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This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete,
experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck
is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the
displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted
for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares
method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals) that
captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using
more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005), which was derived
for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode
shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to
data precision.
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1. Introduction

Vibration measurement on bridges has a long tradition.
Today it is used primarily to verify the static and
dynamic behaviour of a bridge immediately after its
construction. Much more importance, however, is
assigned to repeated measurements over the entire life
of the bridge, which are used for structural health
monitoring (SHM) (Farrar et al., 2001; Roshan et al.,
2015; Wenzel, 2009). These measurements, although
very carefully performed, give the results only at discrete
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points, even though these results are often burdened with
errors such as inaccuracies in the measuring equipment,
a limited range and sensitivity of measuring devices,
time synchronization problems with the results from the
measurement of polygons with lengths of several hundred
meters, the uncertainty of processing results, random
effects of weather, temperature effects, and the like.

Modal analyses are popular and used for identifying
not only common structures like bridges or buildings, but
also for a wide range of different mechanical systems
subjected to different specific conditions (Joannin and
Thouverez, 2015; Li et al., 2016; Silva et al., 2015; Yang
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and Sultan, 2016).

Several methods for calculating vibration mode
shape derivatives were discussed long time ago (Sutter
et al., 1988; Yu et al., 1997). They include the
finite-difference method, the modal method or the
Nelsons method. In this case, mode shape derivatives
were calculated with respect to various design variables
like a specific mass or a specific dimension of the
model. A review of calculating the derivatives of
eigenvalues and eigenvectors associated with general
(non-Hermitian) matrices is provided by Murthy and
Haftka (1988). ZhangPing and JinWu (2007) presented
a novel modal superposition method for calculating
eigenvector derivatives. This method is applicable to
various damped systems and closed-mode cases. Yi et al.
(2012) presented a discrete wavelet transform (DWT)
approach to denoise the measured signals. Also Baili
et al. (2009), Leite et al. (2008) and many others used
the wavelet transform for similar purposes.

An approximation of a linear transfer function model
is proposed, based on dynamic properties represented
by a frequency response, e.g., determined as a result
of discrete-time identification, by Janiszowski (2014).
The denoising performance of the DWT is achieved
by several processing parameters, including the type of
wavelet, the decomposition level, thresholding method,
and threshold selection rules. Liu (2013) presented a
new method for calculating derivatives of eigenvalues
and eigenvectors of discrete structural systems focused on
discrete structural systems which are characterized by its
eigenpairs, i.e., eigenvalues and eigenvectors. Eigenpair
derivatives have been used in many areas such as design
sensitivity analysis and optimization, correlation and
model updating, stability analysis control, etc.

But all those papers are concerned mostly with
parametric sensitivity of eigenvalues and eigenvectors or
intended to denoise data with quite a big portion of
high frequency noise. In our paper the focus is on
smoothing the inaccurate test data without significant
noise by using an appropriate approximation function.
The basic requirement is that the approximation functions
should enable calculation of higher order derivatives for
expressing physical quantities of the structure, like, e.g.,
internal forces, etc.

When processing the results of measurements we
have to find, as precisely as possible, the function of the
deflection of the bridge. What is more, we need to handle
its other derivatives, which are, e.g., rotation (the first
derivative) or curvature (the second derivative) (De Roeck
et al., 2000), or the third derivative, which describes the
changes in shear forces.

For this purpose, we need to smooth the measured
data very carefully. Thus, we are looking for an

approximation function which corresponds accurately to
the measuring results and at the same time meets the other
boundary conditions, such as, e.g., those where due to the
pillar the third derivative at supports is not a continuous
function.

In this article we deal with the issue of how to acquire
approximate displacement vibration functions. Input
values are the discrete experimentally obtained mode
shapes. A new improved approximation method based
on the modal vibrations of the deck is derived on the
basis of the weighted least-squares method. The statistical
evaluation of the stiffness parameter is done using more
vertical modes obtained from experimental results.

The method based on the solution of vibration for
distributed parameter systems seems to be appropriate for
approximation because of its original physical meaning
describing a vibration of the structure. One parameter
already measured during the tests that can be used here is
an eigenfrequency of vibration. An approximation using
this method has been derived for near the pier areas (Sokol
and Flesch, 2005), and in this paper it is enhanced to the
whole length of the bridge.

An alternative method to be employed in this paper
is to approximate the displacement vibration function
by a sum of sine functions whose periodicity (in the
first step) is determined by spectral analysis adapted for
non-uniformly sampled data and (in the second step)
the parameters of the scale and phase are estimated as
usual where by least squares method. Moreover, this
periodic component is supplemented by a cubic regression
spline—fitted on its residuals (as a third step)—that
captures individual displacements between piers.

The paper is organized as follows. Section 2
presents spectral analysis of non-uniformly sampled
data, a brief overview of the theory of regression
splines, approximation functions based on the solution
of vibration for distributed parameter systems and an
evaluation of the approximation function by analysing
the shear wave velocities obtained from vibration of a
bridge. In Section 3 some practical applications are
presented. Section 4 is dedicated to comparing advantages
of the presented techniques and presents future research
directives. Finally, some concluding remarks are added.

2. Methods

Since the displacement vibration function can be
decomposed into a global periodic component and locally
defined residual components, we briefly describe methods
first to detect the period, to model the periodic component
and lastly to capture the shape of each individual segment
(between two adjacent piers) by a single continuous
function.
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An alternative method of approximation is based on
the assumption of transverse vibration of a beam with
distributed parameters.

2.1. Spectral analysis of non-uniformly sampled
data. Consider a response variable Y and a spatial
explanatory variable X with (zero-mean) realizations
y1, . . . , yn measured at points x1, . . . , xn, respectively.
We assume that the data series consists of a finite
number of sinusoidal components and of a random noise.
Formally,

yi =

m∑

j=1

Aj cos(wjxi + ϕj) + εi,

where wj = 2π/Tj signifies the angular frequency
corresponding to a period T , ϕj is the phase and Aj the
amplitude of the j-th component, while ε is, as usual, a
random term. The problem of finding the set of significant
frequencieswj is the task of spectral analysis and the most
popular approach consists in computing the so-called
periodogram.

If (at the experimental stage) the points xi were set
with a constant increment, we could use the classical
Fourier transform-based periodogram,

PF (ω) =
1

n2

∣∣∣
n∑

j=1

yje
−ıωxj

∣∣∣
2

, (1)

(with ı =
√−1) computed easily by the discrete Fourier

transform for n Fourier frequencies wj = 2πj/n, j =
0, . . . , n − 1. The periodogram (1) can be obtained as a
solution to the least-squares data fitting problem

PF (ω) = |β̂|2,

β̂ = argmin
β

n∑

j=1

|yj − βeıωxj |2 ,

rewritten (if β is expressed in polar form, β = |β|eı2πϕ)
in the form

β̂ = argmin
β

n∑

i=1

[yi − |β| cos(ωxi + ϕ)]2

+ |β|2 sin2(ωxi + ϕ).

The first term represents the least-squares fit of a
sinusoidal function with a possible physical meaning;
however, the second term acts as a data-independent
perturbation. Thus, since our data points xi are distributed
unevenly, the periodogram PF is not equivalent to the
least-squares fit of sinusoidal functions (see Vio et al.,
2013).

A more satisfactory spectral estimate should be
obtained by solving the following least-squares problem:

min
A∈R, ϕ∈[0,2π]

n∑

i=1

[yi −A cos(ωxi + ϕ)]2,

reparametrized through a = A cosϕ and b = −A sinϕ to

min
a,b

n∑

i=1

[yi − a cos(ωxi)− b sin(ωxi)]
2.

The solution is (
â

b̂

)
= R−1r,

where

R =
n∑

i=1

(
cos(ωxi)
sin(ωxi)

)(
cos(ωxi) sin(ωxi)

)

r =

n∑

i=1

(
cos(ωxi)
sin(ωxi)

)
yi.

Then the corresponding least-squares periodogram is
defined as

PLS(ω) =
1

n

n∑

i=1

((
â b̂
)(

cos(ωxi)
sin(ωxi)

))2

,

=
(
â b̂
)
R

(
â

b̂

)
,

= rTR−1r.

(2)

In general, there is no guarantee that PLS(ω) is
independent of PLS(ω

′) whenever ω �= ω′ since by
(2) a single sinusoidal function is fitted per time. As a
consequence, it is difficult to determine a correct threshold
for significant frequencies detection. One may consider
the quantity

LFA = −σ2
n ln
[
1− (1− α)1/nω

]
, (3)

called the level of false alarm, i.e., the level that due
to the noise (with standard deviation σn) one or more
peaks would exceed with a prefixed probability α when
nω (independent) frequencies are inspected. Though nω

is not known, the dependence of LFA on nω is weak.
Thus in many situations nω = n/2 can be a reasonable
choice, as pointed out by Scargle (1982). For a discussion
on pros and cons of the least-squares periodogram as
well as a well-established modification, the so-called
Lomb–Scargle periodogram, can be found in the works
of Stoica et al. (2009) and Vio et al. (2013).

2.2. Regression spline. In many engineering
applications a linear regression is a favourite method
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to approximate some dominant trend in the measured
data. Sometimes a polynomial regression is used to
accommodate the changing speed of growth or decrease,
or specifically even a trigonometric polynomial makes
sense when the trend is part of a very clear cyclic nature
of the measured phenomenon. Such models are popular
for their plain interpretability and are often chosen even
when their fit is questionable, if not openly poor. As
a straightforward remedy, one can choose higher order
polynomials or more periodic components, yet then the
interpretability is lost.

However, if we have a deeper knowledge of the
data generating process and can reliably identify points
where a structural change happens, one way out of
the black box approach above can be to partition the
regression problem to pieces. Let us, again, consider a
response variable Y and an explanatory variable X with
realizations y1, . . . , yn measured at points x1, . . . , xn,
respectively, and a linear model

yi = β1b1(xi) + β2b2(xi)

+ · · ·+ βK−1bK−1(xi) + εi
(4)

with basis vector functions bk, parameter vectors βk,
k = 1, . . . ,K − 1, and random terms εi, i = 1, . . . , n.
If we know points c1, . . . , cK (c1 ≤ xi < cK) where the
observed phenomenon changes essentially, we may define
the basis functions as

bk(x) = (1, x, x2, . . . , xpk)I(ck ≤ x < ck+1), (5)

where pk is the order of a particular polynomial, and I
denotes the indicator function which evaluates to 1 if its
argument is true and to 0 otherwise. Then the function (4)
is called a piecewise polynomial and the change points
c1, . . . , cK are known as knots. The parameter vectors βk

are of length pk + 1, and the fitting of such a piecewise
function uses

∑K−1
k=1 pk degrees of freedom.

To impose the continuity or even smoothness of our
polynomial at the knots, a set of constraints needs to
be introduced into parameter estimation, which in turn
reduces the overall complexity. This can be achieved in a
“numeric way” by an optimization method or, more easily,
by a reparametrization through the basis functions. We
use the latter approach.

Let us restrict ourselves to cubic polynomials
between all adjacent knots and request the continuity of
the regression curve up to (and including) the second
derivative. Then the model (4) is rewritten to

yi = β0 + β1b1(xi) + · · ·+ β3+1b3+1(xi)

+ β3+Kb3+K(xi) + εi
(6)

with basis functions for a cubic polynomial bk(x) = xk

for k = 1, 2, 3, and the extra, truncated power basis

functions

b3+j(x) = max(x− cj , 0)
3, j = 1, . . . ,K,

where K is again the number of knots, yet parameters and
basis functions are scalar terms. Regression polynomials
with continuity restrictions are called regression splines
and the particular one represented by the model (6) which
has continuous first and second derivatives at the knots
is known as a cubic spline.1 Fitting a cubic spline with
K knots uses K + 4 degrees of freedom. Enforcing one
more order of continuity would lead to a global cubic
polynomial. For further details on regression splines, we
refer the reader to, e.g., Hastie et al. (2009, p. 485–585)
or James et al. (2013).

In our application of modelling the bridge and an
adjacent part of soil, the response variable y represents
the shape of the specific vibration mode, a distance from
the first pier is used as the predictor x, and the knots are
placed to the respective piers.

2.3. Approximation functions based on the solution
of vibration for distributed parameter systems. The
solution is divided into parts. One part can represent a
particular span of the bridge or a part of it, where the main
characteristics (EIp, μp, ωm) remain constant.

The mode shape m in the part p can be approximated
using the solution describing the transverse vibration of a
beam (Clough and Penzien, 1993) (see Fig. 1). The mode
approximation functions are

pp,m(xp)

= C1,p,m cosh(ap,mxp) + C2,p,m sinh(ap,mxp)

+ C3,p,m cos(ap,mxp) + C4,p,m sin(ap,mxp),

(7)

where

• ap,m = 4
√
μpω2

m/EIp is a vibration parameter for
the m-th mode in the part p,

• μp stands for deck masses per unit length,

• ωm is the experimental circular frequency of the
m-th mode,

• EIp stands for bending stiffness,

• C1,p,m, C2,p,m, . . . , C4,p,m signify integration
constants of vibration functions.

Continuity conditions for two adjacent functions
pp,m(xp), pp+1,m(xp+1) can be written as

p(n)p,m(xp)
∣∣∣
xp=lp

= p
(n)
p+1,m(xp+1)

∣∣∣
xp+1=0

(8)

1It is claimed that cubic splines are the lowest-order spline for which
the knot-discontinuity is not visible to the human eye.
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Fig. 1. Approximation function and the recorded vertical vibra-
tion mode.

for n = 0, 1, 2, 3, where f (n)(x) = ∂nf(x)/∂xn denotes
the n-th derivative and lp is the length of the part p. They
ensure the continuity of the derivatives up to the third
order. The continuity conditions (8) for n = 0, 1, 2 are
required every time, while the condition for n = 3 only in
the case the boundary between two parts is located out of
the support of the deck.

The overall approximation error Ẽ is expressed
by the sum of the squared differences between
experimentally obtained values and the corresponding
approximate values plus the squared differences between
derivatives. The overall approximation error can be
divided into two parts,

Ẽ = Ẽout of boundary + Ẽat boundary. (9)

The first value represents the error calculated at all points
lying out of the boundaries of adjacent parts,

Ẽout of boundary =

Np∑

p=1

np∑

ip=1

(fip − pp,m(xp,ip))
2, (10)

where

• Np is the number of parts,

• np is the number of points in the part p, excluding
points lying on the boundaries between adjacent
parts,

• fip is the measured coordinate of the eigenmode at
point ip,

• xp,ip is the local coordinate of the measured point ip,
and its calculated origin is located at the beginning
of the part p.

The approximation error calculated at the adjacent
boundaries is denoted as Ẽat boundary. The contributions of
higher derivatives are taken into account such that

Ẽat boundary

=

Np−1∑

p=1

αp

[
(fp − pp,m(lp))

2 + (fp − pp+1,m(0))2
]

+

Np−1∑

p=1

βp

(
∂pp,m(lp)

∂xp

− ∂pp+1,m(0)

∂xp+1

)2

+

Np−1∑

p=1

γp

(
∂p2p,m(lp)

∂x2
p

− ∂p2p+1,m(0)

∂x2
p+1

)2

+

Np−1∑

p=1

δp

(
∂p3p,m(lp)

∂x3
p

− ∂p3p+1,m(0)

∂x3
p+1

)2

,

(11)

where

• αp is the weight of the mode shape continuity at the
boundary between the parts p and p+ 1,

• βp is the weight of the mode shape slope continuity
at the boundary between the parts p and p+ 1,

• γp is the weight of the mode shape curvature
continuity at the boundary between the parts p and
p+ 1,

• δp is the weight of the continuity of the third
derivative of the mode shape at the boundary between
the parts p and p+ 1,

• Np − 1 is the number of boundaries between two
adjacent parts,

• fp is the measured coordinate of the eigenmode at
boundary p.

The values αp, βp, γp and δp can be assessed by
parametric studies expressing the relative error of the
approximation at the boundary between parts p and p+ 1
(Sokol and Flesch, 2005). Larger βp, γp and δp values are
expected since higher derivatives give values of a smaller
magnitude. In (9), all error contributions are summed
up. The influence of smaller magnitude values can be
considered adequately in this way.

The condition for the extreme of the overall error
function Ẽ is

∂ Ẽ(C1,p,m, C2,p,m, . . . , C4,p,m)

∂ Cj,p,m
= 0 (12)

for j = 1, . . . , 4 and p = 1, . . . , Np.
This leads to the system of 4Np equations

AC = R, (13)

where

A =

⎛

⎜⎜⎜⎝

A1,1 0 · · · 0
0 A2,2 · · · 0
...

...
. . .

...
0 0 · · · ANp,Np

⎞

⎟⎟⎟⎠
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with

Ai.i =

⎡

⎢⎣
a1,1,(i),m · · · a1,8,(i),m

...
. . .

...
a4,1,(i),m · · · a4,8,(i),m

⎤

⎥⎦ ,

C =
(
C1,(1),m, . . . , C4,(1),m, . . . ,

C1,(Np),m, . . . , C4,(Np),m

)T
,

R =
(
r1,(1),m, . . . , r4,(1),m, . . . ,

r1,(Np),m, . . . , r4,(Np),m

)T
.

From this system of equations the coefficients of the
approximation functions C1,(1),m, C2,(1),m, C3,(1),m,
C4,(1),m,. . . ,C1,(Np),m, C2,(Np),m, C3,(Np),m, C4,(Np),m

can be calculated. The coefficients aj,l,(p),m and
rj,(p),m, j = 1, . . . , 4, with l = 1, . . . , 8, and
p = 1, . . . , Np in (13) are derived in such a manner
that they can be calculated for an arbitrary number of
parts Np and an arbitrary number of the measured points
np in the part p. The results are listed in Appendix.

The mode shape approximation functions pp,m(xp)
are found to smooth the experimental data well. The
relative approximation error at the boundary between two
parts p and p+ 1 is defined by

ẽp =

3∑

n=0

| p(n)p (lp)− p
(n)
p+1(0) |

p
(n)
pa

, (14)

where

p(n)pa =
1

N

√√√√√
Np∑

p=1

np∑

ip=1

(
p
(n)
p,m(xp,ip)

)2

with N =
∑Np

p=1 np.

The unknown weight factors αp, βp, γp, δp,
which give the minimum relative error ẽp, can be found
empirically in the following way.

The requirement of equality between approximation
functions and experimental data in the position of the
pier can be satisfied with the help of parameter αp >
1 by definition. Then the parametrical calculation of
the assessment of the relative approximation error ẽp is
performed by varying parameters βp and γp, δp whose
values can change across many orders of magnitude,
e.g., one sets βp = 10n (n = −1, 0, 1, . . . , 4) and
γp, δp = 10n (n = 4, 5, . . . , 9). Keeping αp fixed
at the selected value, the relative approximation error
function ẽp (βp, γp) is then plotted in a diagram. In a
usual case the parts are assumed between two supports
of the deck, and then the continuity conditions for the

third derivative must not be required and δp = 0.
Assuming that the error should be small, say, no greater
than 10%, a combination of parameters αp, βp and
γp is identified from this diagram (Fig. 2). It remains
to be checked that the approximation functions fit the
experimental data in the vicinity of the pier. If βp and
γp are too large, the derivatives of the approximation
functions may match nicely in the position of the pier
but the fit to the data further away from the pier may
deteriorate quickly. Thus it is desirable that the total error
be divided evenly between the those computed from the fit
to the data and contributions due to an imperfect matching
of the approximation functions and their derivatives in
the position of the pier. The values αp = 100, βp =
150, γp = 80000, δp = 0 are assumed in Section 3.

2.4. Evaluation of the approximation function by
analyzing the shear wave velocities obtained from
the vibration of a bridge. Once we have smoothed
approximation functions describing the vertical vibration
in mode m, we can use them for analyzing the bridge pier
vibration. Their third derivatives allow an estimate to be
made of the amplitudes of the vertical deck reactions at
the pier p in the following way:

Rp,m = −EIp
∂3pp,m(xp)

∂x3
p

∣∣∣∣
xp=lp

+ EIp+1
∂3pp+1,m(xp+1)

∂x3
p+1

∣∣∣∣∣
xp+1=0

.

(15)

The procedure how to calculate shear wave velocities
in subsoil in the vicinity of the vibrating bridge pier is
described in detail by Sokol and Flesch (2005). For
clarity, the basic steps of this calculation are repeated also
here.

Shear wave velocities are assessed using several
identified vertical mode shapes which were described by
approximation functions derived above.

It is assumed that the dynamic soil properties depend
also on frequency. The shear wave velocity and shear
modulus are calculated using a method by Martinček
(1981; 1994) which considers the vibration of a mass on
an elastic half space.

Making use of the vertical deck reactions (15),
the next step of investigation for each separate pier is
relatively straightforward. The harmonic excitation forces
of the pier–soil system in the m-th mode, caused by the
vertical deck reaction, are assumed as follows:

Rp,m(t) = Rp,m sin(ωmt), (16)

where ωm is the circular frequency of the vertical
vibration of the pier, which is the same as the frequency
of the deck measured experimentally.
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Fig. 2. Relative approximation error depending on αp, βp and γp.

The amplitudes of vertical deck reactions Rp,m

and the measured amplitudes of vertical pier bottom
displacements vp,m at frequency ωm are used to
calculate the normalized mechanical impedance

∣∣Z∗
p,m

∣∣
(Martinček, 1981; Sokol and Flesch, 2005). Then the
vertical pier-soil vibration is investigated as a single
degree of freedom (SDOF) system expressed using
complex stiffness. Knowing the mechanical impedance,
an equivalent damping coefficient, a mass addition
coefficient and the dimensionless frequency Ωp,m can
be calculated. Finally, the shear wave velocity can be
obtained as

cp,m =
ωmrp,eqv
Ωp,m

, (17)

where rp,eqv is the radius of the equivalent circular pier
foundation plate, with the same area as the rectangular
pier foundation.

This soil characteristic—shear wave velocity—is
compared with a geological survey available for a
particular bridge. We used this for evaluation of the
approximation function.

In most cases, experimental data are not precise
enough to estimate the soil stiffness parameters using only
one structural mode. Fortunately, more vertical modes are
available and mean values can be calculated.

3. Results

Dynamic in situ testing using forced excitation was
carried out in order to assess the dynamic properties
of the Warth bridge in Austria. The bridge is built
of seven pre-stressed concrete spans with a maximum
span length of 67 m. The total length of the structure
is 459 m. The maximum pier height is 39 m. The
deck is continuous with a box-girder cross section (see

Fig. 3). The results of the dynamic tests, which were
performed by Arsenal Research, are summarized in the
works of Flesch et al. (1999) as well as Sokol and
Flesch (2005). The experimental modal analysis on
the bridge was performed with the exclusion of traffic.
Reference harmonic excitation was used and accelerations
were recorded. By changing frequencies, the resonance
vibrations could be recorded in more eigenmodes. The
response variable realizations were recorded at every 10
locations along each particular span of the bridge.

All calculations related to splines as well as to
spectral analysis were performed in the computer algebra
system Wolfram Mathematica 10 (Wolfram Research,
Inc., 2015), while the rest by the spreadsheet application
Microsoft Excel 2013 (Microsoft, 2013).

The approximations, as well as the experimentally
obtained vibration modes, are shown in Figs. 4 and 5.2

Third order derivatives of approximation functions are
necessary for shear force estimation. In Fig. 6 there are
introduced, e.g., higher derivatives for the sixth mode.
This mode represents vertical vibration of all spans in the
same direction, and so the second and third derivatives
look after the bending moment and shear force diagrams
due to gravity forces.

The analyzed shear wave velocities were compared
with the reference analyses (Sokol and Flesch, 2005),
calculated in Table 1. Weighted mean values are in
Table 2. The displacements of the pier bottom (Table 3)
were used as the weights.

This also proves that the smoothing of the

2Note that the results do not depend on the normalization of eigen-
modes. Therefore the coordinates of the modes were used without nor-
malization. They correspond to the values already published by Sokol
and Flesch (2005). In addition, after processing the initially normalized
eigenmodes the approximations will not be normalized any more.



806 M. Sokol et al.

Fig. 3. Bridge structure (deck characteristics: EIp = 7.94 × 1011N m2, μp = 33420 kg/m.)

Table 1. Shear wave velocities (Sokol and Flesch, 2005).

cp,m m

[m/s] (mode) cavg σ CV

p (pier) 1 2 3 4 5 6 [m/s] [m/s] %

1 508 382 378 422 475 600 461 85 18

2 511 203 440 344 171 391 343 134 39

3 430 460 383 341 427 404 408 42 10

4 63 267 356 380 329 338 289 117 40

5 244 50 366 402 506 401 328 160 49

6 249 717 317 359 526 529 449 173 39

Table 2. Shear wave velocities (Sokol and Flesch, 2005):
weighted mean values.

cavg [m/s] σ [m/s] CV

467 21 5

338 14 4

391 8 2

329 10 3

362 18 5

436 28 6

experimentally obtained mode vibration values in the
case of such a type of structure like this bridge is not
easy and results are prone to errors, especially if higher
derivatives are needed for the subsequent analysis for
obtaining physical properties of soil shear velocities.

Results from approximation analyzes are given in
Tables 4 and 5 (for the method using spline functions) and
Tables 6 and 7 (for the method using distributed parameter
system functions).

Comparing the results in Tables 4 and 5 as well as 6
and Table 7, it can be seen that in the case of calculating
the results as weighted mean values (see Tables 5 and 7)
the coefficient of variation (CV) is less than 7%, except
one value in Table 5, for which the results were not
reliable.

The comparison of the results is given in Figs. 7(a)
and (b). The results comply quite well to a geological

investigation at the bridge site, where the outermost piers
(nos. 1 and 6) are founded on rock soils, with the shear
wave velocities expected to be higher than in the inner
piers founded on alluvial deposits of sand and gravel.

4. Discussion

The method according to Sokol and Flesch (2005)
provides reliable results close to the pier but not accurate
results in midspan where two approximation functions
have to be joined. These errors result from the
assumption that the approximation functions are derived
independently, each just around the nearest support. In our
case the prescribed continuity conditions provide better
continuous functions for the whole structure, and then the
resulting functions accurately represent the true essence
of the vibration of the structure. Even the continuity of
higher order derivatives has been reached. These methods
are suitable, e.g., for structural health monitoring (SHM),
when repeated tests of the dynamic responses have to be
compared and even small variations in results can lead to
damage identification. In SHM of bridges it is necessary
to know higher derivatives of eigenmodes in order to,
e.g., assess stiffness using the direct method (Maeck and
De Roeck, 1999a; 1999b) or for increasing the speed of
iterations (Sokol et al., 2015).

Both methods described in the previous sections
provide reliable results. The regression spline functions
require the knots (at which no variation is allowed) to be
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Table 3. Measured amplitudes of vertical displacements of pier bottom parts (Sokol and Flesch, 2005).

m (mode)

p (pier) 1 2 3 4 5 6

1 0.826 1.895 0.203 2.181 4.268 1.524

2 0.724 2.369 1.218 15.657 2.044 6.007

3 0.329 2.053 0.500 10.182 6.582 7.760

4 0.908 4.465 1.546 7.303 7.299 12.455

5 2.414 2.526 1.276 11.170 0.442 14.045

6 6.614 0.638 0.847 1.696 2.987 10.882

Table 4. Shear wave velocities: approximation using spline functions.

cp,m m

[m/s] (mode) cavg σ CV

p (pier) 1 2 3 4 5 6 [m/s] [m/s] %

1 522 485 694 357 478 454 498 111 22

2 608 385 n.a. 405 287 385 414 118 28

3 769 147 n.a. 338 336 434 405 228 56

4 327 260 370 374 78 374 297 116 39

5 150 336 454 435 n.a. 399 355 123 35

6 150 389 197 292 1052 n.a. 416 367 88

Table 5. Weighted mean values of shear wave velocities: ap-
proximation using spline functions.

cavg [m/s] σ [m/s] CV %

459 19 4

396 9 2

349 17 5

294 21 7

384 14 4

395 107 27

identified in advance, yet by choosing truncated power
basis functions we are able to selectively approximate
displacement between piers by a smooth function and
preserve the discontinuity of its third derivative. Note that
the regression spline just fine-tunes the approximation by
the bearing trigonometric polynomial function for which
the frequency needs to be estimated from an unequally
spaced data set. The least-squares periodogram serves that
purpose well.

The distributed parameter approximation method is
also reliable and robust. It is not sensitive to numerical
errors and includes one of the main significant parameters
of the dynamic response, namely, the measured circular
frequency of vibration (7). This prevents rapid local
changes in the approximation function due to the greater
measurement uncertainties, which otherwise could lead

to phantom changes in the curvature of the function
representing the shape of vibration. This feature
can be used to good advantage in SHM, when the
results are sensitive to small variations in the compared
displacements. Both methods were validated for a
particular experiment, which is described in detail by
Flesch et al. (1999) as well as Sokol and Flesch (2005).
In this case, it was necessary to calculate third order
derivatives. Then the shear wave velocities in subsoil were
evaluated and compared with geological investigation.
The regression spline approximation method yields results
from which slightly higher values of shear wave velocities
were obtained (Fig. 7) compared with those from
distributed parameter approximation. The reason is that
the continuity conditions are fulfilled precisely compared
with the distributed parameter approximation method,
where the continuity conditions at the boundaries of
adjacent parts are fulfilled only to the extent required
by parameters αp, βp, γp or δp (11). Accordingly, the
curvatures (second and higher order derivatives) in the
case of the first method are a little bit higher and the
structure seems to be stiffer.

In Appendix we provide a general procedure
for programming distributed parameter approximation
functions representing a response of any type of linear
structure like a bridge. An arbitrary number of
measurement points and spans or even smaller parts of the
bridge can be assumed.
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Table 6. Shear wave velocities: approximation using distributed parameter system functions.

cp,m m

[m/s] (mode) cavg σ CV

p (pier) 1 2 3 4 5 6 [m/s] [m/s] %

1 455 391 487 444 464 548 465 52 11

2 484 207 452 328 184 359 336 123 37

3 492 485 364 337 409 374 410 65 16

4 n.a. 282 368 360 324 314 330 35 11

5 276 100 375 396 569 373 348 154 44

6 237 693 295 386 480 483 429 162 38

Fig. 4. Measured vibration modes and frequencies of a bridge
and its smoothed approximation functions using a dis-
tributed parameter system (dotted line: test data, solid
line: approximation function; the x-axis is expressed in
meters, the y-axis is dimensionless).

Fig. 5. Measured vibration modes and frequencies of a bridge
and its smoothed approximation functions using splines
(dotted line: test data, solid line: approximation func-
tion; the x-axis is expressed in meters, the y-axis is di-
mensionless).
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Table 7. Weighted mean values of shear wave velocities approx-
imation using distributed parameter system functions.

cavg [m/s] σ [m/s] CV %

459 14 3

323 13 4

378 8 2

325 4 1

355 15 4

406 25 6

Fig. 6. Higher derivatives for mode no. 6.

A further improvement of the results can be reached,
if prior to the application of these methods apparent errors
of measurement are analyzed so that inconsistencies can
be eliminated as, e.g., in the case of eigenmode no. 4
between coordinates 220–230 m or eigenmode no. 5
between coordinates 280–300 m in Fig. 6. Of course,
the proposed techniques smooth well also these error data,
but the results lie somewhere between two apparent error
displacements. A further improvement of the distributed
parameter approximation method can be achieved by
preparing a method for calculating appropriate values of
coefficients αp, βp, γp or δp as they are described in (11)
instead of guessing them from calculation of the relative
error for many combinations.

5. Conclusions

The results produced by both approximation methods
comply quite well with the geological investigation at the
bridge site. Because the measured data are subjected
to many sources of errors and they are not precise, an
approximation method for smoothing vibration modes
is necessary. The paper offers two methods: spline
approximation and another one, using a distributed
parameter system. Both are compared and can be used
for similar purposes for a subsequent analysis. The
described method of statistical evaluation of foundation
(soil) parameters using vertical mode shapes identified
from forced vibration experiments is appropriate for rough
estimation of shear wave velocities and their changes
along the bridge length.

The presented procedure of experimental data
smoothing can also be used in other applications, where
exact mathematical functions describing the vibration
modes are needed, such as in system identification of

Fig. 7. Shear wave velocity [m/s].

bridges or damage assessment using vibration tests. The
presented method is useful especially in the cases where
experimentally obtained data intended for further use are
not accurate enough.
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Tomáš Bacigál graduated in 2003 from the Slovak University of Tech-
nology in Bratislava, Faculty of Civil Engineering, where he also ob-
tained his PhD degree in 2007. He was then employed as an assistant
professor by the Department of Mathematics and Constructive Geom-
etry, and has worked there ever since. His fields of interests include
multivariate modelling with copulas, time series analysis, data mining
and statistical learning with applications in engineering.

Miguel X. Rodrı́guez is a full professor of engineering mechanics at
Tecnológico de Monterrey, Puebla, Mexico. He obtained his PhD from
the University of Wales, Swansea, in 2002. He was a senior research as-
sistant from 2003 up to 2004 at Swansea. In 2004 he joined Tecnológico
de Monterrey. He was given the title of National Researcher I by the
Mexican Council for Science and Technology in 2006. His fields of
interests include numerical methods in engineering, engineering educa-
tion, innovation in education and social media in education, mechanics
of materials, finite element method and structural dynamics.

Appendix
Evaluation of the coefficients aj,l,mand rj,m

Here np is the number of the assumed measured points
in the part p excluding boundary points at the beginning
and at the end of the part p, xp,ip is the coordinate of the
measured point ip (see Fig. 1). The derived results of
coefficients aj,l,(p),m, j = 1, . . . , 4, with l = 1, . . . , 8,
and p = 1, . . . , Np along with rj,(p),m j = 1, . . . , 4, and
p = 1, 2, . . . , Np are listed in Tables A1–A5.

We adopt the following notation:

ap,m = 4

√
μpω2

m

EIp
, ap+1,m = 4

√
μp+1ω2

m

EIp+1
,

A = a2p,m, B = a4p,m, G = a6p,m,

Ch0 = cosh (ap,m0) = 1, Ch1 = cosh (ap,mlp),

Sh0 = sinh (ap,m0) = 0, Sh1 = sinh (ap,mlp),

C0 = cos (ap,m0) = 1, C1 = cos (ap,mlp),

S0 = sin (ap,m0) = 0, S1 = sin (ap,mlp).
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Table A1. Coefficients rj,(p),m, j = 1, . . . , 4, and p = 1, . . . , Np.

Coefficient

If p < Np then

r1,(p),m αp (fpCh0 + fp+1Ch1) +
∑Np

ip=1 fip cosh(ap,m,xp,ip)

r2,(p),m αp (fpSh0 + fp+1Sh1) +
∑Np

ip=1 fip sinh(ap,m,xp,ip)

r3,(p),m αp (fpC0 + fp+1C1) +
∑Np

ip=1 fip cos(ap,m,xp,ip)

r4,(p),m αp (fpS0 + fp+1S1) +
∑Np

ip=1 fip sin(ap,m,xp,ip)

otherwise

r1,(p),m αp fpCh1 +
∑Np

ip=1 fip cosh(ap,m,xp,ip)

r2,(p),m αp fpSh1 +
∑Np

ip=1 fip sinh(ap,m,xp,ip)

r3,(p),m αp fpC1 +
∑Np

ip=1 fip cos(ap,m,xp,ip)

r4,(p),m αp fpS1 +
∑Np

ip=1 fip sin(ap,m,xp,ip)

Table A2. Coefficients a1,l,(p),m, l = 1, . . . , 8, and p = 1, . . . , Np.

Coefficient

a1,1,(p),m αp(Ch02 + Ch12) + βpA Sh12 + γpB Ch12 + δpG Sh12

+
∑Np

ip=1

(
cosh(ap,m,xp,ip)

)2

a1,2,(p),m αp(Ch0 Sh0 + Ch1 Sh1) + βpA Ch1 Sh1 + γpB Ch12 + δpG Sh1 Ch1

+
∑Np

ip=1

(
sinh(ap,m,xp,ip) cosh(ap,m,xp,ip)

)

a1,3,(p),m αp(Ch0 C0 + Ch1 C1) − βpA Sh1 S1− γpB Ch1 C1 + δpG Sh1 S1

+
∑Np

ip=1

(
cosh(ap,m,xp,ip) cos(ap,m,xp,ip)

)

a1,4,(p),m αp(Ch0 S0 + Ch1 S1) + βpA Sh1 C1− γpB Ch1 S1− δpG Sh1 C1

+
∑Np

ip=1

(
cosh(ap,m,xp,ip) sin(ap,m,xp,ip)

)

If p < Np then

a1,5,(p),m −γp a2
p,ma2

p+1,m Ch1

a1,6,(p),m −βp ap,map+1,m − δp a3
p,ma3

p+1,m Sh1

a1,7,(p),m +γp a2
p,ma2

p+1,m Ch1

a1,8,(p),m −βp ap,map+1,m + δp a3
p,ma3

p+1,m Sh1
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Table A3. Coefficients a2,l,(p),m, l = 1, . . . , 8, and p = 1, . . . , Np.

Coefficient

a2,1,(p),m αp(Ch0 Sh0 + Ch1 Sh1) + βpA Sh1 Ch1 + γpB Sh1 Ch1 + δpG Sh1 Ch1

+
∑Np

ip=1

(
cosh(ap,m,xp,ip) sinh(ap,m,xp,ip)

)

a2,2,(p),m αp (Sh02 + Sh12) + βp A Ch12 + γp B Sh12 + δp G Ch12 +
∑Np

ip=1

(
sinh(ap,m,xp,ip)

)2

a2,3,(p),m αp(C0 Sh0 + C1 Sh1)− βpA S1 Ch1− γpB C1 Sh1 + δpG S1 Ch1

+
∑Np

ip=1

(
cos(ap,m,xp,ip) sinh(ap,m,xp,ip)

)

a2,4,(p),m αp(S0 Sh0 + S1 Sh1) + βpA C1 Ch1− γpB S1 Sh1 + δpG C1 Ch1

+
∑Np

ip=1

(
sin(ap,m,xp,ip) sinh(ap,m,xp,ip)

)

If p < Np then

a2,5,(p),m −γp a2
p,ma2

p+1,m Sh1

a2,6,(p),m −βp ap,map+1,m − δp a3
p,ma3

p+1,m Ch1

a2,7,(p),m +γp a2
p,ma2

p+1,m Sh1

a2,8,(p),m −βp ap,map+1,m + δp a3
p,ma3

p+1,m Ch1

Table A4. Coefficients a3,l,(p),m, l = 1, . . . , 8, and p = 1, 2, . . . , Np.

Coefficient

a3,1,(p),m αp(Ch0 C0 + Ch1 C1) − βpA Sh1 S1− γpB Ch1 C1 + δpG Sh1 S1

+
∑Np

ip=1

(
cosh(ap,m,xp,ip) cos(ap,m,xp,ip)

)

a3,2,(p),m αp(C0 Sh0 +C1 Sh1) − βpA S1 Ch1− γpB C1 Sh1 + δpG S1 Ch1

+
∑Np

ip=1

(
sinh(ap,m,xp,ip) cos(ap,m,xp,ip)

)

a3,3,(p),m αp(Ch02 + Ch12) + βpA S12 + γpB C12 + δpG S12 +
∑Np

ip=1

(
cos(ap,m,xp,ip)

)2

a3,4,(p),m αp(S0 C0 + S1 C1)− βpA C1 S1 + γpB S1 C1 + δpG C1 S1

+
∑Np

ip=1

(
sin(ap,m,xp,ip) cos(ap,m,xp,ip)

)

If p < Np then

a3,5,(p),m +γp a2
p,ma2

p+1,m C1

a3,6,(p),m +βp ap,map+1,m + δp a3
p,ma3

p+1,m S1

a3,7,(p),m +γp a2
p,ma2

p+1,m C1

a3,8,(p),m +βp ap,map+1,m − δp a3
p,ma3

p+1,m S1
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Table A5. Coefficients a4,l,(p),m, l = 1, . . . , 8, and p = 1, 2, . . . , Np.

Coefficient

a4,1,(p),m αp (Ch0 S0 + Ch1 S1) + βp A Sh1 C1− γp B Ch1 S1 + δp G Sh1 C1

+
∑Np

ip=1

(
cosh(ap,m,xp,ip) sin(ap,m,xp,ip)

)

a4,2,(p),m αp (Sh0 S0 + Sh1 S1) + βp A Ch1 C1− γp B Sh1 S1 + δp G Ch1 C1

+
∑Np

ip=1

(
sinh(ap,m,xp,ip) sin(ap,m,xp,ip)

)

a4,3,(p),m αp (C0 S0 + C1 S1)− βp A S1 C1 + γp B C1 S1 + δp G S1 C1

+
∑Np

ip=1

(
cos(ap,m,xp,ip) sin(ap,m,xp,ip)

)

a4,4,(p),m αp (S02 + S12) + βp A C12 + γp B S12 + δp G C12

+
∑Np

ip=1

(
sin(ap,m,xp,ip)

)2

If p < Np then

a4,5,(p),m +γp a2
p,ma2

p+1,m S1

a4,6,(p),m −βpap,map+1,m − δp a3
p,ma3

p+1,m C1

a4,7,(p),m −γp a2
p,ma2

p+1,m S1

a4,8,(p),m −βp ap,map+1,m + δp a3
p,ma3

p+1,m C1
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