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In this work, the problem of position regulation control is addressed for a 2DOF underactuated mechanical system with
friction and backlash. For this purpose, a method combining sliding mode and H∞ control is developed. We prove that the
application of the method to the nonlinear model considered results in an asymptotically stable equilibria set. Moreover,
it is possible to achieve a sufficiently small and bounded steady-state position error even in the presence of disturbances
by employing the proposed technique. That is, the developed controller is able to account not only for unmatched external
perturbations and model discrepancies of the test rig considered, but also for matched bounded perturbations. The control
methodology is presented from both the theoretical and experimental angles to demonstrate the good performance of the
proposed controller.
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1. Introduction

1.1. Motivation and methodology. A major problem
in control engineering is robust feedback design that
asymptotically stabilizes a nominal mechanical system
while also attenuating the influence of parameter
variations and external disturbances. In mechanical
systems this control objective becomes difficult when
the system motion is constrained by phenomena like
backlash. In the last decade, this problem has been
intensely studied and research efforts have been made
to control systems with different types of constraints
(Mansard and Khatib, 2008; Potini et al., 2006; Perez
et al., 2010). Nonetheless, parameter variations and
disturbances are not frequently considered. Some
important references fundamental in this respect are given
by Brogliato (1999) as well as Leine and Van de Wouw
(2010).

A methodology widely spread due to its effectiveness
against matched bounded disturbances and perturbations
is sliding mode control (see Utkin, 1992). The main
feature of this class of controllers is to allow sliding
mode to occur on a prescribed switching surface, so
that the system is governed by the sliding equation
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only, and remains insensitive to a class of disturbances
and parameter variations (Utkin, 1978). This control
method has been successfully tested for motion control
of robotic manipulators (see Sabanovic et al., 2008)
and the references therein, and also, previous work on
sliding modes control in constrained robots has been
conducted by Lian and Lin (1998). Durmaz et al. (2011)
proposed sliding mode control design based upon adaptive
sliding surfaces moving with varying slopes and offsets
for a class of nonlinear systems, and demonstrated the
effectiveness of the proposed approach by means of a
simulated maneuver of the aircraft.

Moreover, H∞ control methodology has been shown
to be effective in the control of systems affected
by unknown disturbances, and also in systems where
only incomplete and imperfect state measurements are
available; these can include unmatched uncertainties and
disturbances. Surveys of the methods for the H∞ case are
given by Doyle et al. (1989) and Isidori (2000).

Due to the particular advantages of both control
methodologies, it is of interest to design a control
technique to combine the robustness properties of
sliding mode and H∞ control, in order to design
a controller which is capable to handle the above
mentioned factors, such as backlash, Coulomb friction,
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matched and unmatched perturbations, thereby yielding
good performance on real systems. In recent research
works, the combination of sliding mode control with
H∞ methodology has shown effectiveness in controlling
switched systems (Castaños and Fridman, 2011; Lian
and Zhao, 2010; Ghafari-Kashani et al., 2010). Brahim
et al. (2015) presented an H∞ sliding mode observer for
nonlinear systems with simultaneous actuator and sensor
faults.

The problem addressed in the present paper
is position regulation through output feedback in a
mechanical system with backlash, where the latter is
considered a clearance between mechanical parts. Some
applications include machine tool tables, where backlash
is undesirable in precision positioning. These types of
systems can constraint the free motion of the actuated
link due to the effect of the clearance. In such systems,
collisions between parts may occur. Some previous work
on mechanical systems with position constraints, such as
backlash, includes that by Mansard and Khatib (2008) or
Menini and Tornambe (2001). Moreover, an analysis of
observability and controllability of sandwich systems with
backlash is presented by Luo et al. (2015).

Some efforts have been made to control constrained
mechanical systems using a wide range of methodologies
such as sliding mode control (Sabanovic et al., 2008),
predictive control (Adetola et al., 2009), and optimal
control (Christophersen, 2007), among others. The
literature on the control of perturbed and uncertain
mechanical systems under constraints is scarce. For
example, the problem of unilateral constraints on the
position is considered by Brogliato et al. (1997). Tseng
(2005) set fourth a PID-type controller for constrained
robots added to a mixed H2/H∞ control to attenuate
the influence of disturbances and uncertainties. Chiu
et al. (2004) designed a robust motion/force tracking
control for constrained uncertain robots. On the other
hand, Chang and Lee (1999) proposed a dynamic position
feedback/force control designed for constrained robots
actuated by DC motors.

In previous works, Rascón et al. (2012) addressed
a position regulation problem in an underactuated
mechanical system with a clearance between parts,
where a Dahl friction type was considered in both
links; a numerical comparison was made using the
proposed sliding mode-H∞ controller and a first-order
sliding mode controller. Recently, Rascón et al. (2016)
considered the implementation and control design of a
class of Lagrangian systems, particularly underactuated
mechanical systems with friction and backlash; the
control methodology used for this purpose was H∞, while
an experimental comparison was carried out using the
proposed controller and a PI algorithm.

1.2. Strategy and contribution. In this study, a
method of control design for a mechanical system
with backlash is proposed, where viscous friction and
dry friction of Coulomb type are taken into account.
Moreover, it is assumed that the system can be affected
by external perturbations, both matched and unmatched.
Only position measurements are available to be used
as feedback; because of this, a discontinuous velocity
observer is proposed. The proposed control law is
based on integral sliding mode and H∞ control, and
also an exponential reaching law is used in order to
reduce the convergence time to the sliding surface. A
previous work involving an integral/exponential gain law
to absorb matched perturbations is that by Zhu and
Khayati (2015). In contrast to the H∞ controller used by
Rascón et al. (2016), in this work the authors proposed
a sliding mode controller which includes an H∞ control
stage in the sliding surface; this controller is capable
of handling matched and unmatched perturbations. The
former could be eliminated if they are bounded, and
the latter are mitigated through the H∞ control stage.
Another advantage of the present approach is the use of
a finite time observer which renders better closed-loop
performance of the system.

The closed-loop stability of the mechanical system is
proved using quadratic functions; some references can be
found in the works of Paden and Sastry (1987), Shevitz
and Paden (1994), Kazerooni (1990) or Branicky (1998).
Through the usage of quadratic functions we can ensure
finite time convergence of the trajectories to the sliding
surface.

Preliminary work using a sliding mode and H∞
controller is done by Rascón et al. (2012; 2014), who
do not consider Coulomb friction. There a differentiable
approximation of the dead zone model of backlash
was also used moreover, the velocity observer and the
exponential reaching law were not presented. In order
to validate the theoretical analysis, an experimental
comparison is made using the proposed controller against
a PI algorithm.

1.3. Paper structure. The paper is outlined as
follows. In Section 2, we describe the mechanical system
with the dead-zone model of backlash; there is also a
transformation of the mechanical model based on the
position error made for control purposes. In Section 3,
output feedback design is presented, corresponding to
sliding mode control design and its convergence analysis
to the sliding surface. In Section 4, the synthesis of the
H∞ control stage is addressed. Later, in Section 5 there
is presented the development of a finite time velocity
observer and its stability proof. Section 6 discusses
experimental results performed in an underactuated
mechanical system with backlash. Finally, Section 7
presents some conclusions.
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2. Problem statement

The main concern of this work is regulation control
design (and its stability analysis) of a mechanical system
subject to backlash and Coulomb friction (see Fig. 1).
This is a basic system, described by a rather simple
model. However, it is similar to those presented in many
mechanical systems, especially the ones with clearances.
It can display an important dynamical behavior like
rebounds due to collisions with the constraint, which
may risk the integrity of a mechanical device. The
system consists of two masses subject to viscous friction,
which are linked by a spring with backlash. Hence,
we design the controller to reduce the presence of the
backlash phenomenon besides having good regulation.
The equations of motion of the open-loop mechanical

Fig. 1. Constrained mechanical system.

system can be expressed in joint coordinates as

m1ẍ1 + F1(ẋ1) + f(x1, x2) = u+ w1(t),

m2ẍ2 + F2(ẋ2) = f(x1, x2) + w2(t),
(1)

where mi, xi(t), ẋi(t), ẍi(t), i = 1, 2, represent the mass,
displacement, velocity and acceleration of the i-th link,
respectively, and the parameters Fi(ẋi) are the viscous
friction plus Coulomb friction. Moreover, u stands
for the control force and f(x1, x2) is the contact force
between masses caused by the backlash. The perturbation
w1(t) ∈ R constitutes a matched perturbation, i.e., this
is, a perturbation that comes into the state space equations
as well as the control input (for example, a completely
actuated link). In contrast, w2(t) ∈ R is an unmatched
perturbation, which affects the unactuated link.

The transmitted contact force f(x1, x2) between the
masses is given by

f(x1, x2) =

⎧
⎪⎨

⎪⎩

k(δx− c
2 ) if δx ≥ c

2 ,

0 if − c
2 < δx < c

2 ,

k(δx+ c
2 ) if δx ≤ − c

2 ,

(2)

where δx = x1 − x2, k is the spring stiffness and c is the
size of the backlash. We assume that the mass density is
homogeneous.
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Fig. 2. Dead-zone model of backlash.

The expression (2) can be rewritten as

f(x1, x2) =
k

2

(
2δx+

∣
∣
∣δx− c

2

∣
∣
∣−

∣
∣
∣δx+

c

2

∣
∣
∣

)
. (3)

The behavior of the dead-zone model of backlash can
be seen in Fig. 2. The friction model chosen for the
treatment is the static Coulomb model augmented with
viscous friction:

Fj = σ0j ẋj + Fcjsign(ẋj), j = 1, 2, (4)

where σ0j > 0 and Fcj > 0 are the viscous friction
coefficient and the Coulomb friction level, respectively,
corresponding to the j-th manipulator joint. Moreover,
the sign is the signum function, defined by

sign(ẋ) =

⎧
⎪⎨

⎪⎩

1 if ẋ > 0,

0 if ẋ = 0,

−1 if ẋ < 0.

(5)

Since the right-hand side of Eqn. (1) has
discontinuous terms due to Coulomb friction, the
solutions of the system (1) are understood in the Filippov
sense and according to the simplest convex definition
given by Filippov (1988, Chapter 2).

Provided that mass position x1(t) ∈ R and mass
position x2(t) ∈ R are the only available measurements of
the system, the above open-loop model (1), (4) possesses a
multivalued set of equilibria (x̄1, x̄2), with x̄1 = ζ, where
ζ is any constant and x̄2 ∈ [ζ − c/2 − Fc2/k, ζ + c/2 +
Fc2/k].

According to the proposal of Aguilar et al. (2003),
some nonlinear expressions, such as (3), can be
considered in H∞ controller design for the system (1),
whose only measurable outputs y(t) ∈ R

2 are the
positions of the masses, that is

y =

[
x1

x2

]

. (6)
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The objective of the sliding mode H∞ controller is
to regulate the position of the mass x2 towards a reference
x2d ∈ R, which is limt→∞ ‖x2(t) − x2d‖ < ε, ε being
a constant sufficiently small in spite of the presence of
bounded matched and bounded unmatched perturbations,
and the presence of Coulomb friction in both masses.

The role of the sliding mode stage is to eliminate
the effect of w1 and Fc1sign(ẋ1), and the purpose of
the H∞ control stage is to attenuate the unmatched
perturbation w2, and Fc2sign(ẋ2). In fact, it is important
to mention that inadequate control design to eliminate the
matched perturbations can even amplify the unmatched
perturbations (Castaños and Fridman, 2006). Given
the nonlinear underactuated control system (1) with the
contact force (3), a sliding mode control will be designed
in such a way that the closed-loop trajectories remain
bounded, and the output x2 asymptotically decreases to a
set around the desired position x2d via x1d, in the presence
of bounded perturbations which satisfy

sup
t

|w1(t)| ≤ M, M > 0. (7)

The purpose of H∞ control is to attenuate the influence
of external perturbations w2 and discontinuous friction
Fc2sign(ẋ2).

Let us consider the following change of coordinates:

q1 = x1 − x1d , q2 = ẋ1,
q3 = x2 − x2d , q4 = ẋ2,

(8)

where x2d is given by

x2d =

⎧
⎪⎨

⎪⎩

x1d − c
2 if x1d > c

2 ,

0 if |x1d| ≤ c
2 ,

x1d +
c
2 if x1d < − c

2 .

(9)

The expression (9) can be rewritten as

x2d =
1

2

(
2x1d +

∣
∣
∣x1d − c

2

∣
∣
∣−

∣
∣
∣x1d +

c

2

∣
∣
∣

)
. (10)

Therefore, the state space representation of the system (1)
according to the change of coordinates in (8) is

q̇1 = q2,

q̇2 =
1

m1
[−F1(q2)− f(q1 + x1d , q3 + x2d) + u+ w1] ,

q̇3 = q4,

q̇4 =
1

m2
[−F2(q4) + f(q1 + x1d , q3 + x2d) + w2] ,

(11)

where

f(q1 + x1d , q3 + x2d)

=
k

2

(
2δq +

∣
∣
∣δq − c

2

∣
∣
∣−

∣
∣
∣δq +

c

2

∣
∣
∣

)
,

(12)

and δq = q1 − q3 − 1
2 |x1d − c

2 |+ 1
2 |x1d +

c
2 |.

3. Design procedure

The control objective consists in stabilizing the position
of mass x2(t) to a desired reference x2d, that is,

lim
t→∞ ‖q3(t)‖ = lim

t→∞ ‖x2(t)− x2d‖ < ε. (13)

This is achieved through closed-loop controller design,
specifically using the sliding mode control technique
plus an H∞ attenuator. The H∞ stage is incorporated
into sliding surface design. The sliding mode control
technique is able to eliminate matched perturbations
affecting the mechanical system.

3.1. Sliding mode control. Consider the following
sliding surface:

s = q1 + q2 +

∫ T

0

q1(t) dt−
∫ T

0

u∞(t) dt, (14)

where u∞(t) ∈ R is the H∞ control stage, whose design
will be explained in Section 4 through the use of the
procedure shown by Aguilar et al. (2003) or Isidori and
Astolfi (1992). The aim of designing the sliding surface
shown in (14) will be meaningful in the development of
the proof of closed-loop stability. The control law which
ensures that the trajectories reach the sliding surface is
given by

u = σ01q2 + f(q1 + x1d , q3 + x2d)

+m1

[

−q1 − q2 + u∞ − λs− β

N(s)
sign(s)

]

,

(15)

where λ and β are positive constant gains which are
tuned to ensure that the movement of the trajectories
goes toward the sliding surface. N(s) is the so-called
exponential reaching law given by Fallaha et al. (2011),
and expressed by

N(s) = δ0 + (1− δ0)e
−α|s|p , (16)

where the constants 0 < δ0 < 1, p > 0 and α > 0.
Since N(s) is always strictly positive, the exponential
reaching law given by (16) does not affect the stability
of the reduced order system, as it is proved in the next
section.

Substituting the control input (14)–(15) into the
dynamic system (11), it can be seen that the closed-loop
dynamics are given by

q̇1 = q2,

q̇2 = −q1 − q2 − λs− β

N(s)
sign(s) + u∞
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− Fc1sign(q2)
m1

+
w1

m1
,

q̇3 = q4,

q̇4 =
1

m2
(−F2(q4) + f(q1 + x1d , q3 + x2d) + w2) ,

ṡ = −λs− β

N(s)
sign(s) +

w1

m1
.

(17)

In one of the next sections we propose a finite-time
observer in order to estimate the velocity vector, which is
needed to implement the control input (14)–(15).

3.2. Analysis of the existence of sliding modes.
First of all, let us analyze the stability properties of the
closed-loop system (17). The convergence of the output
variables q1 and q3 will be analyzed as follows: firstly
we will prove that the trajectories of (11) are attracted by
the sliding surface (14) and converge to it in finite time;
then, once the trajectories are on the sliding surface, it will
be proved that (q1, q2) decreases exponentially to (0, 0);
finally, it will be proved that trajectories (q3, q4) converge
asymptotically to a constant value (ε, 0).

According to Utkin (1978), the existence of sliding
modes can be ensured if sṡ < 0 is satisfied. The
expression of sṡ can be developed as follows:

sṡ = s

(

−λs− β

N(s)
sign(s)− Fc1sign(q2)

m1
+

w1

m1

)

≤ −λs2 −
(

β

N(s)
− Fc1

m1
− M

m1

)

|s|,
(18)

from which the existence of sliding modes on s =
0 can be determined, while the condition β/N(s) −
Fc1/m1 −M/m1 > 0 remains valid. Moreover, from the
exponential sliding surface N(s) = δ0 + (1− δ0)e

−α|s|p ,
one can see the following limit cases:

lims→0 N(s) = 1, lims→∞ N(s) = δ0. (19)

Therefore β/N(s) ∈ [β, β/δ0]. This means that
β/N(s) increases as |s| increases and, consequently, the
convergence rate to s = 0 will be faster. The expression
for the convergence rate tf is shown in what follows. On
the other hand, if |s| decreases, then N(s) approaches
1, and β/N(s) converges to β. This means that, when
the system’s trajectories approach the reference, β/N(s)
gradually decreases in order to reduce the control effort.
Thus, the exponential reaching law allows the controller
to dynamically adapt to variations in s.

If δ0 is chosen to be equal to 1, the reaching law
(18) becomes identical to the conventional reaching law
ṡ = −λs − β · sign(s) + γ(t, q), where γ(t, q) includes
the perturbations and Coulomb friction. Therefore, the

conventional reaching law is a subset of the present
approach.

Also, we can demonstrate finite time convergence of
the trajectories to the surface s = 0 using the quadratic
function

V (s) = s2, (20)

and compute its time derivative along the solutions of (17),

V̇ ≤ −2λs2 − 2

(
β

N(s)
− Fc1

m1
− M

m1

)

|s|

≤ −2

(
β

N(s)
− Fc1

m1
− M

m1

)

|s|

= −2

(
β

N(s)
− Fc1

m1
− M

m1

)√
V ,

(21)

under the initial condition V (t0) = V0. Assuming that
β/N(s) > Fc1/m1 + M/m1, we can guarantee the
existence of a time tf such that, for all t > tf , the function
V tends to zero. This can be computed directly from (21),
where

V (t) = 0 for t ≥ t0 +

√
V0

β
N(s) − Fc1+M

m1

� tf . (22)

Hence, V (t) converges to zero in finite time and, in
consequence, a motion along the manifold s = 0 occurs
in the discontinuous system (17) from tf at most.

Thus, in the sequel, we will assume that the system
(17) is in sliding mode, so s = ṡ = 0 for t ≥ tf . Under
these conditions, the dynamics of the system (17) can be
reduced to

q̇1 = q2,

q̇2 = −q1 − q2 + u∞,

q̇3 = q4,

q̇4 =
1

m2
(−F2(q4) + f(q1 + x1d , q3 + x2d) + w2).

(23)

Notice that q̇2 was obtained from ṡ = 0; this is when the
trajectories are on the sliding surface and their dynamics
are insensitive to the influence of Coulomb friction and
external perturbations. Therefore, the sliding surface s in
(14) was designed in accordance with the control objective
and the desired reduced order dynamics in (23).

3.3. Stability analysis. Now, consider u∞ = 0 and
w2(t) = Fc2 = 0. It is possible to show that, when
u∞ = 0, q ∈ R

4 converge to an equilibrium point
q̄ = (0, 0, ε, 0), with |ε| ≤ c/2. To this end, notice from
(23) that variables q1 and q2 are decoupled from variables
q3 and q4. If we consider the subsystem

q̇1 = q2,

q̇2 = −q1 − q2,
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according to Khalil (2002, Definition 4.5), it can be
concluded that q1 and q2 exponentially decay to zero.

Considering the stationary case, the residual
dynamics are

q̇3 = q4

q̇4 =
1

m2
[−σ02q4 + f(q1 + x1d , q3 + x2d)],

(24)

where f(q1+x1d , q3+x2d) is given in (12), in accordance
with what is shown in (3) and Fig. 2. Given that q1
converges exponentially to zero, the dynamics of system
(24) can be analyzed from

q̇3 = q4,

q̇4 = −σ02

m2
q4 − k

m2
q3 +

k

2m2

(
|δq − c

2
|

+|x1d +
c

2
| − |δq + c

2
| − |x1d − c

2
|
)
,

(25)

where now
∣
∣
∣δq− c

2

∣
∣
∣ =

∣
∣
∣−q3− c

2
− 1

2

∣
∣
∣x1d− c

2

∣
∣
∣+

1

2

∣
∣
∣x1d+

c

2

∣
∣
∣

∣
∣
∣ (26)

and
∣
∣
∣δq+

c

2

∣
∣
∣ =

∣
∣
∣−q3+

c

2
− 1

2

∣
∣
∣x1d− c

2

∣
∣
∣+

1

2

∣
∣
∣x1d+

c

2

∣
∣
∣

∣
∣
∣. (27)

Let us consider the differentiable and nonnegative
function V : R2 → R,

V (q3, q4) =
1

2
q24

+
k

2m2

⎧
⎪⎨

⎪⎩

q23 + cq3 +
c2

4 if q3 < − c
2 ,

0 if |q3| ≤ c
2 ,

q23 − cq3 +
c2

4 if q3 > c
2 .

(28)

Using the aforementioned function V (q3, q4), we have for
the three cases that

V̇ (q3, q4) = −σ02

m2
q24 ≤ 0,

which is a negative semi-definite function. Now, given
that V (q3, q4) is lower bounded and V̇ (q3, q4) is negative
semi-definite, this implies that V̇ (q3, q4) ≤ V (0, 0) and,
therefore, that q3 and q4 are bounded.

To use Barbalat’s lemma, let us check the uniform
continuity of V̇ (q3, q4). The derivative of V̇ (q3, q4) is

V̈ = −2
σ02

m2
q4

(

−σ02

m2
q4 − k

m2
q3 +

k

2m2

(
|δq − c

2
|

+|x1d +
c

2
| − |δq + c

2
| − |x1d − c

2
|
))

. (29)

This shows that V̈ is bounded, since q3 and q4 were shown
above to be bounded. Hence, V̇ is uniformly continuous.

Application of Barbalat’s lemma then indicates that q4 →
0 as t → ∞.

Thus, coordinates (q3, q4) converge to (ε, 0), where
ε ∈ [−c/2, c/2], which means that an error will be almost
always present on the position of the underactuated mass.

In what follows, the purpose is to reduce this position
error in the unactuated mass by the application of H∞
control design to the previous system. Moreover, the
perturbation w2 and the Coulomb friction Fc2sign(q4), as
well as their effects on the output q3 of the closed-loop
system, are intended to be reduced through H∞ control.
Thus, the regulation control problem for q3 in the system
(23) can be expressed formally as an H∞ control problem.

4. H∞ control design

In the sequel, the investigation will be confined to the H∞
position regulation problem for system (23), where

(i) the output to be controlled is given by

z = ρ

[
0
q3

]

+

[
1
0

]

u∞, (30)

with a positive weight coefficient ρ;

(ii) the positions q1, q3 are the available measurements

y =

[
q1 + xd1

q3 + xd2

]

. (31)

The H∞ control problem in question is thus stated as
follows: Given the system representation (23), (30), (31)
and a real number γ > 0, it is required to find (if any) a
causal dynamic feedback controller

u∞ = K(q), (32)

with internal state q ∈ R
4 such that the undisturbed

closed-loop state q3 is locally uniformly asymptotically
stable around the origin and its L2 gain is locally less
than γ.

Now, H∞ control design for the system (23) will be
presented, which is modeled by the equations presented
by Aguilar et al. (2003) or Isidori and Astolfi (1992):

q̇ = Γ(q) + Φ(q) + g1(q)w + g2(q)u∞, (33)

z = h1(q) + k12(q)u∞, (34)

y = h2(q) + k21(q)w, (35)
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where

Γ(q) =

⎡

⎢
⎢
⎣

q2
−q1 − q2

q4
−σ02

m2
q4 +

k
m2

q1 − k
m2

q3

⎤

⎥
⎥
⎦ , (36)

Φ(q) =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0

−Fc2

m2
sign(q4) + k

2m2

(∣
∣x1d +

c
2

∣
∣−∣

∣x1d − c
2

∣
∣+

∣
∣δq − c

2

∣
∣− ∣

∣δq + c
2

∣
∣
)

⎤

⎥
⎥
⎥
⎥
⎦
, (37)

g1(q) =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎤

⎥
⎥
⎦ , g2(q) =

⎡

⎢
⎢
⎣

0
1
0
0

⎤

⎥
⎥
⎦ ,

h1(q) = ρ

[
0
q3

]

, h2(q) =

[
q1 + x1d

q3 + x2d

]

,

k12(q) =

[
1
0

]

, k21(q) =

[
0 0 1 0
0 0 0 1

]

. (38)

From the system (23), let us derive a local solution to the
H∞ regulation problem. Therefore, the local solution to
the H∞-position regulation problem subject to (36)–(38)
has the following structure (see Aguilar et al., 2003; Doyle
et al., 1989; Kwakernaak, 1993):

ẋ = Ax+B1w +B2u,

z = C1x+D12u,

y = C2x+D21w,

(39)

where

A =
∂Γ

∂x
(0), B1 = g1(0), B2 = g2(0),

C1 =
∂h1

∂x
(0), D12 = k12(0), C2 =

∂h2

∂x
(0),

D21 = k21(0), (40)

with matrices A, B1, B2, C1, C2, D12, D21 of appropriate
dimensions. The general state-space representation with
nonzero feedthrough terms D11 and D22 can be treated
as in the work of Safonov et al. (1989) by constructing
an equivalent problem with D11 = 0 and D22 = 0. In
addition, the simplifying assumptions

(A1) (A,B1) is stabilizable and (C1, A) is detectable,

(A2) (A,B2) is stabilizable and (C2, A) is detectable,

(A3) DT
12C1 = 0 and DT

12D12 = I ,

(A4) B1D
T
21 = 0 y D21D

T
21 = I ,

presented by Doyle et al. (1989), are made throughout.

A local solution is then derived by means of the
perturbed Riccati equation (Aguilar et al., 2003)

0 = PεA+ATPε + CT
1 C1

+ Pε

[
1

γ2
B1B

T
1 −B2B

T
2

]

Pε + εI. (41)

There exists a positive constant ε0 such that the system
of the perturbed algebraic Riccati equation has a unique
positive definite symmetric solution Pε for each ε ∈
(0, ε0). Equation (41) is utilised to derive a local solution
to the H∞-control problem for a mechanical system with
friction and backlash (36)–(38).

Let Pε be a positive definite solution to (41) under
some ε > 0. Then the output feedback is given by

u∞ = −gT2 (q)Pεq, (42)

which is a local solution of the H∞-control problem.
The H∞ control stage has two purposes: to achieve
closed-loop stability and to attenuate the influence of the
external input w on the penalty variable z. Perturbation
attenuation depends on the specific class of external
signals to be considered and/or the performance criteria
chosen to evaluate the penalty variable. Given a real
number γ > 0, it is said that the system (33), (42) has
L2 gain less than γ if the response z, resulting from w for
initial state q(0) = 0, satisfies

∫ T

0

zT (t)z(t) dt ≤ γ2

∫ T

0

wT (t)w(t) dt (43)

for all T > 0 and all piecewise continuous functions
w(t), for which the corresponding state trajectory of the
closed-loop system, initialised at the origin, remains in
some neighbourhood of this point.

5. Finite time velocity observer design

This section explains a finite time velocity observer for
system (11). The following observer was taken from the
previous work of Orlov et al. (2011). The system (11)
has the output y = [q1, q3]

T and it is assumed that the
variables q2 and q4 are not available.

The finite time observer considered has the form

˙̂q1 = q̂2 + k1|e1| 12 sign(e1) + k2e1,

˙̂q2 =
1

m1
[−σ01q̂2 − f(q̂1 + x1d , q̂3 + x2d) + u]

+ k3sign(e1) + k4e1,

˙̂q3 = q̂4 + k5|e3| 12 sign(e3) + k6e3,

˙̂q4 =
1

m2
[−σ02q̂4 + f(q̂1 + x1d , q̂3 + x2d)]

+ k7sign(e3) + k8e3.

(44)
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The variables ei with i = 1, . . . 4 stand for the
observation errors, which are given by ei = qi − q̂i.
The gains of the observer are given by ki. As (44)
possess discontinuous right-hand sides, the dynamics of
such equations are defined throughout in the sense of
Filippov (1988). The dynamics of the observation errors
considering ∓f(q1, q3) ± f(q̂1, q̂3) = ∓ke1 ± ke3 are
given by

ė1 = e2 − k1|e1| 12 sign(e1)− k2e1,

ė2 =
1

m1
[−σ01e2 − ke1 + ke3]

− k3sign(e1)− k4e1,

ė3 = e4 − k5|e3| 12 sign(e3)− k6e3,

ė4 =
1

m2
[−σ02e4 + ke1 − ke3]

− k7sign(e3)− k8e3.

(45)

For stability purposes, according to Orlov et al.
(2011), the term

∣
∣
∣
1

mj

[
−σ0je(2×j) + ke( 4

j −1)

] ∣
∣
∣ ≤ Ψj , (46)

with j = 1, 2 and Ψj > 0 must meet the conditions

Ψ1 < min

{
k1
2
,
k1k3
1 + k1

}

,

Ψ2 < min

{
k5
2
,
k5k7
1 + k5

}

. (47)

Then the system (45) is globally finite time stable
whenever the inequalities (47) are satisfied; the
corresponding settling-time functions are given by Orlov
et al. (2011). The block diagram representation of the
closed-loop system can be seen in Fig. 3.

For stability purposes of the overall closed-loop
system, the observer will be initialized before the

Control

Observer

System

w1, w2

q1 � q1, q3 � q3

u

q2, q4, s

q1, q3

+

q1, q3

�
q1, q3

Fig. 3. Block diagram of the closed-loop system.

implementation of the controller (14)–(15); this means
that the controller will be activated after the settling-time
of the observer has elapsed, when q̂2 = q2 and q̂4 = q4.

6. Experimental results

Performance issues and robustness properties of the
proposed controller (14)–(16) using the disturbance
attenuator u∞ in (42) were tested on the ECP-210
platform, made by the Educational Control Products
company. This platform was modified to have a backlash
as in Fig. 4. Since the only state measurements available
are x1 and x2, the proposed discontinuous velocity
observer (44) is applied to have access to the remaining
states.

An Intel� Core 2 Quad computer was used, and the
Simulink� software was employed as an interface; the
sample rate for the data acquisition was set at 0.001 s. The
platform was configured to have the dynamical behavior
as the mechanical system depicted in Fig. 1. Particularly,
the nonlinear characteristic of the backlash shown in
Fig. 2 is taken into account and reproduced by adding a
modification to the mechanical system; see Fig. 4. The
modification to the system consists of a double end stud
screw, which is linked by a spring to the first mass, leaving
a backlash between the spring and the second mass. Thus,
rebounds may occur between the actuated and unactuated
masses.

The parameters of the mechanical system were
considered as in Table 1. The desired position of the
underactuated mass is given by x2d = 2.0 cm. The
controller feedback gains were β = 0.35N , λ = 0.05,
δ0 = 0.1, α = 10 and p = 10. It is worth mentioning
that friction terms were calculated in accordance with the
methodologies presented by Virgin (2000).

Table 1. Nominal parameters.
Description Notation Value

First mass m1 1 kg
Second mass m2 0.6 kg
Clearance c 1 cm
Viscous friction σ01 10 kg/s
Viscous friction σ02 17 kg/s
Coulomb friction Fc1 0.1 N
Coulomb friction Fc2 0.1 N
Spring stiffness k 375 N/m

Additionally, an external but bounded force
perturbation governed by

w1 = 0.03 sin(t)N (48)

is applied. For the selected γ = 1, ρ = 1 and ε = 0,
the corresponding perturbed Riccati equation (41) has a
positive definite solution
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Fig. 4. Experimental platform ECP-210 configured to have gear
play.

Pε =

⎡

⎢
⎢
⎢
⎢
⎣

23.3243 1.4093 −18.7980 0.0030

1.4093 1.1951 −0.5769 −0.0304

−18.7980 −0.5769 17.3192 0.0006

0.0030 −0.0304 0.0006 0.0300

⎤

⎥
⎥
⎥
⎥
⎦
,

which has been numerically found using MATLAB. It
is noteworthy that the gain parameters of the controller
(15) were tuned according to some characteristics such
as the velocity of response, robustness and control signal
amplitude. These characteristics were taken into account
first when performing numerical simulations. Based on
the values of the gain parameters obtained by numerical
simulations, the experimental gain parameters were tuned
by trial and error; therefore, it is possible that other values
of the controller gain parameters yield better results. The
perturbation w2 is considered inherent to the mechanical
system.

On the other hand, the finite time velocity observer
gains were set to k1 = k3 = k5 = k7 = 1, k2 = k6 = 7,
and k4 = k8 = 10. The values for the initial conditions
were q1(0) = 0 m, q2(0) = 0 m/s, q3(0) = 0 m, q4(0) =
0 m/s and s(0) = 0. The observer’s initial conditions were
set as q̂(0) = 0 ∈ R

4.

6.1. H∞ controller comparison. In order to
appreciate the performance of the sliding mode H∞
controller, a comparison is made against an H∞ control
scheme presented by Rascón et al. (2016); also, a
nonvanishing perturbation was considered as in (48). The
gains of the H∞ controller were set as in the work
of Rascón et al. (2016) the velocities of the system
were estimated using a filter implemented therein. The
results can be seen in Figs. 5–8, where the sliding
mode H∞ controller yields better performance than the
H∞ controller, with a smaller settling time and smaller

position errors using the proposed control approach,
which are more evident in the perturbed case.

In Fig. 5 it can be seen that the position errors q1
and q3, corresponding to the actuated and underactuated
mass, respectively, tend to the reference in less than 1.5
seconds. The observed velocities of the masses q̂2 and
q̂4 corresponding to the first and second masses were
obtained from the observer (44), and they were used as
feedback in the controller.

In Fig. 6, where the system at hand is affected
by a nonvanishing perturbation (except for nonlinear
phenomena, such as discontinuous friction and backlash),
the position errors q1 and q3 tend to their nominal values in
less than 1.5 seconds. Since the bound of the perturbation
satisfies M < β/N(s), the system is insensitive to
that perturbation. On the other hand, the H∞ control
scheme only diminishes the effect of the perturbations
on the outputs q1 and q3. In Figs. 7 and 8, we have the
control signals, the sliding motions s, and phase portraits
of the unperturbed and perturbed cases, respectively.
In the control signal of the proposed approach, high
frequencies can be seen due to the discontinuous term
used in controller design, although the control signal
of the H∞ implementation has a bigger transient than
the one of the proposed approach; note that the H∞
algorithm is not insensitive to external perturbations.
Also, in Figs. 7 and 8 we show the sliding motion variable
s. For both experiments the plots are very similar due
to the insensitivity of the algorithm to certain bounded
perturbations. Finally in the same figures the phase
portraits of both links are shown.

6.2. Test under parametric variation. Now, a test
is made under a parameter variation. Let us change
the spring of 375 N/m for a spring of 105 N/m. This
change affects directly the closed-loop performance since
the proposed control law (15) uses the spring constant
in order to compensate the contact force between both
masses; note that the spring is changed on the physical
system. In the control law (15) the value of the spring
is kept as 375 N/m. The results can be seen in Figs. 9
and 10, where the sliding mode-H∞ controller yields an
acceptable performance despite the controller not being
originally designed to absorb a spring variation.

7. Conclusions

We developed a fully practical framework for sliding
mode control involving an H∞ control methodology
in sliding surface design. The aforementioned design
procedure was shown to be eminently suited to solving
a position regulation problem for a mechanical system
with friction, backlash, and external perturbation. The
position error of the underactuated mass is reduced by
the H∞ control stage. The proposed sliding mode H∞
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Fig. 5. Experimental results using the sliding mode H∞ con-
troller (dark gray) and an H∞ controller (light gray).
For the implementation of the sliding mode H∞ con-
troller only mass position measurements were available;
the velocities q̂2 and q̂4 were obtained using an observer.

output regulation synthesis is suited to absorb bounded
perturbations supt |w1(t)| ≤ M and Coulomb friction
Fc1sign(q2) on the actuated mass that satisfied β/N(s)−
M/m1 − Fc1/m1 > 0. Whenever this inequality is not
satisfied, the controller will attenuate the perturbations
and dead zone model discrepancies, but it is enough
to increase the gain parameter β in order to fulfill the
stability inequality. Moreover, the H∞ control stage will
attenuate perturbations w2(t) affecting the underactuated
mass. In the unperturbed case, the position error of the
underactuated mass will be inside the set [−c/2, c/2],
and this error will be attenuated by the H∞ control
stage. The main contribution of this work is the design
of a sliding mode H∞ controller to regulate the position
in an underactuated mechanical system with backlash,
Coulomb friction in both masses, and affected by matched
and unmatched perturbations. The effectiveness of

Fig. 6. Experimental results using the sliding mode H∞ con-
troller (dark gray) and an H∞ controller (light gray),
where mass position measurements were used for both
controllers: a perturbed case.

the design procedure was supported by experiments on
the platform ECP-210 modified to have backlash and
parameter variation. One possible application of this class
of system could be the modeling of a car suspension or
cooperative systems.
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