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In this paper we extend a stochastic discrete optimization algorithm so as to tackle the signal setting problem. Signal-
ized junctions represent critical points of an urban transportation network, and the efficiency of their traffic signal setting
influences the overall network performance. Since road congestion usually takes place at or close to junction areas, an im-
provement in signal settings contributes to improving travel times, drivers’ comfort, fuel consumption efficiency, pollution
and safety. In a traffic network, the signal control strategy affects the travel time on the roads and influences drivers’ route
choice behavior. The paper presents an algorithm for signal setting optimization of signalized junctions in a congested road
network. The objective function used in this work is a weighted sum of delays caused by the signalized intersections. We
propose an iterative procedure to solve the problem by alternately updating signal settings based on fixed flows and traffic
assignment based on fixed signal settings. To show the robustness of our method, we consider two different assignment
methods: one based on user equilibrium assignment, well established in the literature as well as in practice, and the other
based on a platoon simulation model with vehicular flow propagation and spill-back. Our optimization algorithm is also
compared with others well known in the literature for this problem. The surrogate method (SM), particle swarm optimiza-
tion (PSO) and the genetic algorithm (GA) are compared for a combined problem of global optimization of signal settings
and traffic assignment (GOSSTA). Numerical experiments on a real test network are reported.
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1. Introduction

Transportation is involved with the movement of people
and material from one place to another, from an origin
to a destination. The performance of a traffic network
can be influenced through several types of actions or
decision variables. Some of these pertain to changing the
load pattern on the network, through demand management
actions, including attempts to route vehicles optimally
through the network (Góngora and Rosenblueth, 2015;
Klaučo et al., 2016); others are concerned with how
the traffic flow is controlled through the network
components, such as junction utilization through signal
control. Although the potential of explicitly combining
both types of actions, especially joint signal control and
route assignment, long has been suggested, most of the
research and virtually all the approaches used in practice
have followed one of two schemes: (a) considering
signal control to be fixed and using traffic assignment
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as decision variables (traffic assignment models), and
(b) considering traffic assignment (loading pattern) to be
fixed and using signal control as decision variables (signal
optimization models). Nonetheless, several researchers
have recognized the interaction between signal control
and traffic assignment.

Usual traffic signal optimization methods seek either
to maximize the green bandwidth or to minimize a
general objective function that typically includes delays,
number of stops, fuel consumption and some external
costs like pollutant emissions. A major objective of
traffic signal synchronization at an intersection is to
clear maximum traffic throughput in a given length and
time with the least number of accidents, at maximum
safe speed and with minimum delay (see Goliya and
Jain, 2012; Adacher, 2012). It has been widely accepted
that improving the traffic flow is one of the strategies
to reduce vehicle emissions and fuel consumption. In
urban areas, frequent stop-and-go driving and excessive
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speed variations contribute to higher fuel consumption
and emissions (see Adacher and Cipriani, 2010; Xiaojian
et al., 2015; Stevanovic et al., 2009; Khaki and Pour,
2014).

In order to improve these strategies, several authors
combined in a different way the two synchronization
approaches, which are the minimum delay and the
maximal bandwidth. Cohen (1983) used the maximal
bandwidth as the initial solution of the former problem;
Cohen and Liu (1986) constrained the solution of the
former problem to fulfill maximum bandwidth; Hadi
and Wallace (1993) used the bandwidth as the objective
function; Malakapalli (1993) added a simple delay
model to the maximal bandwidth algorithm; Adacher and
Cipriani (2010) expressed the delay at nodes as a closed
form function of the maximal bandwidth solution. It is
important to notice that the minimum delay is related to
physical variables that are to be minimized; anyway, it is
a non-convex problem and the existing solution methods
do not guarantee to achieve the optimal solution. The
maximal bandwidth method maximizes an opportunity of
progression for drivers and does not necessarily reduce
delays; nevertheless, it is a quasi-concave problem and
efficient solving algorithms exist to find an optimal
solution.

Traffic assignment on its own is also a well-studied
problem. There are strict mathematical approaches
using network flow theory. This branch of research
started with the seminal work of Ford and Fulkerson
in 1956, and recent results primarily focus on various
aspects of traffic, e.g., a new concept of fairness in
networks with congestion and flows over time with
load dependent transit times (Köhler et al., 2008).
More application-oriented concepts include dynamic
traffic assignment techniques (Szeto and Lo, 2006), and
simulation based solutions in (Nagel and Flötteröd, 2012).

In contrast, the combined problem of traffic signal
optimization and traffic assignment is less well-developed
compared with split problems. Allsop and Charlesworth
(1977) recognized the feedback between an optimized
coordination and traffic assignment. They proposed an
iterative approach where signal timings are optimized
with TRANSYT. Afterwards, equilibrium traffic
assignment is computed. These steps are repeated until
no change in the coordination occurs. Using iterative
heuristic methods, one may only hope to derive a local
optimum.

Since the first platoon dispersion model introduced
by Robertson (1969), progressively more complex models
have been developed. Park et al. (1999) introduced
a genetic algorithm-based traffic signal optimization
program for over-saturated intersections consisting of
two modules: a genetic algorithm optimizer and a
mesoscopic simulator. Sun et al. (2006) proposed a
bi-level programming formulation and a heuristic solution

approach for dynamic traffic signal optimization in
networks with time-dependent demand and stochastic
route choice. Chang and Sun (2004) proposed a
dynamic method to control an oversaturated traffic
signal network by utilizing a bang-bang-like model
for oversaturated intersections and TRANSYT for
unsaturated intersections. Chiou (2005) presented a
bilevel formulation based on this approach. Smith
(2006) also suggested a bi-level optimization, where the
equilibrium property of the flow is preserved during
consecutive iterations. Recent results were also obtained
using genetic programming (Ceylan and Bell, 2004; Teklu
et al., 2007). Van den Berg et al. (2008) proposed a
hybrid approach using methods from both optimal control
and mixed integer linear programming. However, Smith
(2015) summarizes the situation as follows: “At the
moment, in practice, traffic signal timings are designed
or optimized without systematically seeking to influence
route choices beneficially.” Substantially, there are two
approaches in modelling signal settings and link flows
in this combined problem. In both methods, it is
recognized that link flows are affected by changes in
signal settings and thus the flows and the settings are
treated independently; instead, the former are regarded as
functions of signal settings. First, a mutually consistent
approach is adopted in which signal settings and link flows
are calculated alternately and obtained respectively by
signal setting optimization for given link flows and by user
equilibrium traffic assignment for given signal settings.
Second, a bi-level programming technique is adopted
in which we may regard signal setting optimization
as an upper level problem while the problem for user
equilibrium traffic assignment by which link flows are
obtained can be regarded as a lower level problem.

In this paper, we adopt an iterative procedure to solve
the problem by alternately updating signal settings based
on fixed flows and traffic assignment based on fixed signal
settings (see Fig.1). Our iterative procedure optimizes the
signal setting with the surrogate method and calculates
delay by a traffic assignment model. It is stopped if
for a fixed number of times the objective function does
not improve. Our objective function is the minimum
total delay. The total delay is a non-convex function,
and the optimal signal setting feasible set comprehends
non-linear constraints and integer variables. For this
type of optimization problems, a closed-form objective
function may not exist, and therefore it has to be estimated
via simulation. The simulation gives the value of the
objective function and then it needs to integrate an
algorithm to find the best solution.

We apply the surrogate method to signal setting
optimization, and two different types of traffic assignment
are considered. The aim of this paper is to validate
the capacity of convergence of the surrogate method
compared with well-known optimization algorithms for
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this problem. The comparison highlights the robustness
of the SM in relation to the other algorithms.

INPUT DATA:
PARAMETERS of the networks

SIGNAL SETTING 
OPTIMIZATION TRAFFIC ASSIGNMET

DELAY TIME

SIGNAL SETTING
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Fig. 1. Scheme of our approach.

In Section 2 we present the combined problem
of global optimization of signal settings and traffic
assignment (GOSSTA). We propose an optimization
method for the signal setting considering two different
types of assignment: one based on the user equilibrium
and the other on a platoon model. This simulation model
based on TRANSYT is employed to evaluate the delay in
the network.

In Section 3 we present our optimization method.
In Section 4 we consider the GOSSTA problem with the
user equilibrium, and a comparison with the most utilized
methods is reported. In Section 5 we discuss the GOSSTA
problem with a simulation model. The simulation based
on the platoon model produces the total delay on a road
artery. A comparison with the most utilized methods is
reported. In Section 6 some conclusions are drawn.

2. Combined problem of global
optimization of signal settings and
traffic assignment (GOSSTA)

Extensive research has been conducted on the combined
problem of signal setting and network assignment.
According to Cascetta et al. (1998), two sub-problems in
the combined signal setting and traffic assignment can be
identified: global optimization of signal settings (GOSSp)
and local optimization of signal settings (LOSSp). The
former minimizes the objective function describing the
global network performance and the latter minimizes a
local objective function. The signal setting can be applied
to a single junction or to a network level. In the case
of single junctions the interactions between successive
junctions do not need to be considered. Coordinating
traffic signals means coupling signals via a parameter
called the offset. This quantity specifies how green phases

of different signals are shifted (or offset) to each other.
Most prominent coordination objectives are the so-called
green waves, where vehicles travel without being impeded
by a signal showing red. Nevertheless, when considering
networks of signals instead of arterial of signals, it is often
impossible to adjust green waves for the whole network.
Instead, the green wave goal has to be replaced by a more
practical term such as minimum possible delay. Hereby,
item delay refers to waiting times of vehicles facing red at
the signals. The application of the signal setting can have
a direct effect on the reduction of the vehicles waiting
times at junctions (i.e., direct externals) and of other
performance indicators of the junctions, such as queue
lengths, fuel consumption and air pollution emissions
(i.e., indirect externals), etc. Finally, the signal setting can
be adopted in order to manage specific priority cases in the
presence of weak users (e.g., pedestrians) or transit flows.
In traffic engineering one considers traffic, i.e., vehicles,
moving through a single and isolated junction, an arterial,
which is a (possibly bi-directionally traversal) series of
junctions, or through a whole network, i.e., an arbitrary
set of junctions.

A traffic signal is described by its timing variables;
first of all, by the time duration of its lights (red,
yellow/amber, green). The sum of these times expresses
the signal cycle, i.e., the time period before the same light
turns on again. Having the cycle time, light duration
is often expressed as its split, i.e., the ratio of cycle
time. Considering more signals, we need to introduce the
offset, i.e., the time period between a common reference
instant and the cycle start. Depending on the goal,
the problem formulation and thus the solving algorithm
vary subsequently. Traffic lights improve drivers’ safety,
but they unavoidably introduce delays in travel times,
too. Thus, minimizing the total delay, as a sum of all
vehicles delays, may be an intuitive objective. Total delay
minimization is a non-convex problem, and therefore the
global optimum cannot be found analytically.

We aim to minimize the total delay. To do this, it
is useful to remark that the users’ total travel time can
be expressed as a sum of two terms: the free flow travel
time on the non-signalized network, which is a constant
term, and an additional delay due to the interaction
between flows and traffic signals, i.e., congestion, stops
and queues. It is immediate that minimizing the total
delay and minimizing the total travel time are equivalent.
We assumed the following simplifications. First, only
two lights signals are considered: an effective green,
indicating the time period vehicle can actually cross the
intersection, and a residual red, when vehicle intersection
crossing is prohibited. Synchronization requires the cycle
time to be the same for all signals or multiplies or fractions
with each other, so that we consider the same cycle for all
signals. These simplifications are very common in traffic
works, so that the problem variables are the common
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cycle time and the green ratio as well as offset for every
synchronized intersection.

3. Proposed algorithm: The surrogate
method

The surrogate problem methodology was initially
developed for resource allocation problems of the form

min
x∈Ad

Jd(x), (1)

where x is an N -dimensional decision vector with
xi denoting the number of resources that User i is
assigned subject to a capacity constraint (Gokbayrak and
Cassandras, 2002):

Ad =
{
x : x = [x1, . . . , xN ]′,

N∑
i=1

xi = K,xi ∈ Z
+
}
,

(2)
and Jd(x) is the cost incurred when the state is x.
The integer capacity constraint is relaxed and a resulting
surrogate problem is given by

min
ρ∈Ac

Jc(ρ) (3a)

Ac =
{
ρ : ρ = [ρ1, . . . , ρN ],

N∑
i=1

ρi = K, ρi ∈ R
+
}
.

(3b)

The basic idea of this method is to solve the
continuous optimization problem above with standard
stochastic approximation methods and establish the fact
that, when (and if) a solution ρ∗ is obtained, it can be
mapped into some point x = f(ρ∗) ∈ Ad, which is in
fact the solution to (1). The sequence of steps is reported
as Algorithm 1.

Note, however, that the sequence {ρk}, k = 1, 2, . . .
generated by an iterative scheme for solving (3a) consists
of real-valued allocations which are unfeasible, since the
actual system involves only discrete resources. Thus, a
key feature of our algorithm is that at every step k of the
iteration scheme involved in solving (3a) the discrete state
is updated through xk = fk(ρk) as ρk is updated. This
has the following two advantages:

• the cost of the original system is continuously
adjusted (in contrast to an adjustment that would only
be possible at the end of the surrogate optimization
process);

• it allows us to make use of information typically
employed to obtain cost sensitivities from the actual
operating system at every step of the process.

We can therefore see that this scheme is intended
to combine the advantages of a stochastic approximation
type of algorithm with the ability to obtain sensitivity
estimates with respect to discrete decision variables.

Two sequential operations are then performed at the
k-th step:

1. The continuous state ρk is updated through

ρk+1 = πk+1[ρk − ηk∇Lc(ρk)], (4)

where πk+1 : RN → Ac is a projection function and
ηk is a step size parameter.

2. The newly determined state of the surrogate system,
ρk+1, is transformed into an actual feasible discrete
state of the original system through

xk+1 = fk+1(ρk+1), (5)

where fk+1 : Ac → Ad is a projection mapping of
feasible continuous states to feasible discrete states.

One can recognize in Step 1 the form of a stochastic
approximation algorithm that generates a sequence {ρk}
aimed to solve the surrogate problem. However, there
is an additional operation, Step 2, for generating a
sequence {xk} which we would like to converge to
x∗. It is important to note that {xk} corresponds to
feasible realizable states based on which one can evaluate
estimates ∇Lc(ρk), calculated on an actual system xk

(not the surrogate state ρk, see Step 3). We can therefore
see that this scheme is intended to combine the advantages
of the stochastic approximation type of algorithm with
the ability to obtain sensitivity estimates with respect to
discrete decision variables.

4. Traffic signal setting adopting the user
equilibrium

In our previous study (Adacher et al., 2015), we
considered the user equilibrium for the traffic assignment
problem and the green ratio for the signal traffic problem.
The light duration of traffic lights is often expressed as
the ratio of the cycle time. We considered only two lights
(i.e., green and red); obviously, the green ratio plus the red
ratio give the 100% of cycle. The GOSSTA problem can
be formulated as finding a vector of green split ratios g∗

that minimizes the objective function J which expresses
the global performance of the network under descriptive
user equilibrium conditions and subject to admissibility
constraints.

For simplicity, we assume here the objective function
J as the total travel time on the network,

J(g, q) =
∑
l

(ca, ga, qa), (6)

where
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Algorithm 1. Steps of the surrogate method.
Step 0. Initialize ρ0 = x0 and perturb ρ0 to have all
components non-integer.
For any iteration k = 0, 1, . . . repeat the following steps.

Step 1. Determine the selection set S(ρk) using these
steps:

Initialize

I = {1, . . . , N},
v = ρ− �ρ�.

Repeat the following steps until I �= ∅:

i = argmin
j∈I

(vj) ,

yi = vi,

Wi =
∑
j∈I

ej ,

v = v − yiWi,

I = I \ {i},
S(ρk) = {Wi − �ρ�, i = 0, . . . , N}.

Step 2. Select a transformation function fk such that
xk = fk(ρk) = arg min

r∈S(ρk)
‖x− ρk‖.

Step 3. Estimate the gradient

∇Lc(ρk) = [∇1Lc(ρk), . . . ,∇NLc(ρk)]
T ,

using

∇jLc(ρk) = Ld(x
j)− Ld(x

k),

where k satisfies xj − xk = ej (the j-th versor).

Step 4. Update state: ρk+1 = πk+1[ρk − ηk∇Lc(ρk)].

Step 3. If some stopping condition is not satisfied, repeat
Steps 1–5 for k + 1. Otherwise, set ρ∗.

• g = green split vector,

• q = link flow vector,

• ca = travel time on link a (min),

• qa = flow on link a (veh/h),

• ga = green time ratio for link a (integer).

The green time ratio exists only for links connected
with the signalized intersection (i.e., intersection with the
traffic light)

Thus, the GOSSTA problem is written as follows:

g∗ = argmin
g

∑
a

ca(q
∗
a(g), ga)q

∗
a(g) (7)

subject to the constraints

gamin ≤ ga ≤ gamax , qa ≥ 0, ga ≥ 0, (8)

where

• q∗a = user equilibrium flow on link a (veh/h),

• gamin =minimum green time ratio for signalized link
a fulfilling the capacity constraint,

• gamax = maximum green time ratio for signalized
link a fulfilling the capacity constraint.

Note that gamin and gamax guarantee a minimum of
green and red for a traffic light.

The objective function is the overall mean travel
time (or delay) of cars, denoted by J(g1, . . . , gN).
The (integer) green split ratio vector (g1, . . . , gN ) is
iteratively adjusted for N signalized links based on data
directly observed and aiming at minimizing the global
performance of the network. The comparison is made
on a large size network relative to a North-East area of
the city of Rome called Heaven (a healthier environment
through the abatement of vehicle emission and noise).
It is composed of 51 centroids, 300 nodes, 870 links
and 70 signalized junction (isolated), 20 under control.
The delay function utilized in signalized approaches is
a linear adaptation of the Webster delay formula, while
link performance functions are usual BPR volume-delay
curves. All junctions are supposed to have a fixed cycle
length (100 s), 2 phases, neither lost time nor shared lanes
and permitted movements. A static deterministic user
equilibrium has been considered for traffic assignment,
solved using the usual Frank–Wolfe algorithm.

The objective function for this real network shows
the existence of many local minima, but with small
oscillations of the objective function. Consequently, the
convergence capacity of the algorithms is important to
find the best solution.

We compared our method (SM) with the most
promising algorithms known for this problem: particle
swarm optimization (PSO) and the genetic algorithm
(GA). The results are summarized in Fig. 2; the SM
is more effective than PSO: specifically, irrespective of
the initial point, the SM always allows reaching better
solutions, narrowed within a small convergence area
(around 42000 veh×min). Such results point out the
capabilities of the SM to escape from local minima. In
contrast, this occurrence does not always happen with
PSO, which may be trapped in a poor solution when
the initial condition is represented by a bad point (very
far from a good solution because of discontinuities and
deep local valleys). The comparison of all the presented
algorithms is reported in Fig. 2. From a numerical
point of view, when the starting point is near 60000, the
improvement of the SM with respect to PSO amounts



820 L. Adacher and A. Gemma

to about 6%. PSO gives worse results, but the GA
behavior comparable with that of the SM, which gives
best performance. Both the algorithms, SM and GA, are
independent from the different initial points and present
similar behaviors. The SM yields better solutions, by
around 2%, but the GA needs fewer iterations to reach the
same solutions. It also implies reduction in computational
time. In particular, the SM improvement is around 2%
but the reduction in the calculation time settles at 20%.
The results put in evidence that this number of iterations is
necessary for the SM to reach the best results, but certainly
fewer iterations are needed to reach values different from
the optimum, but close to it.

We want to analyze the behavior of these algorithms
when the objective function has more deep local valleys.
For this reason, we consider a more complex problem.

Fig. 2. Comparison of the algorithms for 20 trials.

5. Traffic signal setting adopting the
platoon model

In urban networks most delays are spent on the main
arterial roads, as there are larger flows and thus higher
congestion. Therefore, our objective is fastening flows
along these corridors.

The model used in this paper calculates the delay
by vehicles for particular traffic light synchronization
along a main road. This model is based on the platoon
representation and simulates the congested road with
propagation of the queue between nodes (spill-back
phenomena). In this model we also take into account
the delay of the employed approaches. We also utilize
the platoon model to deal with even non-stationary
traffic demand and nonsynchronized signal settings.
The model is rather similar to the well-established
TRANSYT solving procedure, which introduces some
additional flexibility. This platoon model is studied
by Fusco et al. (2013), who assess the consistency of
macroscopic models with dynamic traffic assignment
models based on the so-called mesoscopic approach that
reproduces the longitudinal interaction between vehicles
at an aggregate level and simulates individual behavior

at nodes, including route choice. The authors introduce
and compare different approaches to model the traffic
flow: the platoon progression model on a synchronized
artery, a generalization of the cell transmission model,
a micro-simulation queuing model, and two dynamic
traffic assignment models. In numerical applications to
a real-size artery, they observed good correspondence
between the platoon progression model and dynamic
traffic simulation models. For these reasons, we consider
the platoon simulation model for the assignment problem.

The node delay model computes delays at every
approach of the artery by checking, for each arriving
platoon, which condition occurs among A, B, C; see
Fig. 3. It presents an example of delay, according to the
classification of platoons by Colombaroni et al. (2009).

Delay computation requires an iterative procedure
that classifies the different platoons progressively. This
procedure involves few iterations, because the platoons
can both catch up each other along the links and
recompose themselves at nodes, when more platoons
arrive during the red phase. For more details, see the work
of (Adacher and Gemma, 2016).

The objective function is defined as a linear
combination of the total delay in each direction of the
artery and it is calculated via simulation,

J = (1− wt)
(
wa

n∑
i=1

ωiD
(a)
i + (1 − wa)

n∑
i=1

ωiD
(−a)
i

)

+ wt

n∑
i=1

ωiD
(t)
ih

= J(D),

(9)

where

• D
(a)
i = the total delay at node i in the main

direction of artery a,

• D
(−a)
i = the total delay at node i in the opposite

direction of artery a,

• D
(t)
ih

= the total delay at node i of queue h in lateral
approach t,

• wt = the weight of the delay in lateral approaches,

• wa = the weight of the delay in the main direction
of artery a,

• ωi = the weight of node i.

Analyzing a road artery, the problem of minimum
travel time or minimum delay for traffic signal
synchronization (MDP) can be expressed as follows:

min J(D) = min f(C, g, θ, L, s,X,Q), (10)
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subject to

0 ≤ θi < Ci,

Cmin ≤ Ci ≤ Cmax,

max{γi,aCi} ≤ gi ≤ Ci − Li −max{γi,tCi},
where

• Ci[s] = the traffic light cycle for intersection i, (the
traffic light cycle is defined as any complete sequence
of the switch on (and off) traffic lights at the end of
which the same configuration of the lights is returned
as the one at the beginning of the sequence),

• θi[s] = the offsets for intersection i,

• gi[ad] = the green time ratio of node i,

• Li[s] = the time loss at node i (the time during which
the intersection is not fully used).

The time lost is mainly due to three contributions:

• transient states of vehicles in the queue at the
beginning of the green phase,

• transient states of exiting vehicles at the end of the
green phase and during the yellow phase,

• the time between the end of yellow and the beginning
of green of the next phase (the lost times at the
beginning and at the end of green are used to
determinate the duration of effective green),

• γi,a, γi,t [dimensionless] = saturation degree of
approach a along the artery and of traversal approach
t of i node (the saturation degree is the ratio between
traffic and saturation flows; this quantity is an
indicator of the congestion level),

• s [veh/s] = saturation flow vector for each arc (the
saturation flow is the maximum number of vehicles
that can cross a stop intersection line per unit time,
in the presence of continuous queue; the saturation
flow depends on the geometric characteristics of the
intersection, on flow composition and on the control
traffic lights),

• X = urban artery geometry,

• Q [veh/s] = demand level or vehicular flow (it
defines the vehicles passing through a section within
unit time).

In this work the decision variables that have been
used to minimize the delay are three vectors: cycle C,
green time ratio g and offsets θ.

The travel time of a road section is closely linked to
the geometry of the road itself and to the configuration of
traffic light plans.
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Fig. 3. Example of delay.

The saturation flow and geometry are usually studied
and designed in earlier phases and they often cannot
be changed a posteriori. In this work they are fixed.
Compared with traditional delay formulations, this model
includes both upstream and downstream node delay. The
model used in this paper calculates the delay given a
particular traffic light synchronization along a main road.
In this model we take into account the delay of vehicles
on the artery and also those coming from the subsequent
approaches of the streets; see Fig. 4.

Fig. 4. Example of synchronized arteries while taking into ac-
count lateral approaches.

5.1. Analysis of the objective function. The total
delay is a non-convex function, and an optimal feasible
set of signal settings comprehends non-linear constraints
and sometimes integer variables (phase optimization).
Finding an optimal solution for not very small and simple
networks may take long time, wherever possible.

On urban networks most delays are spent on the main
arterial roads, as there are larger flows and thus higher
congestion. So, our objective is fastening flows along
these corridors.

The minimum delay problem can be formulated as
finding out the cycle C∗ (we consider the same cycle for



822 L. Adacher and A. Gemma

all junctions), the vector of green split ratios g∗ and the
vector of offsets θ∗ that minimize an objective function
J(D), which expresses the total delay time of the network.
All the components of these vectors are integer.

The shape of the objective function with respect to
the cycle is quasi-convex and the related green vector
is substantially quasi-convex. The real problem is the
offset—the shapes presents many deep valleys. In Fig. 5
the shapes related to green time variation and offset
variation are depicted. To visualize the characteristics
of the solution space, it is not necessary to plot the
average system time for all possible combinations of
cycle/green time ratio/offset. To show the characteristics
of the solution space, the cycle, the vector of the offset
and all green time ratios are kept constant, except for
one component. This is made for different values of
green/offset/cycle that are kept constant.

5.2. Surrogate method considering the pla-
toon model. The GOSSTA problem consists of two
problems: optimization of signal settings (fixing cycle,
green splits and offset) and calculation of the delay by
simulation (platoon model), see Fig. 6. The longer
the decision vector, the more time the surrogate method
needs to find an optimal solution. Owing to the quasi
convexity of the objective function with respect to the
cycle, we fix the cycle using the binary search. We tackle
the GOSSTA problem using an on-line optimization
algorithm, i.e., for a fixed value of the cycle, we
iteratively adjust the (integer) green split ratios g1, . . . , gn
and the offsets θ1, . . . , θn for n intersection links based
on data directly observed and aiming at minimizing
the global performance of the network and the overall
mean delay (or delay) of cars, denoted by J(D) =
J(C, g1, . . . , gn, θ1, . . . , θn). The cycle is analyzed by a
binary search; for a given fixed value of the cycle Ci, g
and θ are evaluated based on the surrogate method. We
denote by x the state variable of the surrogate method.
The surrogate method is applied twice in sequence, first
x = θ, and when an optimal value of the offset is defined,
then the state becomes x = g.

For a fixed Ci, the problem can be formulated as
follows:

min
(g,θ)∈Ad

Jd(Ci, g, θ), (11)

subject to the capacity constraint

Ad = {g := [g1, · · · gn]′ , gmin ≤ gi ≤ gmax, gi ∈ Z
+;

θ := [θ1, · · · θn]′ , 0 ≤ θi ≤ 1, , θi ∈ Z
+},

(12)
where

• Ci = is the cycle fixed by the binary search (it is the
same for all intersection links i),

• g = is an n-dimensional decision vector with gi ∈
Z
+ denoting the green time ratio for intersection

link i,

• θ = is an n-dimensional decision vector with θi ∈
Z
+ denoting the offset for intersection link i,

and J(C,g,θ) = J(D), which is the total travel time on
the network when the variables (green split vector, offsets
and cycle) are fixed. For more details, see the works of
Adacher (2012) as well as Adacher and Gemma (2016).

We tested four major roads of Rome. Their
characteristics are reported Table in 1.

Table 1. Characteristics of instances. Capacity intersection is
given in [veh/h]. The flow inside the main road is given
in [veh/h]. The cross flow represents vehicles wanting
to cross the artery [veh/s].

Signals Type Capacity Flow Cross Way
flow

4 ring ≈ 3000 ≈ 2500 > 1000 two
road

4+ radial ≈ 3500 ≈ 2000 < 1000 two
2 pedes. road

5 ring ≈ 3500 ≈ 2000 > 1000 one
road

8 radial ≈ 5000 > 3000 < 1000 two
road

For example, Via Tiburtina is a 3 km long urban
artery in Rome, containing 8 signalized intersections.
During rush hours it is usually heavily congested, with an
average speed of about 8 km/h in the direction of the town
center and about 16 km/h in the opposite direction.

In Fig. 7 two of the four test networks are depicted.
Via Togliatti is an example of the test network utilized
in this study; it has 4 signalized intersections and 2
pedestrian intersections, and all the direction flows are
particularly depicted.

This model is characterized by many parameters, and
so careful calibration of the arterial model is required to
fit observed traffic counts. Considering the rush hour
we gave the priority at the artery to the lateral approach
(wa = 0, 6 and wt = 0, 4). Three demand scenarios were
considered to verify the robustness of the synchronization
solution with respect to possible demand fluctuations.
Starting from the actual average demand, two other
scenarios, high and low, were obtained by increasing and
reducing the average demand level to +15% and −15%,
respectively. The simulation results highlight the fact that
the optimizing procedure improves the average unitary
delay at the nodes from 50% to 15%. All the algorithms
and the models were developed with Matlab 2009 and the
tests were made on an Intel i7-3770 3.4 GHz computer
with 16 GB of RAM.
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Fig. 5. Shape of the objective function considering the duration of green light and the offset.

Fig. 6. Flow chart of our approach to solve total delay problem.

On the basis of the analysis and simulation, the
following settings were adopted for the PSO algorithm:
number of iterations—300, number of agents—25,
speed parameter—0.8, best local parameter—1.9, best
global parameter—1.5, random parameter—1.0, inertia
parameter—1.0. The following settings were adopted for
the GA: number of iterations—300, population size—440,
crossover rate—0.8, mutation rate—0.1, elite rate—0.1.
Two different stopping conditions are considered, the
algorithm stops if the number of iterations is reached or
if an improvement in the solution is no more than 0.1.

Considering the performance obtained for the fist
case (i.e., user equilibrium), we compare the SM and the
GA, the two most promising algorithms.

In Fig. 8 the average behavior of the two algorithms
(SM and GA) is depicted related to the four real test

networks. In this figure there we report the objective
function value (total average delay) related to the number
of iterations of the algorithm. For each iteration the SM
needs 2× (N +1) fitness evaluations (N is the number of
signalized intersections). The GA for each iteration needs
25 fitness evaluations. The calculation of the fitness is the
heaviest part for each algorithm. The platoon model takes
from 0.5 to 1 second to simulate one hour of traffic and to
calculate our fitness. It is also important to notice that the
quality of the initial population affects significantly the
GA and PSO convergence. For this reason 70 different
trials are tested for each test networks. For some start
points the reduction of total delay reaches 27%.

The SM gives a reduction in the total average delay
around 15% compared with the GA and 30% compared
with the actual average demand.

In Fig. 9 we depict the average behavior of the
different algorithms related to the four real test networks,
and the average delay related to the number of fitness
evaluations. In fact, the presented algorithms work in
different ways but all are based on the calculated fitness.
Based on these tests, PSO and SM exhibit more or less
the same behavior and give better results. They offer a
reduction in the total delay around 15% compared with the
GA and 30% compared with the actual average demand.
In terms of efficacy, it is possible notice that the SM when
compared with always yields better performance. In fact,
around 600 steps are sufficient for the convergence of the
SM when compared with 1220 for PSO. The SM has the
capacity to find optimal solutions independently of the
initial points.

6. Conclusions

In this paper, we have compared some known algorithms
to the generalized ‘surrogate problem’ methodology that
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Fig. 7. Example of different instances.

is based on an on-line control scheme which transforms
the problem into a ‘surrogate’ continuous optimization
one and proceeds to solve the latter using standard
gradient-based approaches while simultaneously updating
both actual and surrogate system states.

The major objective of this paper was to compare
the computational effectiveness and efficiency of the GA,
SM and PSO using the testing approach. A motivation
was to validate efficiency and efficacy of the SM with
respect to the GA, the most utilized algorithm for this
type of problem. Additionally, we aimed to analyze
the performance of PSO, an emerging algorithm for the
signal setting problem. Numerical experiments were
conducted on real test networks for different dimensions
and characteristics. We also analyzed a more realistic
approach considering the most important variables for the
signal setting and a dynamic model for the assignment.
In this case, the analysis was made only considering
the green time ratio and a user equilibrium, where the
surrogate algorithm gives satisfying results in terms of
efficiency. We generalized the problem by considering
also the cycle and the offset with an assignment by the
platooning model.

The surrogate method seems to be the most robust
algorithm. It is independent of the objective function
trend. Despite the discontinuous and noisy character of
the real case problem, the SM seems to be more effective
than GA taking advantage of its capabilities to escape
from local minima. Differently, this feature was not
detected by the GA, which may be trapped in a poor

solution when starting the procedure from a bad point
placed in a region very far from a good solution and
characterized by discontinuities and deep local minima.
The SM is capable to escape from local minima and
converge to the best solution. Also the PSO algorithm
seems to be effective for this kind of problem, but less
efficient than the SM.
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