around an operating point,
are sensitive to perturbations and work properly only in
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non-zero bias mode (see, e.g., Lindlau and Knospe, 2002;
Chen and Knospe, 2005; Jastrzebski et al., 2014). There
exist many papers that apply feedback linearization to
make the system equations exactly linear; see a brief
overview below. The paper by Joo and Seo (1997)
shows that the third-order electromagnetic suspension
system is input-state feedback linearizable and the
nonlinear feedback controller is robust against matching
constant input disturbances and mass perturbations.
Naz et al. (2013) applied input-state linearization for
a simpler second-order magnetic levitation system.
State-space linearization was also applied to a perturbed
magnetic suspension system by Mittal and Menq (1997).
Robustness to unmatched uncertainties in the linearized
system is achieved via the development of additional
compensation algorithms. In the work by Charara et al.
(1996) the controller based on input-output linearization
for a magnetic levitation system without premagnetization
was designed to stabilize an inertial wheel (without
premagnetization). Note that here the zero dynamics were
proven to be stable earlier. Matsumura et al. (1999)
applied the input-state linearization to the AMB system
controlled by deviations from a steady-state voltage. The
input-state linearization approach was also applied to a
magnetic bearing system with two voltage inputs by Baloh
et al. (2000). In the work of Ghosh et al. (2000) the
i/o lineariztion was applied to an AMB system using a
variable bias voltage to avoid singularity in the feedback,
typically faced in the zero-bias mode operation. Finally,
the only paper on differential flatness of an AMB system,
to the best of the authors’ knowledge, is that by Lévine
et al. (1996), which addressed both the current and voltage
control cases.

No papers among these references address feedback
linearization of a flux-controlled AMB system in zero-
bias mode. Therefore, we discuss this problem in our
paper. Unlike the current-voltage control, the flux control
is more direct and has the advantage that the attractive
force is independent of the rotor position. This means
that the whole AMB control system can be divided into
the inner flux-controlled nonlinear part and the outer
part, where the rotor position is controlled by a linear
controller. This decoupling allows simplifications in
the control design. Moreover, the application of the
flux-based control decreases the force estimation error,
and the controller can achieve a larger bandwidth than a
classical current-controlled AMB system. For a detailed
comparison between flux- and current-control of the AMB
system, with experimental verification, we refer the reader
to Jastrzebski et al. (2014).

The goal of this paper is to apply the i/o linearization
technique to two AMB systems. The first one is a
flux-controlled AMB system operated with zero-bias. The
system is described by third-order nonlinear dynamics.
The zero-bias control strategy is applied using a switching

voltage sequence. The switching scheme allows us to
minimize the control fluxes φ1 and φ2 since at every time
instant at least one of the electromagnets is inactive. Thus
this system minimizes energy losses. The second system
is the fourth-order system which has two voltages u1, u2

as control inputs and two currents i1, i2 as the outputs.
Since this system is not using rotor position measurements
it is called a self-sensing AMB system. When applying
the feedback linearization technique to the third-order
model, we face some issues that are not covered by
theory. First, the AMB model is not described completely
by smooth nonlinearities. Second, in the operating
region, the system frequently passes through singular
points, where the generalized electromagnetic flux is zero.
Third, one has to deal with actuator constraints. In the
case of the fourth-order AMB system with two voltages
control, we develop, based on a system flatness property,
a flux-dependent voltage switching scheme, depending on
the electromagnet whose flux is different from zero.

The paper is organized as follows. Section 2 recalls
the solution of the i/o linearization problem by state
feedback. In Section 3.1 the linearizing feedback is
constructed for the third-order AMB system, whereas
in Section 3.2 the fourth-order system is linearized
using the feedback that switches between two controls,
depending on the electromagnet whose flux is different
from zero. The proposed control schemes are verified
based on simulations in Section 4, whereas Section 5
draws concluding remarks.

2. I/O linearization by state feedback:
A brief overview

In the i/o linearization approach, the objective is to
linearize the map between the new input v and the output
y. Below we recall the solution by Isidori (1995). The
AMB systems studied in this paper are of the form

ẋ = f(x) +

m∑

j=1

gj(x)uj ,

yi = hi(x), i = 1, . . . ,m,

(1)

where x ∈ R
n, u =

[
u1 · · · um

]T ∈ R
m, y =

[
y1 · · · ym

]T ∈ R
m and m < n.

Definition 1. Given a system of the form (1), one can
state that the i-th output yi has relative degree ri if

LgjL
k
fhi(x) = 0,

j = 1, . . . ,m; k = 0, . . . , ri − 2 (2)

and the row vector
[
Lg1L

ri−1
f hi(x) · · · LgmLri−1

f hi(x)
]

(3)

is nonzero.
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Here Lf is the Lie derivative, Lfhi(x) :=
(∂hi(x)/∂x) f . Observe that ri is the lowest-order time-
derivative of yi that explicitly depends on control u.
Assume that each output yi possesses a finite relative
degree and construct the so-called decoupling matrix

A(x)

:=

⎡

⎢⎣
Lg1L

r1−1
f h1(x) · · · LgmLr1−1

f h1(x)
...

...
Lg1L

rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤

⎥⎦ .

(4)

Definition 2. A system of the form (1) has a vector rela-
tive degree

[
r1 · · · rm

]
if the matrix A has full rank.

Definition 3. A system of the form (1) is called (stric-
tly) i/o linearizable if there exists a regular static state
feedback of the form u = α(x) + β(x)v with a new input

vector v =
[
v1 · · · vm

]T
and nonsingular β(x) such

that, in the closed-loop,

y
(ri)
i = vi, i = 1, . . . ,m. (5)

For a system (1) with a vector relative degree the i/o
linearization problem is always solvable and the required
control is

u = A−1(x)

⎡

⎢⎣
v1 − Lr1

f h1(x)
...

vm − Lrm
f hm(x)

⎤

⎥⎦ . (6)

Note that the system (5) is, in addition, decoupled; the
decoupling is achieved as a by-product of i/o linearization.
Though for i/o linearizability the solvability conditions are
mild, the approach is not useful when the zero dynamics
of the system are unstable. A difficulty in unstable zero
dynamics is that some state variables will be unbounded,
and, as a consequence, also the control will be unbounded.
In such a case one possibility is to look for a fictitious
(virtual) output with respect to which the system has
stable zero dynamics or for a flat output that results in a
closed-loop system without zero dynamics.

Finally, a linear controller can now be designed for
the linear model (5). To stabilize the linear system, the
new input vi may be taken as

vi = (yid)
(ri) −αT

i ei, (7)

where yid stands for a desired output,

αT
i :=

[
α0
i α1

i · · · αri−1
i

]
,

ei :=
[
ei ėi · · · e

(ri−1)
i

]T

with ei := yi − yid. Stabilization is guaranteed if the real
numbers αj

i are chosen such that the polynomial sri +
αri−1
i sri−1 + · · ·+ α1

i s+ α0
i is Hurwitz.
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Fig. 1. Scheme of 1-DOF AMB.

3. AMB system

Consider a simplified one-degree-of-freedom (1-DOF)
AMB model, which consists of two opposite and
presumably identical electromagnetic actuators
(electromagnets) with resistances R1, R2 and currents
i1, i2, respectively (see Fig. 1). These electromagnets
generate fluxes φ1, φ2 and further the attractive forces F1,
F2 acting on the rotor with the mass m. In order to control
the position q of the rotor to the stable point q = 0, the
voltage inputs of the electromagnets V1 and V2 are used.
Moreover, denote by μ0, Ag, and N the permeability of
free space (= 1.25 × 10−6 H/m), the cross sectional area
of the air gap, and the number of turns of the coil of each
electromagnet, respectively.

In order to simplify the presentation, the 1-DOF
model of the AMB system is considered. However, this
simplification is reasonable, since the full (5-DOF) AMB
system can be i/o decoupled into 1-DOF sub-models if
the rotor is rigid. Many AMB rotor applications operate
below the first bending natural frequency of the rotor, thus
assuming the rotor to be a rigid body. Also some nonlinear
effects negligible for the AMB system are omitted, such
as eddy-currents (iron loss), hysteresis loss, ohmic effects,
dynamic induction loss, resistance loss and losses caused
by dynamic field changes. Note that most of these losses
are reduced or eliminated by the zero bias control which
is applied with the switching strategy (9).

3.1. Third-order system. The dynamics of the
simplified 1-DOF AMB model with a zero-bias flux may
be described by means of the following nonlinear state
equations:

ẋ1 = x2,

ẋ2 =
x3 |x3|

κ
,

ẋ3 =
u

N
,

y = x1,

(8)
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where x1 and x2 denote the position q [m] and velocity q̇
[m/s] of the rotor mass, respectively, x3 is the generalized
electromagnetic flux φ := φ1 − φ2 [Wb], and κ :=
mμ0Ag . The control input u is the generalized voltage
[V] under the following flux-dependent voltage switching
scheme:

V1 = u, V2 = 0 when φ ≥ 0,
V2 = −u, V1 = 0 when φ < 0.

(9)

3.1.1. Input-output linearization. To apply the
control (6), from (8) compute

ẏ = x2,

ÿ =
x3 |x3|

κ
.

(10)

Note that the absolute value function |x3| is not
differentiable at x3 = 0; however, except this point we
have ∂ |x3| /∂t = sgn(x3)ẋ3. Therefore,

...
y =

u (|x3|+ sgn(x3)x3)

Nκ
. (11)

Note first that the relative degree r of y is 3. From (8),

f =
[
x2 |x3|x3/κ 0

]T
, g := g1 =

[
0 0 1/N

]T

and h := h1 = x1; thus Lfh = x2, L2
fh = |x3|x3/κ and

the decoupling matrix is

A(x) =
[
LgL

2
fh

]
=

[
1

Nκ
(|x3|+ sgn(x3)x3)

]
. (12)

Since L3
fh = 0, from (6) we get

u =
vNκ

|x3|+ sgn(x3)x3
. (13)

In (13) one may choose v = y
(3)
d − αTe, where yd is a

desired output, e =
[
e ė ë

]T
, e = y − yd, and αT =[

α0 α1 α2
]

satisfies the condition that the polynomial
s3 + α2s2 + α1s+ α0 is Hurwitz.

Observe that in the control law (13) we have a
singularity at x3 = 0. We may modify the control law
(13) as

u =

⎧
⎨

⎩

vNκ

|x3|+ sgn(x3)x3
if ‖x3‖ > ε,

−k sgn(x3) if ‖x3‖ ≤ ε,
(14)

where ε is a design parameter of the controller that
specifies the boundary of the magnetic flux near the
origin and k is a constant feedback gain. Let the desired
trajectory yd = 0; then e = y, ė = ẏ, ë = ÿ and v =
−(α2ÿ + α1ẏ + α0y). Plugging this into the expression
for u gives the new control stabilizing the system,

u =

⎧
⎨

⎩

Nκ(α2ÿ + α1ẏ + α0y)

|x3|+ sgn(x3)x3
if ‖x3‖ > ε,

−k sgn(x3) if ‖x3‖ ≤ ε.

(15)

3.2. Fourth-order system. The mathematical model
of the simplified self-sensing AMB model may be
described by the state equations (Maslen, 2013)

ẋ1 = x2,

ẋ2 =
x2
3 − x2

4

Agmμ0
+

fe
m

,

ẋ3 =
1

N

(
u1 −R

2 (s0 − x1)

AgNμ0
x3

)
,

ẋ4 =
1

N

(
u2 −R

2 (s0 + x1)

AgNμ0
x4

)
,

(16a)

y1 =
2 (s0 − x1)

AgNμ0
x3,

y2 =
2 (s0 + x1)

AgNμ0
x4,

(16b)

where the states x1, x2, x3, and x4 denote the position
q [m], velocity q̇ [m/s], and the fluxes φ1 and φ2,
respectively. In order to control the position q of the
rotor mass to the stable point q = 0, the voltage inputs
of the electromagnets u1 := V1 and u2 := V2 are used.
The currents i1 and i2 are used as the outputs y1 and y2,
respectively. Moreover,R = R1 = R2 is the resistance of
both the coils, fe is an external disturbance force and s0
denotes the length of the air gap. Note that the variablesx3

and x4 are not measurable. However, if one can measure
the position x1, then x3 and x4 can be computed from the
outputs y1 and y2.

3.2.1. Input-output linearization. Again, according
to the theory described in Section 2, we first find the
relative degrees of the system outputs. For that purpose,
compute

ẏ1 =
2 (s0 − x1) u1

AgN2μ0

− 4R (s0 − x1)
2
x3

A2
gN

3μ2
0

− 2x2x3

AgNμ0
,

ẏ2 =
2 (s0 + x1) u2

AgN2μ0

− 4R (s0 + x1)
2
x4

A2
gN

3μ2
0

+
2x2x4

AgNμ0
.

(17)

Both ẏ1 and ẏ2 already depend on input. Thus the relative
degrees of the system are r1 = r2 = 1. Next, using (4),
compute the decoupling matrix

A(x) =
∂ẏ

∂u
=

⎡

⎢⎢⎣

2(s0 − x1)

AgN2μ0
0

0
2(s0 + x1)

AgN2μ0

⎤

⎥⎥⎦ . (18)

Obviously, rank (A(x)) = 2 everywhere owing to the
condition s0 > x1. Note that from the physics of the
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AMB system it follows that, if x1 = |s0|, then the AMB
system is on the boundary limit.

To find the linearizing control, we first, by (6),
compute

A−1(x) =

⎡

⎢⎢⎣

AgN
2μ0

2(s0 − x1)
0

0
AgN

2μ0

2(s0 + x1)

⎤

⎥⎥⎦ ,

Lfh =

⎡

⎢⎢⎣
2x3

−2R(s0 − x1)
2 −AgN

2μ0x2

A2
gN

3μ2
0

2x4
−2R(s0 + x1)

2 +AgN
2μ0x2

A2
gN

3μ2
0

⎤

⎥⎥⎦

(19)

and then

u1 =
2Rx3(s0 − x1)

AgNμ0
+

N(AgNμ0v1 + 2x2x3)

2(s0 − x1)
,

u2 =
2Rx4(s0 + x1)

AgNμ0
+

N(AgNμ0v2 − 2x2x4)

2(s0 + x1)
,

(20)

yielding ẏ1 = v1 and ẏ2 = v2. Unfortunately, now, unlike
for the model (8), r1 + r2 < n. The closed-loop system
equations can be transformed into the normal form via a
state diffeomorphism, if we define the new state variables
as

z1 := y1 =
2 (s0 − x1)

AgNμ0
x3, z3 := x1,

z2 := y2 =
2 (s0 + x1)

AgNμ0
x4, z4 := x2.

(21)

By means of i/o linearization, the dynamics of the
closed-loop system in the transformed coordinates are
decomposed into a linear part of order r1 + r2 = 2,

ż1 = v1,

ż2 = v2,

y1 = z1,

y2 = z2,

(22)

and the (unobservable) non-linear part of order n − r1 −
r2 = 2,

ż3 = z4

ż4 =
fe
m

+
AgN

2μ0z
2
1

4m(s0 − z3)2
− AgN

2μ0z
2
2

4m(s0 + z3)2
.

(23)

The key question is whether the states of the internal
dynamics (23) will remain bounded. The stability of
the internal dynamics can be studied through the zero
dynamics. Note that the internal dynamics (23) depend on
the output variables via z1 and z2. The aim is to stabilize
the linear part (22) using controller (7) and see what will
happen with the nonlinear part (23). Since r1 = r2 = 1,
the controller has the form v1 = −α0

1y1, v2 = −α0
2y2,

where α0
1 > 0, α0

2 > 0. Now the linear part (22) is stable,

i.e., y1 → 0, y2 → 0, if t → ∞. This also means that the
state variables z1 and z2 converge to zero, and therefore
(23) becomes

ż3 = z4,

ż4 =
fe
m

(24)

as t → ∞. Equation (24), known as the zero dynamics, is
obviously unstable.

3.2.2. Flat outputs. The objective of this subsection is
to derive artificial outputs ỹ1 and ỹ2 that yield a feedback
linearized model with the dimension n = r1 + r2.
To determine the flat outputs, for the system (16a) we
first compute the sequence of subspaces of differential
one-forms, defined by the following recursive formula:

H1 := span{dx},
Hk+1 := {ω ∈ Hk | ω̇ ∈ Hk} , k ≥ 1,

(25)

(see more in the work Conte et al. (2007)). These
subspaces determine the so-called Brunovsky form.
Observe that the last non-zero subspace is

H3 = span{dx1}. (26)

The subspace H3, i.e., dx1, defines the starting element
of the first Brunovsky chain. Second, consider H2

and observe that this subspace does not define the new
Brunovsky chain, since

H2 = span{dx1, dx2} = span{dx1, dẋ1}. (27)

However, for our system (16a) we have that

H1 = {dx1, dx2, dx3, dx4} (28)

is spanned not only by dx1, dẋ1 = dx2, dẍ1 =
2x3/ (Agmμ0) dx3 − 2x4/ (Agmμ0) dx4, but also by ω,
where ω can be chosen either as ω = dx3 or ω = dx4 to
get the complete basis of H1. This also means that dx3

(or dx4) is the starting element of the second Brunovsky
chain. The flat outputs are given by the starting elements
of Brunovsky chains. Therefore, we obtain ỹ1 = x1, but
for the second flat output we have two options: either
ỹ2 = x3 or ỹ2 = x4. Recall that both x3 and x4 are
computable from (16b).

Next, we apply the i/o linearization procedure from
Section 2 to flat outputs. Let us first consider the case
when ỹ1 = h1(x) = x1, ỹ2 = h2(x) = x3. The relative
degrees r1 = 3, r2 = 1, the decoupling matrix

A(x) =

[
Lg1L

2
fh1 Lg2L

2
fh1

Lg1h2 Lg2h2

]

=

⎡

⎢⎣

2x3

AgmNμ0
− 2x4

AgmNμ0
1

N
0

⎤

⎥⎦
(29)
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and its inverse

A−1(x) =

⎡

⎣
0 N

−AgmNμ0

2x4

Nx3

x4

⎤

⎦ . (30)

To compute the control, one has, by (6), to compute

L3
fh1 = 4R

(−s0 + x1)x
2
3 + (s0 + x1)x

2
4

A2
gmN2μ2

0

,

Lfh2 = 2R
(−s0 + x1)x3

AgN2μ0

(31)

to obtain

u1 =
2R(s0 − x1)x3

AgNμ0
+Nv2,

u2 =
2R(s0 + x1)x4

AgNμ0
− NAgmμ0

2x4
v1 +

Nx3

x4
v2.

(32)

Note that application of (32) requires x4 �= 0. If x4 = 0,
then u2 is not determined. However, the case x4 = 0
(or small) can be handled with the different choice of flat
outputs, yielding a feedback which is valid for the case
x4 = 0 but not valid when x3 = 0 (or small).

The alternative choice of flat outputs ỹ1 = h1(x) =
x1, ỹ2 = h2(x) = x4 yields the same relative degrees
r1 = 3, r2 = 1 with a slightly modified decoupling
matrix,

A(x) =

⎡

⎢⎣

2x3

AgmNμ0
− 2x4

AgmNμ0

0
1

N

⎤

⎥⎦ , (33)

and its inverse,

A−1(x) =

⎡

⎣
AgmNμ0

2x3

Nx4

x3
0 N

⎤

⎦ . (34)

Next we find

L3
fh1 = 4R

s0(−x2
3 + x2

4) + x1(x
2
3 + x2

4)

A2
gmN2μ2

0

,

Lfh2 = −2R
(s0 + x1)x4

AgN2μ0

(35)

and controls

u1 =
2R(s0 − x1)x3

AgNμ0
+

NAgmμ0

2x3
v1 +

Nx4

x3
v2

u2 =
2R(s0 + x1)x4

AgNμ0
+Nv2.

(36)

If x3 = 0, then u1 is not determined. Since x3 and x4

represent the components of the magnetic flux in a stable
flux-controlled AMB system, either x3 �= 0 or x4 �= 0. To

Table 1. Parameters of simulation and AMB systems.
Symbol Value Meaning

m [kg] 2.5 mass of the rotor

N 108 number of turns of the coil
of each electromagnet

R [Ω] 0.5 coil resistance

Ag [m2] 0.0014 cross sectional area
of the electromagnet

μ0 [H/m] 1.25 × 10−6 permeability of free space

s0 [m] 0.00058 length of the air gap⎡
⎢⎢⎢⎣

x1(0)

x2(0)

x3(0)

x4(0)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
250
0
1
1

⎤
⎥⎥⎦× 10−6 initial values for

system states

fe [N] 0.1 maximal value of the load
force disturbance

ε 1× 10−6
boundary of the
electromagnetic flux
near the origin

k 1000 feedback gain⎡
⎣
α0

α1

α2

⎤
⎦

⎡
⎣
0.2
8

180

⎤
⎦ constant gains of v

for the controller (15)

⎡
⎣
α0
1

α1
1

α2
1

⎤
⎦

⎡
⎣
9000
24000
2200

⎤
⎦ constant gains of v1

for the controllers (32), (36)

α0
2 0.1 constant gain of v2

for the controllers (32), (36)

avoid singularities, the control law can be defined by (32)
if x4 �= 0 and by (36) if x3 �= 0. If x3 and x4 are both
nonzero, then the choice is arbitrary.

We specify v1 and v2 for (32) and (36). Recall that
for both the choices of flat outputs r1 = 3, r2 = 1. Let the
desired trajectory ỹ1d = 0 and ỹ2d = 0. Then from (7) we
obtain

v1 = − (
α2
1
¨̃y1 + α1

1
˙̃y1 + α0

1ỹ1
)
,

v2 = − (
α0
2ỹ2

)
.

(37)

4. Simulation results

This section presents simulation results both for the
third- and fourth-order AMB systems with the feedback
linearization controllers (13) and (32), (36), respectively.
Simulations are carried out to verify the stability of
the nonlinear AMB systems under feedback linearizing
control. The main parameters of the system specification
and those used in simulations are collected in Table 1. The
first two blocks of Table 1 contain physical parameters of
the AMB system and initial conditions for the simulations,
respectively. The third block represents the parameters of
the controllers, whose values were chosen in such way that
the overshoot and settling time would be minimal.
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The nonlinear AMB models and feedback linearizing
controllers are simulated using the Matlab/Simulink
software. In particular, the simulation results present the
state responses to initial conditions and disturbance fe,
given in Table 1.

The interconnection of the AMB system with
feedback linearization control is shown in Fig. 2. The
inner nonlinear feedback loop cancels the nonlinearities.
The outer linear feedback loop consist of the linear
controller v with constant gains given in Table 1.

linearization

controller

u

fe

AMB plant x

inner nonlinear cancellation loop

y

α

v

outer linear control loop

Fig. 2. Interconnections of feedback linearization of the AMB
control system.
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Fig. 3. Responses of the system states to initial conditions.

In simulations only saturations of the controller
output were taken into account. Since the dynamics of
the mechanical AMB system have some rotor inertia, in
simulations the effect of saturation cannot be observed.

4.1. Third-order system. The simulations are
performed for the AMB system with zero-bias operation
in (8), and using the control voltage switching strategy
(9). For a detailed discussion on the AMB system with
a control switching scheme, we refer the reader to the
works of Mystkowski et al. (2015a; 2015b). Figure 3
presents the responses of the state variables to the initial
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Fig. 4. Responses of electromagnetic fluxes to initial conditions
due to control voltage switching operation.
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Fig. 5. Responses of the generalized electromagnetic flux and
voltage control to initial conditions.

conditions, given in Table 1, when the control voltage
switching strategy was applied.

The voltage switching strategy allows controlling
both electromagnets, 1 and 2, when only one of them is
active at a time. The main reason for this kind of operation
is reduction in power loss. The control voltages produce
the electromagnetic fluxes, with only one of them being
non-zero at any time (see Fig. 4).

Moreover, the controller output u in (13) switches
to −ksgn(x3) when the boundary ε of the magnetic flux
is reached—this guarantees u to be finite even when the
state x3 is close to zero. The situation can be observed
in Fig. 5: the voltage peaks correspond to points, where
x3 (electromagnetic flux) is crossing zero. Note that the
value of ε was chosen to be optimal with respect to both
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Fig. 6. Responses of the system states to initial conditions.

overshoot and settling time. Additional simulations (not
included in the paper) showed that larger ε yields larger
overshoot and longer settling time of the AMB system.
Furthermore, for substantially larger ε, the AMB system
state responses become unstable.

4.2. Fourth-order system. The behavior of the
fourth-order system under the controllers (32), (36)
is investigated numerically. In particular, we apply
the controller (32) when x3 approaches zero, and the
controller (36) when x4 is close to zero.

The simulation results show responses of the
nonlinear AMB system in a feedback linearization control
loop to the initial conditions and load disturbance fe.

Figure 6 presents the responses of the state variables.
Observe that the controllers (32), (36) work properly and
stabilize the system. The switching from the controller
(32) to (36) and in the opposite direction does not have
a significant effect on the AMB state responses. One
can observe that when x3 (or x4) crosses zero, due to
the system dynamics, the control current overshoot is
negligible and the AMB state responses x1 and x2 are
stable.

In order to verify the robustness of the AMB system,
the input load disturbance fe is designed as the square
pulse signal acting on the rotor directly. Figure 7
demonstrates the behaviour of the position x1 and speed
x2 of the rotor, when the external load disturbance fe is
applied to it. One may observe that stability is ensured at
any time when the limited dynamic disturbance is active.

In order to verify the robustness of the feedback
linearized AMB system, the additional simulation results
of the fourth-order AMB model responses under the high
frequency current disturbances are introduced. However,
reasonable and realistic simulations can be provided
for the current wave, which is generated by two-level
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Fig. 7. Responses of the system states to external load distur-
bance fe.
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Fig. 8. Responses of the system states to a high frequency sinu-
soidal disturbance of the control current.

voltage PWM amplifiers operating with an 18 kHz
switching frequency. The current ripple depends on the
coil inductance which introduces inertia to the system.
Therefore, the current ripple amplitude in our AMB
system is limited to 0.45 A with the peak-to-peak value
of 0.9 A. A lower current ripple, i.e., in the case of the
three-level voltage PWM, would possibly reduce noise in
the measured flux signal ripple. Figure 8 presents the
rotor displacement and rotor speed responses to the coil
current sinusoidal wave disturbances. Disturbance affects
the system in the time interval [0, 0.1] s. As can be
observed, despite the high frequency of the current ripple,
the AMB system is stable and the state responses do not
show the effect of the disturbance signal.



Feedback linearization of an active magnetic bearing system operated with a zero-bias flux 547

Time [s]

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

1

0

0.5

× 10−2

× 10−6

J 1
J 2

1

0

0.5

3rd order system

4th order system

3rd order system

4th order system

Fig. 9. Comparison of the third- and fourth-order AMB control
systems.

In order to assess both the third- and fourth-order
AMB control systems, the quadratic cost functions of the
states and the inputs (controls)

J1 =

∫ ∞

0

(
x2
1 + x2

2 + x2
3 + x2

4

)
dt,

J2 =

∫ ∞

0

(
u2
1 + u2

2

)
dt,

(38)

are used. The cost functions (38) for the third- and
fourth-order systems are compared and results are shown
in Fig. 9.

One may observe that the fourth-order system has
a better control performance than the third-order one.
Moreover, the total energy required by the controller for
the fourth-order system is substantially lower than for the
third-order one.

5. Conclusions

In the paper the feedback linearizaton technique was
effectively applied to the third- and fourth-order AMB
systems. The external control loop with a linear controller
was used to stabilize the system. Simulation results
showed that the closed-loop AMB system is stable with
respect to initial conditions and robust with respect to
external load disturbances. Based on the simulation
results, the controller voltage values are relatively small
when the settling time for the rotor position is below 1 s
for all simulations.

The future research on this topic is to verify the
suggested approach by means of experiments on the
5-DOF AMB test rig. Moreover, we will investigate
how to apply the feedback linearization technique to
low-bias AMB systems. Also, we are going to
consider a combination of some techniques presented by

Ławryńczuk (2015) and the current approach in order to
study predictive control of the AMB system.
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