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PROCEDURAL GENERATION OF AESTHETIC PATTERNS FROM DYNAMICS
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Aesthetic patterns are widely used nowadays, e.g., in jewellery design, carpet design, as textures and patterns on wallpapers,
etc. Most of the work during the design stage is carried out by a designer manually. Therefore, it is highly useful to develop
methods for aesthetic pattern generation. In this paper, we present methods for generating aesthetic patterns using the
dynamics of a discrete dynamical system. The presented methods are based on the use of various iteration processes from
fixed point theory (Mann, S, Noor, etc.) and the application of an affine combination of these iterations. Moreover, we
propose new convergence tests that enrich the obtained patterns. The proposed methods generate patterns in a procedural
way and can be easily implemented on the GPU. The presented examples show that using the proposed methods we are able
to obtain a variety of interesting patterns. Moreover, the numerical examples show that the use of the GPU implementation
with shaders allows the generation of patterns in real time and the speed-up (compared with a CPU implementation) ranges
from about 1000 to 2500 times.

Keywords: dynamical system, dynamics, iteration process, aesthetic pattern.

1. Introduction

Ornaments and regular tiling patterns have a long tradition
in human culture. Their origins date back to ancient
cultures like China, Egypt, Greece and Islam (von Gagern
and Richter-Gebert, 2009). During these times people
have replicated repeating patterns on floors, walls, ceilings
and buildings, and in ceramics, fabrics, rugs, wallpapers
and stained-glass windows. Today, we continue to be
fascinated by symmetry and repetition in design. We ask
whether the beauty of the symmetrical ornaments and the
designs of various cultures can be simulated with the aid
of a computer. One way is through the use of various
mathematical equations (Pickover, 2001).

The literature is full of very diverse methods
of aesthetic pattern generation that use mathematical
equations in the generation process. One of the
approaches employed in these methods is the dynamics
of discrete dynamical systems. In this way, we are able to
obtain patterns that possess wallpaper symmetries (Chung
and Chan, 1993; Lu et al., 2007), spherical symmetries
(Chung and Chan, 1995), frieze symmetries (Lu et al.,
2010), Archimedean tilings (Ouyang et al., 2015), etc.
In recent years, another interesting approach has been

proposed, namely, the use of iteration processes from
fixed point theory. The processes were successfully
applied in the generation of generalised Mandelbrot and
Julia sets (Ashish et al., 2014; Kang et al., 2015b), in
inversion fractals (Gdawiec, 2017) or in polynomiography
(patterns obtained from the polynomial root-finding
process) (Gdawiec et al., 2015; Kang et al., 2015a).

Besides methods that use various mathematical
equations, we can find in the literature many other
approaches to aesthetic pattern generation. The most
popular one is the use of different types of grammars.
Shape grammars are the most popular types among these
methods. For instance, they were employed to generate
ethnic Zhuang embroidery designs (Jia and Ming-Xi,
2013) and Islamic geometric patterns (Sayed et al., 2016).
Other types of grammars used to generate patterns are
collage grammars (Klempien-Hinrichs and von Totth,
2010) and l-systems (Chen et al., 2012). Additional
popular approaches employed in the field include graph
methods (Yeh et al., 2013), cellular automata (Greenfield,
2016), neural networks (Setti, 2015) and Petri nets
(Lalitha and Rangarajan, 2012). We can also find methods
that are based on examples (Qi and Li, 2009; Wei et al.,
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2009) and in which a user-driven planning strategy is
applied (Anderson and Wood, 2008).

In this paper, we show how to use iteration processes
from fixed point theory to alter the dynamics of methods
that are based on the application of the dynamics of
discrete dynamical systems in the generation of aesthetic
patterns. The alternation of dynamics will lead to the
change in a pattern’s shape. Moreover, we show how to
combine different iteration processes into one to obtain
completely new patterns. In order to enrich further the
obtained patterns, we also propose new convergence tests
based on metric and non-metric conditions.

The remainder of this paper is outlined as follows.
In Section 2, some basic information on generating
symmetrical patterns from dynamics is presented. Next, in
Section 3, modifications of the algorithm from Section 2
are presented. The first modification is based on the use
of different iteration processes from fixed point theory
together with their generalisation into vector parameters.
The second modification uses an affine combination of
iterations and the last one relies on the use of different
convergence tests. Moreover, we present some remarks
on how to implement the proposed algorithms on the GPU
using shaders. Then, in Section 4, we present various
examples of patterns obtained with the proposed methods.
Also, we make a comparison of the generation times
between the GPU and CPU implementations. Finally,
Section 5 rounds off the discussion with some concluding
remarks.

2. Symmetrical patterns from dynamics

Dynamical systems are mathematical models which
contain the rules describing the way some quantity
undergoes a change through time. Graphical presentations
of the phase portraits not only reveal the complex
behaviours of such systems, but also quite often have
high artistic appeal (Chung et al., 2001). Many different
methods of creating phase portraits with aesthetic appeal
have been proposed (Chung and Chan, 1993; Chung
et al., 2001; Lu et al., 2007; Ouyang et al., 2015). One of
these (which will be used in this paper) has been proposed
by Chung and Chan (1993).

In their work, the authors studied the following
discrete dynamical system:{

xn+1 = xn − f(xn, yn),

yn+1 = yn − g(xn, yn),
(1)

where (x0, y0)
T ∈ R

2 is a starting point (the transposition
in the notation of the point is used because in the paper we
assume the column notation of points, vectors, etc.) and
f, g : R2 → R are functions. They studied the conditions
under which the phase portrait of this dynamical system
will have plane symmetries (translation, reflection, glide

reflective and rotational symmetry). For instance, they
showed that if we want to obtain a pattern with a rotational
symmetry with angle θ, then the functions f, g should
fulfil the following conditions:

f(x′′, y′′)− 2 cos θf(x′, y′) + f(x, y) = 0, (2)

where

(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
= Rθ

(
x
y

)
, (3)(

x′′

y′′

)
= Rθ

(
x′

y′

)
(4)

and

g(x, y) =
cos θf(x, y)− f(x′, y′)

sin θ
. (5)

Moreover, using the conditions for plane symmetries,
they derived conditions that f, g must meet in order to
obtain patterns with wallpaper symmetries. For instance,
the conditions to obtain a pattern with a p4 symmetry
(a square lattice with a 4-fold symmetry, i.e., rotational
symmetry with respect to a 90◦ angle; more information
on the different types of wallpaper symmetries can be
found, for example, in the work of Horne (2000)) are as
follows:

f(x, y) = −f(−x,−y), (6)

f(x, y) = f(x+ P, y) = f(x, y + P ), (7)

g(x, y) = −f(−y, x), (8)

where P is a period of the function.

In order to generate the patterns, Chung and Chan
(1993) used the method presented in Algorithm 1. In the
algorithm, each starting point (x0, y0)

T in the area A is
iterated using (1). The iteration process is performed as
long as the number of iterations is smaller than a fixed
number of iterations K or a convergence condition is not
satisfied. When the iteration process ends, we assign
a colour to the starting point based on the number of
performed iterations and a chosen colourmap.

Figure 1 presents some examples of patterns obtained
using Algorithm 1. The parameters used to generate these
were the following:

(a) A = [−15, 15]2, K = 50, ε = 0.1 and

{
f(x, y) = sinx cos y,

g(x, y) = cos 2x sin y.
(9)
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(b) A = [−20, 20]2, K = 50, ε = 0.1 and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(x, y) = 2r sinx cosCy + 2s sin(h1(x,−y))

cos(Ch2(x, y)) + 2(s− r)

sin(h1(−x,−y)) cos(Ch2(x,−y)),
g(x, y) = Bf(x, y)− C[2r sin(h1(x,−y))

cos(Ch2(x, y)) + 2s sin(h1(−x,−y))

cos(Ch2(x,−y))− 2(s− r)

sinx cosCy],
(10)

where

h1(x, y) = 0.5x+Dy, (11)

h2(x, y) = Dx+ 0.5y (12)

and B = 1√
3

, C = 2√
3

, D =
√
3
2 , r = 0.2, s = 0.1.

(c) A = [−10, 10]2, K = 50, ε = 0.1 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(x, y) = 0.2(sinx cos 2y − sin(−x) cos(−2y))

+ 0.1(sin(−y) cos 2x− sin y cos(−2x)),
g(x, y) = −0.2(sin(−y) cos 2x− sin y cos(−2x))

− 0.1(sin(−x) cos(−2y)− sinx cos 2y).
(13)

(d) A = [−15, 15]2, K = 50, ε = 0.1 and{
f(x, y) = 0.5 sin 2x cos y + 0.1 sinx cos 2y,

g(x, y) = 0.5 cosx sin 2y + 0.1 cos 2x sin y.

(14)

Algorithm 1. Generating pattern from dynamics.

Require: f, g : R
2 → R—functions, A ⊂

R
2—area, K—maximum number of iterations, ε >

0—accuracy, colourmap[0 . . .C − 1]—colourmap
with C colours.

Ensure: pattern in the area A.

1: for (x0, y0)
T ∈ A do

2: n = 0
3: while n < K do
4: xn+1 = xn − f(xn, yn)
5: yn+1 = yn − g(xn, yn)
6: if

√
(xn+1 − xn)2 + (yn+1 − yn)2 < ε then

7: break
8: end if
9: n = n+ 1

10: end while
11: i = �(C − 1) n

K �
12: colour (x0, y0) with colourmap[i]
13: end for

(a) (b)

(c) (d)

Fig. 1. Examples of patterns obtained using the dynamics of (1).

3. Iteration processes and dynamics

Let T : R2 → R
2 be defined as follows:

T (p) = p−
(
f(p)
g(p)

)
=

(
xp − f(p)
yp − g(p)

)
, (15)

where p = (xp, yp)
T ∈ R

2 and f, g : R
2 → R are

functions. Then, the dynamical system (1) can be written
as

pn+1 = T (pn). (16)

This form of feedback iteration is also called the Picard
iteration and it is used in many different algorithms, e.g.,
numerical polynomial root finding (Gdawiec et al., 2015).

One of the most important applications of Picard’s
iteration is finding the fixed points of a contractive
mapping using the Banach fixed point theorem. Fixed
point theory includes many other methods that allow one
to find fixed points of a given mapping. Most of them rely
on the feedback iteration of the form, other than Picard’s
iteration.

Let us recall some of them. Let (X, d) be a metric
space, T : X → X be a mapping and p0 ∈ X be a
starting point.

1. The Mann iteration (Mann, 1953), which is a
one-step iteration defined as follows:

pn+1 = (1− αn)pn + αnT (pn), (17)

where αn ∈ (0, 1] for all n ∈ N.
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2. The S-iteration (Agarwal et al., 2007), which is a
two-step iteration defined as follows:

{
pn+1 = (1 − αn)T (pn) + αnT (un),

un = (1− βn)pn + βnT (pn),
(18)

where αn ∈ (0, 1], βn ∈ [0, 1] for all n ∈ N.

3. The Noor iteration (Noor, 2000), which is a
three-step iteration defined as follows:

⎧⎪⎨
⎪⎩
pn+1 = (1 − αn)pn + αnT (un),

un = (1− βn)pn + βnT (vn),

vn = (1− γn)pn + γnT (pn),

(19)

where αn ∈ (0, 1], βn, γn ∈ [0, 1] for all n ∈ N.

When we look at the different iterations, we see that
they can have different numbers of parameters (one,
two, three or even more) and varying complexity, from
very simple as in the Mann iteration to more complex
as in the S-iteration. We can also observe that the
iterations combine, in various ways, the point from the
previous iteration and the transformed points computed
in the current one (compare the Noor and S iterations).
Moreover, we notice that the iterations for particular
parameter values can reduce to other iterations. For
instance, if we take in the Noor iteration γn = 0, βn = 0
for all n ∈ N, we obtain a Mann iteration. A review of
various iterations and their dependencies can be found in
the work of Gdawiec and Kotarski (2017).

As noted at the beginning of this section, the method
for generating symmetrical patterns from Section 2 uses
the Picard iteration. This type of iteration is used to
get the dynamics of a given discrete dynamical system.
In order to obtain new patterns from the same functions
(used to define the dynamical system), we propose to
alter the dynamics of this dynamical system by using
different iterations from fixed point theory other than
Picard’s iteration.

In the iterations, the parameters are real numbers that
belong to (0, 1] or [0, 1]. This is one of the assumptions
used in fixed point theory to prove the convergence (weak,
strong) of iterations to a fixed-point in different spaces
(metric, Banach, Hilbert, etc.). As we are interested
in generating new patterns by changing the dynamics,
rather than converging to a fixed point, we can omit
these assumptions and take parameters outside of those
intervals. Moreover, we can extend the parameters even
further, to two-dimensional vectors.

Let 1 = (1, 0)T and αn = (xαn , yαn)
T , βn =

(xβn , yβn)
T , γn = (xγn , yγn)

T , etc. In the iterations, we
need subtraction and multiplication of the parameters. We
define these arithmetic operations in a similar way as in

the case of complex numbers, i.e.,

(x1, y1)
T ± (x2, y2)

T = (x1 ± x2, y1 ± y2)
T , (20)

(x1, y1)
T · (x2, y2)

T

= (x1x2 − y1y2, x1y2 + y1x2)
T , (21)

where (x1, y1)
T , (x2, y2)

T ∈ R
2. Having established the

basic operations, we are able to extend the iterations to
vector parameters. For instance, the Noor iteration takes
the following form:⎧⎪⎨

⎪⎩
pn+1 = (1− αn) · pn + αn · T (un),

un = (1− βn) · pn + βn · T (vn),
vn = (1− γn) · pn + γn · T (pn),

(22)

where αn, βn, γn ∈ R
2 for all n ∈ N.

As mentioned in Section 2, Chung and Chan
(1993) studied the conditions under which the phase
portrait of (1) has plane and wallpaper symmetries.
Analogous analysis can be made for (15) and the iteration
processes. Each of the iteration processes must be studied
independently because, as they have different numbers of
parameters and diverse complexity, the conditions will be
different.

Let us consider two iteration processes—the Mann
and the S-iteration. We will derive conditions that
functions f and g must fulfil to get the translation
symmetry, assuming that the phase portrait has a period
T along the x-axis, i.e., translation symmetry. The phase
portrait is invariant after the transformation p′ = (xp −
T, yp)

T , where p = (xp, yp)
T .

Using (15), the Mann iteration takes the following
form:

pn+1 = (1− αn)pn + αnT (pn)

= pn − αnpn + αnpn − αn

(
f(pn)
g(pn)

)

= pn − αn

(
f(pn)
g(pn)

)
.

(23)

Thus, using the Mann iteration, we obtain a very similar
formula to the one found with the Picard iteration. The
only difference is that in the Mann iteration we have
a scaling factor αn. This factor does not affect the
symmetry conditions derived by Chung and Chan (1993).
Thus, the conditions under which to obtain the translation
symmetry considered are the following:

f(x, y) = f(x+ T, y), (24)

g(x, y) = g(x+ T, y). (25)

Now, let us consider the case with the S-iteration.
The formula for un is the same as in the case of the Mann
iteration:

un = pn − βn

(
f(pn)
g(pn)

)
, (26)



Procedural generation of aesthetic patterns from dynamics and iteration processes 831

whereas the formula for pn+1 takes the following form:

pn+1 = (1− αn)T (pn) + αnT (un)

= (1− αn)

[
pn −

(
f(pn)
g(pn)

)]

+ αn

[
pn − βn

(
f(pn)
g(pn)

)
−
(
f(un)
g(un)

)]

= pn −
[
(1− αn + αnβn)

(
f(pn)
g(pn)

)

+ αn

(
f(un)
g(un)

)]
.

(27)

Substituting (xp′ , yp′) = (xp−T, yp)
T into (26) and (27),

we have

u′
n =

(
xp′

n
+ T

yp′
n

)
− βn

(
f(xp′

n
+ T, yp′

n
)

g(xp′
n
+ T, yp′

n
)

)
(28)

and

p′n+1 =

(
xp′

n

yp′
n

)
−

[
(1− αn + αnβn)

(
f(xp′

n
+ T, yp′

n
)

g(xp′
n
+ T, yp′

n
)

)
+ αn

(
f(u′

n)
g(u′

n)

)]
.

(29)

For (27) and (29) to be identical for all n, we must have

(1− αn + αnβn)

(
f(xp, yp)− f(xp + T, yp)
g(xp, yp)− g(xp + T, yp)

)

+ αn

(
f(un)− f(u′

n)
g(un)− g(u′

n)

)
= 0, (30)

where

un =

(
xp

yp

)
− βn

(
f(xp, yp)
g(xp, yp)

)
, (31)

u′
n =

(
xp + T

yp

)
− βn

(
f(xp + T, yp)
g(xp + T, yp)

)
. (32)

As we can see, the conditions for the translation
symmetry using the S-iteration become more complex
than in the case of the Picard and Mann iterations. After
studying the conditions for other types of symmetry, we
can make a similar observation. Thus, the complexity of
the iteration method has an impact on that of the symmetry
conditions—the more complex the iteration, the more
complex the conditions.

Using iterations from fixed point theory together with
the mapping (15), we are able to create new patterns, but
we have limited possibilities of obtaining these because
we use only one mapping and iteration. Thus, it would
be advantageous to be able to generate new patterns

from several mappings and iterations. To this end, we
can use an affine combination. Let T1, T2, . . . , TN be
mappings given by (15) and Iv1 , Iv2 , . . . , IvN be iterations
(Picard, Mann, Noor, etc.), where N ≥ 1 and vi for
i = 1, 2, . . . , N is a vector of parameters of the iteration
method. Moreover, for each iteration we fix λi ∈ R for
i = 1, 2, . . . , N such that

∑N
i=1 λi = 1. Now, we define a

combined iteration process as follows:

pn+1 =
N∑
i=1

λiIvi(pn, Ti). (33)

If we take N = 1 and λ1 = 1, then (33) reduces to the
case with a single iteration and mapping. This is a general
form of the iteration process that will be used in the paper.
In the sequel, if we refer to a single iteration, then we
make the implicit assumption that N = 1 and λ1 = 1.

In Algorithm 1, we can modify not only the iteration
process, but also the convergence condition (test). In the
condition from Algorithm 1, we check if the Euclidean
distance between two consecutive points is smaller than
the given accuracy ε. This is a standard convergence
test used in many numerical algorithms, e.g., numerical
solution of non-linear equations. Gdawiec (2013)
presented new convergence tests using the polynomial
root-finding methods in order to obtain new artistic
patterns. Against this background, we also constructed
various convergence tests for the generation algorithm that
uses dynamical systems.

1. The Pickover test (Pickover, 2001):

|x2
pn+1

+ y2pn+1
− (x2

pn
+ y2pn

)| < ε, (34)

where pn+1 = (xpn+1 , ypn+1)
T , pn = (xpn , ypn)

T .

2. The fractional distance test:

(|xpn+1 − xpn |q + |ypn+1 − ypn |q
) 1

q < ε, (35)

where pn+1 = (xpn+1 , ypn+1)
T , pn = (xpn , ypn)

T

and q ∈ (0, 1].

3. The maximum distance with weights test:

max{a|xpn+1 − xpn |, b|ypn+1 − ypn |} < ε, (36)

where pn+1 = (xpn+1 , ypn+1)
T , pn = (xpn , ypn)

T

and a, b ∈ R+ are the weights.

4. The alternative test (Gdawiec, 2013):

|a(xpn+1−xpn)| < ε1∨|b(ypn+1−ypn)| < ε2, (37)

where pn+1 = (xpn+1 , ypn+1)
T , pn = (xpn , ypn)

T

and a, b ∈ R.
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5. The difference test:

|(a|xpn+1 − xpn |)q − (b|ypn+1 − ypn |)r| < ε, (38)

where pn+1 = (xpn+1 , ypn+1)
T , pn = (xpn , ypn)

T ,
a, b ∈ R and q, r ∈ R+.

All the presented modifications of Algorithm 1 are
summarized in Algorithm 2. We can implement this
algorithm on the GPU. For this purpose, we can use either
the OpenCL, CUDA libraries or the shaders employed by
graphics libraries like OpenGL or Direct3D. The OpenCL
and CUDA libraries are normally used in general-purpose
computations, whereas shaders were introduced for
graphical applications, such as the rendering of 3D
graphics. As the proposed algorithm is purely graphical
and the patterns can be used in a 3D scene as textures
generated in a procedural way, the use of shaders is a
more obvious choice. Of course, the OpenCL or CUDA
libraries may be also used.

Let us turn now to the use of OpenGL and OpenGL
Shading Language (GLSL) in the implementation of
Algorithm 2 on the GPU. Each point in the area A
considered is calculated independently from the others,
which makes the algorithm easy to parallelize using
shaders. All computations are made in the fragment
shader. Some of the input parameters of the algorithm can
be sent to the fragment shader using uniform variables.
For instance, we can send the following parameters in
this way: the area, the maximum number of iterations,
a colour map and an affine combination coefficients.
Parameters like functions defining mappings Ti, iterations
or convergence tests cannot be sent as simple uniform
variables precisely because they are functions. For this
purpose, we can use GLSL subroutines. A known issue in
the generation of patterns in a procedural way is aliasing
(Ebert et al., 2002). In order to deal with this problem,
we can use the super sampling method, which is widely
employed in many programs for generating fractal art
patterns, e.g., Fractint, ChaosPro, Ultra Fractal.

4. Examples

In this section, we present some examples of aesthetic
patterns obtained with the methods proposed in this paper.
In all examples, we use supersampling anti-aliasing with
factor 4.

For comparison purposes, the proposed methods
were implemented in the GLSL (GPU implementation)
and in a Java-based programming language named Pro-
cessing (CPU implementation). All patterns were
rendered to images with a resolution of 800× 800 pixels.
Thus, taking into account the anti-aliasing process (factor
equal to 4) and the final resolution (800 × 800 pixels)
the images were initially rendered using a resolution of
3200× 3200 pixels. All the experiments were performed

Algorithm 2. Generating pattern from dynamics using a
combination of iterations.
Require: f1, f2, . . . , fN , g1, g2, . . . , gN : R

2 →
R—functions defining mappings T1, T2, . . . , TN

of the form (15), A ⊂ R
2—area, K—maximum

number of iterations, Iv1 , Iv2 , . . . , IvN —iterations,
λ1, λ2, . . . , λN—affine combination coefficients,
Cu : R

2 × R
2 → {true, false}—convergence

test, colourmap[0 . . .C − 1]—colour map with C
colours.

Ensure: pattern in the area A.

1: for p0 ∈ A do
2: n = 0
3: while n < K do
4: pn+1 =

∑N
i=1 λiIvi(pn, Ti)

5: if Cu(pn, pn+1) = true then
6: break
7: end if
8: n = n+ 1
9: end while

10: i = �(C − 1) n
K �

11: colour p0 with colourmap[i]
12: end for

on a computer with the following characteristics: an Intel
i5-4570 (@ 3.2 GHz) processor, 16 GB DDR3 RAM,
AMD Radeon HD7750 with 1 GB GDDR5, and Microsoft
Windows 10 (64-bit).

The first example presents the use of iterations other
than Picard’s iteration. In the example we applied the
following parameters: A = [−10, 10]2, K = 50, a
standard convergence test with ε = 0.1 and{

f(x, y) = 0.5 sin 2x| cos y|+ 0.5 sinx| cos 2y|,
g(x, y) = 0.5| cosx| sin 2y + 0.5| cos 0.5x| sin y.

(39)
Figure 2 presents patterns obtained with the Picard (a) and
Noor (b–d) iterations. The parameters used in the Noor
iteration were as follows: (b) αn = (−0.5, 0.0)T , βn =
(0.5, 0.0)T , γn = (0.9, 0.0)T , (c) αn = (0.5,−0.5)T ,
βn = (1.0,−0.5)T , γn = (0.1, 0.0)T , (d) αn =
(1.5, 0.0)T , βn = (1.5, 0.0)T , γn = (−0.5, 0.0)T .
From the images we see that changing the iteration from
Picard to others has a great impact on the shape of the
pattern. In this way, we obtain patterns that are similar
to the original one (Fig. 2(d)) or that are very different
(Figs. 2(b) and (c)). Moreover, we can observe that using
vector parameters with the non-zero second coordinate
results in some swirls in the pattern (Fig. 2(c)), which
were not present in the pattern obtained with the Picard
iteration.

The generation times of the images from Fig. 2 are
presented in Table 1. From the results we see that the
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(a) (b)

(c) (d)

Fig. 2. Examples of patterns obtained using the Picard (a) and
Noor (b–d) iterations.

Table 1. Generation times of patterns from Fig. 2.
Figure CPU time [s] GPU time [s] CPU/GPU

2(a) 34.66 0.013 2666.15
2(b) 230.82 0.117 1972.82
2(c) 173.61 0.076 2284.34
2(d) 89.57 0.041 2184.63

generation times for the patterns obtained with the Noor
iteration are greater than those for the Picard iteration,
even in the case of similar patterns (Figs. 2(a) and (d)).
This is due to the fact that the Noor iteration is much more
complex, i.e., it requires the function evaluation three
times in a single iteration, whereas in the Picard iteration
the function’s value is calculated only for one point. We
can also observe that the values of the parameters in the
Noor iteration have a great impact on the generation time.
Moreover, we see that the GPU implementation is much
faster (about 2000 to 2600 times) than the CPU one.
Through the GPU implementation we are able to generate
patterns in real time.

The next two examples present the use of the
combined iteration process. We start with the example
showing the application of a single mapping T used in
the combination of two different iterations. The common
parameters for generating the patterns in this example
were as follows: A = [−20, 20]2, K = 50, a standard
convergence test with ε = 0.1, the f and g functions
defining the mappings T1 = T2 given by (10).

Figure 3 presents patterns obtained using the

(a) (b)

Fig. 3. Patterns obtained using the S (a) and Mann (b) itera-
tions.

Table 2. Generation times of patterns from Figs. 3 and 4.
Figure CPU time [s] GPU time [s] CPU/GPU

3(a) 217.52 0.172 1264.65
3(b) 121.36 0.080 1517.00
4(a) 198.81 0.147 1352.44
4(b) 71.47 0.049 1458.57
4(c) 101.42 0.064 1584.68
4(d) 230.06 0.211 1090.33

S-iteration with αn = (−1.4, 0.0)T , βn = (2.5, 0.5)T

(a), and the Mann iteration with αn = (3.0, 0.0)T (b).
Comparing the images from Figs. 3 and 1(b), we see the
next example of using iterations other than the Picard one,
because the pattern from Fig. 1(b) was created using the
same parameters as the patterns from Fig. 3, but with
the Picard iteration. Patterns obtained with the affine
combination of the iterations used in Fig. 3 are presented
in Fig. 4. The parameters in the affine combination were
as follows: (a) λ1 = 0.8, λ2 = 0.2, (b) λ1 = 0.6,
λ2 = 0.4, (c) λ1 = 0.2, λ2 = 0.8, (d) λ1 = −0.2,
λ2 = 1.2. From the images, we can observe that the
use of the affine combination of two iterations changes
the shape of the patterns. Depending on the coefficients of
the combination, we obtain patterns that are very similar
to one or the other pattern.

The generation times of the patterns from Figs. 3 and
4 are presented in Table 2. From the obtained results we
can observe that the times vary for different values of the
parameters of the affine combination, i.e., for the patterns
in Figs. 4(b) and (c) the times were lower than the ones
obtained for the original patterns in Fig. 3, for the pattern
in Fig. 4(d) we observed a longer time, and for the pattern
in Fig. 4(a) the time ranges between the generation times
of the original patterns. We can also observe that the
more complex the pattern, the longer it takes to generate it.
Moreover, the GPU implementation is considerably faster
than the CPU one, but the speed-up is lower than in the
case of the Noor iteration and ranges from about 1000 to
1600.

In the next example we present the use of a
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(a) (b)

(c) (d)

Fig. 4. Examples of patterns obtained using the affine combina-
tion of patterns from Fig. 3.

combination of different mappings and iterations. The
common parameters employed in this example were as
follows: A = [−15, 15]2, K = 50, standard convergence
test with ε = 0.1. Figure 5 presents patterns obtained with

(a) the S-iteration with αn = (−0.5, 0.0)T , βn =
(1.5, 0.0)T and f , g given by (9),

(b) the Mann iteration with αn = (1.7, 0.0)T and f , g
given by (14),

(c) the Picard iteration and{
f(x, y) = sin 0.5x cos 2y,

g(x, y) = sin 1.5x sin y.
(40)

Likewise, we can observe how the change of the iteration
from Picard to others has an impact on the shape of the
patterns. Patterns from Figs. 5(a) and (b) were obtained
with different iterations (the S and Mann iterations), and
the original patterns generated using Picard’s iteration are
presented in Figs. 1(a) and (d), respectively.

Patterns obtained with the affine combination of the
iterations and functions used in Fig. 5 are presented in
Fig. 6. The parameters of the affine combination were
as follows: (a) λ1 = 0.19, λ2 = 0.8, λ3 = 0.01, (b)
λ1 = 0.7, λ2 = 0.2, λ3 = 0.1, (c) λ1 = λ2 = λ3 = 1/3,
(d) λ1 = 1.5, λ2 = −0.05, λ3 = −0.45. Looking at the
images, we can observe that the patterns obtained with the
use of the affine combination differ from the original ones,
but possess some of their features.

(a) (b)

(c)

Fig. 5. Examples of patterns obtained using the S (a), Mann (b)
and Picard (c) iterations.

Table 3. Generation times of patterns from Figs. 5 and 6.
Figure CPU time [s] GPU time [s] CPU/GPU

5(a) 82.03 0.043 1907.67
5(b) 119.67 0.067 1786.11
5(c) 179.39 0.092 1949.89
6(a) 92.77 0.050 1855.40
6(b) 104.87 0.055 1906.72
6(c) 162.69 0.090 1807.66
6(d) 224.76 0.159 1413.58

Table 3 presents the generation times obtained for the
patterns in Figs. 5 and 6. Similar to the affine combination
of two mappings, the times vary for different values of the
parameters of the affine combination. Mostly, they range
between the times obtained for the patterns that were used
in the combination (Figs. 6(a)–(c)), but for the pattern
in Fig. 6(d) the time was greater than in the case of the
original patterns. Moreover, we see that the speed-up,
when using the GPU implementation, varies between
about 1400 and 2000, and allows pattern generation in real
time.

The last example (Fig. 7) presents the use of different
convergence tests. The common parameters employed to
generate the patterns were as follows: A = [−15, 15]2,
K = 75, the Picard iteration and{

f(x, y) = sinx sin 2y,

g(x, y) = cosx cos 1.5y.
(41)

Convergence tests used to obtain the patterns from Fig. 7
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(a) (b)

(c) (d)

Fig. 6. Examples of patterns obtained using the affine combina-
tion of patterns from Fig. 5.

were as follows: (a) a standard test with ε = 0.1, (b) a
fractional distance test with q = 0.3, ε = 0.1, (c) an
alternative test with a = b = 30.0, ε1 = ε2 = 0.1, (d)
difference test with a = 1.0, b = 3.0, q = 1.0, r = 1.0,
ε = 0.1. From the images in Fig. 7, we see that the change
in the convergence test has an impact on the obtained
patterns. The use of tests other than the standard one
introduces some very interesting details into the obtained
patterns, which we had not been able to obtain previously.

The generation times of the patterns from Fig. 7
are presented in Table 4. From the results, we see that
the generation times for the non-standard convergence
tests are greater compared with the time obtained for the
standard test. The difference depends on the complexity
and computational cost of the operations used in the test,
e.g., in the fractional distance test we have to compute
the q-th power and the q-th root, which is computationally
expensive. Despite the greater computational cost,
however, by using the non-standard tests we were able
to obtain new details in the patterns. Similarly to
the other examples, we also see in this case that the
GPU implementation works in real time. The GPU
implementation is about 1800 to 2300 times faster than
the CPU one.

5. Conclusions

This paper proposed extensions of the method of
generating patterns from dynamics using different
iteration processes and convergence tests. The application
of iterations from fixed-point theory provides more

(a) (b)

(c) (d)

Fig. 7. Examples of patterns obtained using different conver-
gence tests.

Table 4. Generation times of patterns from Fig. 7.
Figure CPU time [s] GPU time [s] CPU/GPU

7(a) 24.11 0.012 2009.16
7(b) 59.20 0.026 2276.92
7(c) 24.03 0.013 1848.46
7(d) 28.38 0.014 2027.14

possibilities for obtaining new and very interesting
patterns. Moreover, using the proposed generalizations,
we are able to obtain patterns which we had not been
able to arrive at previously. The proposed methods are
also easy to implement using GPU shaders, and this
implementation allows the generation of patterns in real
time.

In the literature we can find some approaches to
obtaining 3D patterns from dynamics (Chung and Chan,
1995; Lu et al., 2012; 2014). As far as future work is
concerned, one can attempt the introduction of similar
generalizations, like those presented in the paper, to
develop algorithms of 3D patterns and introduce new
methods. Moreover, it is necessary for the generation
of patterns from dynamics to find values of parameters
that will produce interesting patterns. This can be very
tedious work, which could be made easier by developing
automatic methods of finding aesthetic patterns from
dynamics.
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