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Indoor scene classification forms a basis for scene interaction for service robots. The task is challenging because the
layout and decoration of a scene vary considerably. Previous studies on knowledge-based methods commonly ignore the
importance of visual attributes when constructing the knowledge base. These shortcomings restrict the performance of
classification. The structure of a semantic hierarchy was proposed to describe similarities of different parts of scenes in
a fine-grained way. Besides the commonly used semantic features, visual attributes were also introduced to construct the
knowledge base. Inspired by the processes of human cognition and the characteristics of indoor scenes, we proposed an
inferential framework based on the Markov logic network. The framework is evaluated on a popular indoor scene dataset,
and the experimental results demonstrate its effectiveness.
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1. Introduction

With the rapid development of imaging techniques, the
amount of visual information has increased significantly,
providing richer data sources for image tasks such as
image annotation, recognition, retrieval, and classification
(Carneiro et al., 2007; Penatti et al., 2014; Feng et al.,
2017; 2016; Feng and Zhou, 2016). Scene classification
is a precondition to achieve higher level scene interaction
for robots. Consequently, developing efficient tools
for automatic scene analysis has drawn considerable
attention.

Scene classification is one of the primary goals in
computer vision, involving many sub-tasks, such as object
detection and recognition. These sub-tasks have been
studied intensely over the past few decades, and there is
still ample room for improvement (Mottaghi et al., 2013).
In general, scene classification refers to the process of
learning to answer a “what” question from a given sample,
where the answer is naturally determined by what objects
a scene contains. Classifying indoor scenes is challenging,
and there are no universal models for describing such
scenes (Xie et al., 2014b; Khan et al., 2014; Chaojie
et al., 2013). This is because the layout and decoration
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of indoor scenes vary considerably, and the classification
performance is easily affected by environmental factors.
As a result, indoor scenes are confusing and even difficult
for a human to classify.

According to previous research (Ye et al., 2015),
algorithms for scene classification can be roughly divided
into two types: bio-inspired and feature learning methods.
Researchers have investigated and applied existing
bio-inspired models, such as the human visual system,
to computer-vision applications to further improve
performance, and this have been proven effective (Escobar
and Kornprobst, 2012; Tang and Qiao, 2014; Huang et al.,
2011). This strategy is popular for visual tasks, including
field-of-action recognition, image processing, and scene
classification (Escobar and Kornprobst, 2012; Delaigle
et al., 2002; Alleysson et al., 2005; Siagian and Itti, 2007;
Xie et al., 2014a). Meanwhile, scene classifying methods
based on visual features can be further divided into three
strategies. The first one is based on low-level features for
classification, such as color, texture, and shape (Banerji
et al., 2013). This strategy is effective, provided that
there are only a low number of categories. Also, it is
easily affected by external factors such as illumination.
The second strategy is devoted to the development of
high-level features from a global perspective. This is done
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by treating the image as a collection of image blobs, and
by introducing more descriptive features for precise scene
classification (Lazebnik et al., 2006; jia Li et al., 2010;
Khan et al., 2014; Yu et al., 2014; 2013; 2012b). This
strategy explores the group of features and corresponding
metrics to improve the classification performance, and is
suitable for a larger number of learning samples. The
third one is to introduce semantic features to address the
problem of a semantic gap (Tang et al., 2012; Zhang et al.,
2013). Last but not least, rule-and graph-based systems
can also be used to solve the problem of classification
(Ribeiro et al., 2009; Yu et al., 2012a; Welter et al., 2011;
Chaves et al., 2012).

In this paper, we target the problem of scene
classification based on rule inference. Previous research
commonly ignores the importance of visual attributes,
restricting the performance and flexibility. Inspired
by the cognitive principle of the human being, the
hierarchical structure of scenes and rule-based inference
for determining the category of a scene are investigated
and a semantic rule inference (SRI) framework is
proposed in this paper. The knowledge base is constructed
by both semantic hierarchies extracted by a discriminative
part-based model (Felzenszwalb et al., 2010b) and visual
attributes (Farhadi et al., 2009) extracted from the
image. A Markov logic network (MLN) (Richardson and
Domingos, 2006) is used to infer the general category of
the scene. The MLN deals with conflict rules generated
from similar scenes by learning weights. The proposed
framework is suitable for other related applications such
as image retrieval and understanding.

The remainder of the paper is organized as follows.
Related work is introduced in Section 2. Then the
SRI indoor scene-classification framework is propose in
Section 3. Experimental results are provided in Section 4.
Finally, ongoing and future work are summarized in
Section 5.

2. Related work

2.1. Object detection. Object detection is a basic and
active research topic in computer vision. The research
field includes object detection in video sequences and
static images. Here we mainly discuss the latter one. The
main problem of object detection in static images is that
the objects in the image vary with the external factors such
as illumination and the viewing angle. Typically speaking,
previous research was based on several types of methods,
including local image information (Ren and Ramanan,
2013; Lazebnik et al., 2006; Shotton et al., 2005; Nguyen
et al., 2013; Teo et al., 2015), sparse representation
(Rigamonti et al., 2011; 2013), neural networks (Liu
et al., 2016; Kong et al., 2016; Bell et al., 2016; He
et al., 2016) and the SVM (Felzenszwalb et al., 2010b;
2008; 2010a; Sadovnik and Chen, 2011; Felzenszwalb

and McAllester, 2007; Girshick et al., 2011; Hosang et
al., 2016).

Shotton et al. (2005) proposed a partially supervised
learning method using local contour-based features.
Lazebnik et al. (2006) presented a method based
on approximate global geometric correspondence by
partitioning the image into increasingly fine sub-regions
to compute corresponding histograms of local features.
Rigamonti et al. (2011) evaluated the impact of sparse
representation on the performance of image classification,
and reduced the computational cost of sparse filters by
computing linear combinations of a small number of
separable filters (Rigamonti et al., 2013).

The discriminatives part-based model (DPM)
proposed by Felzenszwalb et al. (2010b) is a famous
object detection approach that models unknown part
positions as latent variables in an SVM framework.
The model contains three parts: HoG features, the part
model and the latent SVM. Significant object detection
performance has been achieved on the PASCAL VOC
dataset. Roughly speaking, the model can be considered
the improvement over the original HoG by calculating
and combining object templates of different scales.
Although DPM can solve the problem of pose change
to some extent, the computation cost is relatively high.
Thus Felzenszwalb et al. (2010a) proposed a method
of building cascade classifiers for the DPM model to
significantly improve its detection speed.

2.2. Markov logic network. A Markov logic network
(MLN) is employed for knowledge representation, which
is widely used in statistical relational learning that
combines the compact expressiveness of first-order logic
with the flexibility of probability (Richardson and
Domingos, 2006). In MLNs, the Markov random field
(MRF) is applied to model logic rules by considering the
literals of logic rules binary nodes of the MRF. Entities in
a relational domain are represented by predicates and their
relationships are represented in first-order logic. For a
given rule fe1∧fe2∧. . .∧fen → fh, fe1∧fe2∧. . .∧fen is
called a precondition that can be seen as evidence, and fh
is called a post-condition. The set of logic rules is called
a formula. Assigning a value to each logic rule is called a
grounding. The learning algorithms are often expressed as
stochastic sampling techniques such as Gibbs sampling,
Markov chain Monte Carlo, and contrastive divergence.
During the learning process, a ground MRF is initialized
by the weighted logic formulae. The weights indicate the
likelihood of the formulae being true. The knowledge
base is defined by the combination of the formulae and
the corresponding weights.

The effectiveness of the MLN in the realm of
data mining have been proven (Singla and Domingos,
2006; Neville and Jensen, 2007). Recently, it has
been introduced in computer vision tasks to construct
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high-level knowledge to achieve high-level scene analysis
(Faria et al., 2014; Zhu et al., 2014; Kembhavi et al.,
2010; Xu and Petrou, 2010; Xu et al., 2011; Liu
and von Wichert, 2013). Zhu et al. (2014) proposed
a knowledge base representation for reasoning object
affordance by harvesting diverse information. The method
could achieve outstanding results for predicting the object
affordances. Xu and Petrou (2010) proposed a Markov
logic network-based logic-rule learning approach for
scene interpretation to learn soft-constraint logic rules
and label the components of a scene. Liu and von
Wichert (2013) combined data driven Markov chain
Monte Carlo sampling and inference using rule-based
context knowledge, and proposed an abstract model of the
perceived environment.

3. Semantic rule inference (SRI)
classification framework

The motivation behind our work is to build a knowledge
base with both semantic and visual attributes to further
improve the performance of indoor scene classification. In
this section, we first introduce the hierarchical structure
of indoor scenes described by both semantic and visual
attributes in Sections 3.1 and 3.2, then present our
learning method to construct a knowledge base combining
hierarchical semantics and visual attributes implemented
by the MLN for classification in Section 3.3. After that
the framework is summarized in Section 3.4.

3.1. Hierarchical structure detection. Seeing is
not the same as understanding. Obtaining an image
is just one small step in the process of acquiring the
information associated with it, yet much work remains to
be done. Regarding the similarity of an indoor scene, it is
often categorized globally by analyzing the entire image.
However, this approach is sometimes inappropriate,
because only part of the image is similar. This is
often ignored in previous research into indoor scene
classification. It is common for both similar and dissimilar
structures to exist in different indoor scenes, owing to
the fact that the same kinds of sub-scenes are common
among images. Indeed, similarity is double-edged. On
the one hand, it is important for training classifiers. On
the other, it risks confusing the classifier and resulting in
misclassifications. One reason why the problem of indoor
scene classification is challenging is that both similarity
and dissimilarity exist among different scenes. That is
why the hierarchical structure of indoor scenes should
be investigated to deal with this problem. Some sample
images are provided in Fig. 1. From the figure we can
see that although the ceilings of both a greenhouse and
an airport are similar, there exist significant dissimilarities
between other hierarchies, providing enough information

to tell them apart. This is the basic motivation for the
proposed method.

During the past few years, hierarchical methods have
been proposed to deal with the characteristics of indoor
scenes. The methods can be roughly divided into two
types: building hierarchical semantics (Marszałek and
Schmid, 2007; Li-Jia et al., 2010; Deng et al., 2011;
Bannour and Hudelot, 2012b; 2012a), and developing
hierarchical models (Fei-Fei and Perona, 2005; Gupta
et al., 2009; Porway et al., 2010). Building hierarchical
semantics is helpful for improving the performance of
image classification, making it easier to deal with a
large-scale dataset. Developing hierarchical models is
another way of describing the classification process in
detail. For hierarchical semantics, the hierarchy of a
scene is seldom explored, limiting the ability to further
improve the accuracy. Methods based on hierarchical
models devote to model the whole scene by extracting
features from different areas. These two kinds of methods
ignore the importance of the visual attributes in the
learning process, which is also important in classification
(Zhu et al., 2014). Moreover, these methods are not
able to achieve the inference process like a human
does. Thus, in this paper, we model the whole scene
with both semantics of different areas and corresponding
visual attributes. Three hierarchies were defined for
an indoor scene according to the context of the image:
the upper, middle, and lower hierarchies, representing
the structures such as ceiling, wall and floor that can
be obviously distinguished. Each hierarchy chiefly
contains a single dominant semantics that constitutes the
rules for training the classifier for indoor scenes. The
hierarchical structure of an image is constructed upon
detected objects since an indoor scene can be easily
enumerated, and often composed of several common
objects of different positions. Thus we design a relatively
fixed hierarchical structure composed of up to three
layers, and the number of hierarchies of an image flexibly
depends on the results of object detection. Therefore, for
each image the number of hierarchies is determined by
the detection results. The scene is inferred by combining
the hierarchical semantics of different areas and the visual
attributes. The motivation behind this work is to focus
the classifier on objects located in different parts of
the image to improve the quality of the visual words.
Unlike traditional methods, the proposed framework is
able to reduce the interference between the corresponding
hierarchies caused by similarity, because two images can
be distinguished insofar as their hierarchy is different.
Samples of the hierarchical structure of indoor scenes with
different numbers of hierarchies are shown in Fig. 2.

3.2. Evidence of the knowledge base. A knowledge
base (KB) refers to a repository of entities and rules
that can be used for problem solving. The KB can
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Greenhouse
two hierarchies)

Airport
(three hierarchies)

similar

dissimilar

Fig. 1. Sample scenes with similar and dissimilar hierarchies. We can see that due to the context of indoor scenes, despite the number of
hierarchies between different images, similar areas are on the same hierarchies. Thus, although there exist similarities between
different images, it is still possible to distinguish them by the areas that are not similar. Hence the similarities between different
scenes are related to the corresponding hierarchies.

Upper hierarchy (ceiling)

Middle hierarchy (window)

Lower hierarchy (seat)
Waiting area (with 
three hierarchies)

Lower hierarchy (painting)
Studio (with 

one hierarchy)

Middle hierarchy (screen)

Lower hierarchy (seat)
Theater (with 

two hierarchies)

Fig. 2. Sample of indoor scenes with different hierarchical structures.

also be treated as a graph where the nodes denote the
entities and the edges denote the general rules between
nodes, indicating the relationships. The entities in our KB
consist of object attributes. Here we choose two types of
attributes to describe an object.

• Visual attributes are low-level knowledge acquired
from visual features, describing how the object
appears. We chose the visual features proposed
by Farhadi et al. (2009) to describe the visual
appearance. Here we chose the visual attributes1 as
listed by Zhu et al. (2014).

• Hierarchical attributes represent semantic
understanding of a human on the object. To
construct a more compact KB, hierarchical
categories are abstracted to form a higher level
of semantics (Lorenza Saitta, 2013) (e.g., closet
and shelf belong to the wardrobe). All categorical
attributes of indoor scenes are given in Fig. 3.

Here we model the strong correlations between
attributes of entities by attribute–attribute relations.

1Visual attributes: boxy 2D, boxy 3D, clear, cloth, feather, furniture,
arm, furniture back, furniture leg, furniture seat, furry, glass, handlebars,
head, horizontal cylinder, label, leather, metal, pedal, plastic pot, rein,
round, saddle, screen, shiny, skin, tail, text, vegetation, vertical cylinder,
wheel, wood, wool.

Positive weights indicate a positive correlation between
two attributes whereas negative weights indicate that
these attributes are not likely to co-occur, and zero
weights make no statement about whether the relations are
probable.

Fig. 3. Semantic category attributes used for constructing
the KB.

3.3. Learning of logic rules. For the task of scene
classification, the first-order logic is in the form of
L1 ∧ . . . ∧ Ln ⇒ A to represent the relationship
between attributes and the result. Here we treat the
collected semantic hierarchies and visual attributes
as the preconditions and the labels of each scene as
the post-condition for the logic rules. Given a set of
constants C = {c1, c2, . . . , c|C|} containing categories
and attributes of different hierarchies, a Markov network
is defined as follows (i) the nodes in the Markov
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network are groundings of predicates, (ii) all nodes
whose corresponding predicates appear in the same
formula form a clique in the Markov network, (iii)
each clique is associated with a feature. The weight
of the feature is the weight of the formula, ω1. Here
we take one formula of Fig. 4, isA(x,Category) ∧
hasAttribute(x,Attribute) ⇒ isA(u,Category), for
example. Suppose x ∈ {chair , book}, Attribute =
{furniture leg} and Category = {classroom, closet};
then there are four cliques in the Markov network as
follows:

ω isA(x,Chair) ∧ hasAttribute(x, furniture leg)
⇒ isA(u, classroom),

ω isA(x, book) ∧ hasAttribute(x, furniture leg)
⇒ isA(u, classroom),
ω isA(x,Chair) ∧ hasAttribute(x, furniture leg)
⇒ isA(u, closet),
ω isA(x, book) ∧ hasAttribute(x, furniture leg)
⇒ isA(u, closet).

(1)

The MLN is able to answer arbitrary queries such as
“What is the probability that formula F1 holds given that
F2 does?”. The goal of inference of the MLN is to assign
a value to a variable X which contains the truth values for
each predicate. Thus logic rules for scene interpretation
have to be learnt first. The joint distribution over a set
of variables X = (X1, X2, . . . , Xn), i.e., the possible
worlds of the MLN, is given by

P (X = x) =
1

Z
exp

( n∑
i=1

ωimi(x)
)
, (2)

where Z is the partition function for normalization,
n is the number of the first-order formulae in the
MLN, and mi is the number of true groundings of
the formula. For the situation listed above, X =
(isA(chair), isA(book), hasAttribute(furniture leg),
isA(classroom), isA(closet)). There are four formulae
and one true-grounding, thus n = 4, and m1 = 1, m2

to m4 equal zero. As shown in Fig. 4, given the data
domain D formed by the collected evidence, the formulae
F and the predicates P , the purpose is to learn the
ground formulae G, and the optimal weights ω∗ are learnt
by maximizing the pseudo-likelihood using the L-BFGS
algorithm (Richardson and Domingos, 2006).

To answer the queries, the MLN infers the
probability or the most likely state of each query from the
evidence. For a specified logic rule, the probability that
the post-condition fh generated from the testing sample
x is true can be queried given the already known MLN
M and preconditions as the evidence, expressed by fe =

{fe1, . . . , fen}, and can be calculated as

P (fh|fe,M}) = P (fh ∧ fe|M)

P (fe|M)

=

∑
x∈(χfh

∩χfe )

P (X = x|M)

∑
x∈χfe

P (X = x|M)
,

(3)

where χfh/χfe is the set of worlds in which fh/fe holds.
For the situation mentioned above, fei corresponds to the
formulae in Eqn. (1). Thus, for a given query formula
fh, the MLN will evaluate the similarities between the
input query fh and the generated rules fei by Eqn. (2)
and determine the corresponding category.

3.4. Proposed framework. Given the collected
evidence, we construct the knowledge base by learning
the relations. In this paper, we choose the MLN as
the inference engine. This is because according to the
characteristics of the MLN the framework can be easily
extended for transfer learning problems. This means
that the proposed framework is able to manipulate the
previously acquired knowledge to answer a new question
(Bottou, 2013; Zhu et al., 2014). Also, compared with
the naive strategy, the MLN is more effective in dealing
with conflict rules generated from similar scenes. The
structure of the knowledge base of the proposed SRI
framework implemented by the MLN is summarized in
Fig. 4. The knowledge base is constructed by domain
D, predicates P , random variables X , formulae F and
ground formulae G. Both X and F are pre-defined for
the task of indoor scene classification. Here, X and F
are defined according to the number of hierarchies as
shown in Fig. 2. Semantic attributes are represented by
the predicate isA, and visual attributes are represented by
the predicate hasVisualAttribute. Random variables are
generated by an assignment of P with evidence collected
from indoor scenes. G stands for the true formula
after the assignment of F with X . The semantic and
visual attributes are merged by predicates of the formulae.
From a top-down view, the MLN serves as a formalism
that provides particular probabilistic semantics. From a
bottom-up view, the MLN is a particular way of compactly
representing generalized features.

4. Experimental results

In this section, the overall performance of the proposed
SRI framework was evaluated on the MIT’s indoor
scene-recognition database. Tests were divided into two
parts containing vertical and horizontal comparisons to
demonstrate the effectiveness of our work. First, we
focused on the performance of SRI with different module
settings. Then, SRI was compared with other relevant
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Step 2: KB learning

Entities & Rules of the Knowledge base 

MLN Predicates P

isA(Category)
hasVisualAttribute(Attribute)

Domain D

Hi e ra r c h ic a l  a t t r i bu t e s : 
Ceiling, Seat, Food, Board, 
Chair,…

Visual at tributes:  Round, 
Boxy2D, Seatable, Board,...

Random Variables X

isA(Ceiling)                                         isA(Seat)
isA(Food)                                    isA(Board)
isA(Chair)                             hasAttribute(Round)     
hasAttribute(Boxy2D)      hasAttribute(Seatable)              
hasAttribute(Board)

Possible Worlds W

All possible assignments 
o f t rue va lue s  to  the 
variables in X

MLN Formulas F

1, . ( , ) ( , )x isA x Category hasAttribute x Attribute�� � �

2 , . ( , ) ( , )x isA x Category hasAttribute x Attribute�� � �
. ( , ) ( , )y isA y Category hasAttribute y Attribute�� �

( , )isA u Category� �
3, . ( , ) ( , )x isA x Category hasAttribute x Attribute�� � �

( , )isA u Category� �

. ( , ) ( , )y isA y Category hasAttribute y Attribute�� �

. ( , ) ( , )z isA z Category hasAttribute z Attribute�� �
( , )isA u Category� �

Visual attributes

Hierarchical attributes

1, ( , ) ( , )isA x Food hasAttribute x Round�� �

2 , ( , ) ( , 2 )isA x Ceiling hasAttribute x Boxy D�� �

3, ( , ) ( , 2 )isA x Ceiling hasAttribute x Boxy D�� �

( , ) ( , )isA y Seat hasAttribute y Seatable� �

( , ) ( , )isA y Board hasAttribute x Board� �
( , ) ( , )isA z Chair hasAttribute z Seatable� �

Ground Formulas G

…

( , )isA u Buffet� �

( , )isA u Airport� �

Evidence

( , )isA u Classroom� �

Fig. 4. Overview of the knowledge base learning process.

methods for a horizontal comparison. The corresponding
results are provided in the following subsections.

4.1. Experimental settings.

4.1.1. Dataset. The MIT’s indoor scene-recognition
dataset (MIT, n.d.) contains 67 indoor categories in a
total of 15,620 images loosely divided into five abstract
categories: home, store, public places, leisure, and
working places. The resolution of the smallest axis for
all images in this dataset is larger than 200 pixels. The
uniqueness of this dataset lies in the fact that, unlike
outdoor scenes that can be roughly described with global
scene statistics, indoor scenes tend to be much more
variable in terms of the objects they contain. As such,
unlike in other datasets such as Caltech-101, the distance
between different categories is not significant. With the
dataset from the MIT, it is sometimes confusing even for
humans to distinguish between pairs of samples.

4.1.2. Detailed settings. In experiments, the MIT
dataset was equally and randomly divided into training
and testing sets. The knowledge base is constructed from
the training dataset with ProbCog (Hall et al., 2009).
The method implemented by Vondrick et al. (2013) was
used to visualize the object detection results. Two-fold
cross validation was used to compare our proposal with
other methods, and the mean precision was reported.
Mean-average precision (MAP) was used as a metric to
evaluate the performance of the approaches.

We conduct several experiments, including vertical
comparison, horizontal comparison, partial observation
and diverse query, to prove the effectiveness and
robustness of the proposed framework. In vertical
comparison, different settings of the proposed SRI
framework are evaluated for the overall comparison.

In horizontal comparison, SRI is compared with other
relative classification methods. In partial observation
and diverse query, SRI is trained and tested by partial
evidence and data. For the experiments of classification,
we compare the performance of seven methods, including
both single-feature and multi-feature ones:

(a) The traditional bag of visual words classification
method (Csurka et al., 2004). BoVW is one of the most
widely used methods for object classification based on
vector quantization. SIFT was chosen as the feature
descriptor. The size of the code book is 1000. The SVM
is utilized as the classifier.

(b) The method proposed by Quattoni and Torralba
(2009). SIFT and GIST were chosen as the feature
descriptors.

(c) DPM (Felzenszwalb et al., 2010b). The DPM is
a successful object detector that directly improves the
traditional HoG. The object detector implemented by the
authors is utilized for the object detection task.

(d) Object bank (Li et al., 2014). The object bank method
offers high-level encoding of an object’s appearance and
spatial location information for image recognition. HoG,
texture, location and geometry were chosen to train its
SVM object detector (Felzenszwalb et al., 2010b) and the
Hoiem classifier (Hoiem et al., 2005).

(e) Multi-scale BoVW (Zhou et al., 2013). This
framework introduces multi-scale information to
the original BoVW to improve the performance of
classification. The size of the codebook is 200. SIFT is
chosen as the feature descriptor.

(f) ISPRs (Lin et al., 2014). The ISPR classification
method jointly learns spatial-pooling regions with
discriminative part appearance in a unified framework for
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scene classification. Settings described by the authors are
used for comparison.

(g) CNN-SVM (Sharif Razavian et al., 2014). We use the
implementation of a CNN described by the authors, and
data augmentation is done by providing 16 representations
for each sample (original image, 5 crops, 2 rotations and
their mirrors).

4.2. Experimental results.

4.2.1. Vertical comparison results. In the vertical
experiments, we first show the statistical distribution of
rules of the dataset, and then evaluate the performance of
the proposed framework with different modular settings.
Figure 5 shows the results of evidence collection. Both
the hierarchical and visual attributes are visualized in the
figure. The process of automatical hierarchy detection
is achieved by the DPM (Felzenszwalb et al., 2010b).
The hierarchical structures are automatically constructed
according to their spatial context in the image. Visual
attributes are detected with the method proposed by
Farhadi et al. (2009). Evaluation on different settings of
the proposed method is given in Table 1.

For a single hierarchical structure, the model
degraded to a common classifying method. The results
show a substantial improvement in the performance
with the proposed hierarchical structure, and using
both hierarchical and visual attributes to construct
the knowledge base is beneficial for improving the
performance classifying indoor scenes. This is due
to the fact that indoor scenes are typically complex.
It is common to find multiple objects in the same
scene, and classifying such samples merely with global
features introduces noise that affects the performance.
The introduction of a hierarchical structure divides and
annotates the indoor scenes into several hierarchies, and
combines the categories from each hierarchy to obtain a
universal category, considerably improving the quality of
the classification. Also, visual attributes are an important
factor for us to interact with the real world. Top positive
and negative weighted relations are listed in Fig. 6.
Detailed classification results on concluded and detailed
classes (Quattoni and Torralba, 2009) are given in Fig. 7
and Table 2.

Table 1. Performance of the proposed framework with different
settings.

Strategy MAP

Single hierarchy – Visual attribute 40.6
Single hierarchy + Visual attribute 43.7

Multiple hierarchy – Visual attribute 49.1
Multiple hierarchy + Visual attribute 53.4

4.2.2. Horizontal comparison results. In this
subsection, we compare the proposed framework with
other methods based on visual and semantic attributes,
including the classic BoVW (Csurka et al., 2004), the
prototype-based model (Quattoni and Torralba, 2009), the
DPM (Felzenszwalb et al., 2010b), the object bank (Li
et al., 2014), the multi-scale BoVW (Zhou et al., 2013),
and the important spatial pooling regions (ISPRs) (Lin
et al., 2014).

Table 3 shows the results of the proposed SRI
compared to other scene-classification methods.
Performance is evaluated by mean average precision
(MAP). BoVW was used as baseline. The proposed
SRI framework detected the objects in each hierarchy,
exhibiting their spatial relationship according to the
semantic hierarchical structure. Furthermore, SRI
introduced visual attributes to construct the knowledge
base. Thus, the proposed SRI framework is effective
for indoor scene classification, and it consistently
outperformed other methods.

4.2.3. Robustness and diverse query. The ability of
inferring from partial observation is an important feature
of humans. The trend of knowledge-based querying
methods is to achieve performance comparable with
that of a human. Besides, robustness and diversity
are also important factors to reflect the quality of the
KB. In this section we will show the robustness and
diversity of the proposed model. Inspired by Zhu et al.
(2014), we designed the tests using partial evidence and
different semantic granularity. First we demonstrate
the robustness of SRI by testing the performance of
our model in classification, given a randomly selected
portion of evidence for the learning process. Then we
evaluate the performance of SRI with rules generated
from different indoor scenes of the same abstract category,
i.e., we test the performance of the generated KB from a
coarse-grained level, which differs from Section 4.2.2 in
that the performance of the generated KB is tested with
exactly the same category we used for learning. The
purpose of this test is that it is unable to guess what query
it may receive from a user from the perspective of the KB
in practice, and dealing with this kind of query is also
important to evaluate the quality of the generated KB.

For the experiments of partial observation of the
CNN, the network is trained with a dataset of which
some inherited categories are randomly removed, and
the network is tested by the whole categories. The
performance is measured from the viewpoint of all the
five abstract categories. For example, for the categories
“bedroom” and “kitchen” under the abstract category
“home”, we remove “bedroom” and use “kitchen” to train
the whole network. Then we will test the network with
both bedroom and “kitchen”. If “bedroom” is categorized
as any other inherited categories under “home”, it
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Table 2. Detailed experimental results on the MIT indoor dataset.
Abstract categories Categories Number of samples Accuracy

Store

Bakery 405 0.493
Grocery store 213 0.614
Clothing store 106 0.503

Deli 258 0.491
Laundromat 276 0.546

Jewellery shop 157 0.341
Bookstore 380 0.464
Video store 110 0.527

Florist 103 0.608
Shoe shop 116 0.382

Mall 176 0.315
Toystore 347 0.446

Home

Bedroom 662 0.488
Nursery 144 0.593
Closet 135 0.652
Pantry 384 0.566

Children room 112 0.451
Lobby 101 0.486

Dining room 274 0.532
Corridor 346 0.674

Livingroom 706 0.531
Bathroom 197 0.596
Kitchen 734 0.562

Stairscase 155 0.587
Winecellar 269 0.546

garage 103 0.585

Public
space

Prison cell 103 0.468
Library 107 0.663
Cloister 120 0.314
Church 180 0.832

Waiting room 151 0.523
Museum 168 0.412
Elevator 101 0.804

Pool inside 174 0.564
Inside bus 102 0.678

Inside subway 457 0.564
Subway 539 0.447

Locker room 249 0.645
Trainstation 153 0.458

Airport inside 608 0.497
Auditorium 176 0.787

Working
place

Hospital room 101 0.614
Kinder garden 127 0.399

Restaurant kitchen 107 0.401
Artstudio 140 0.373

Classroom 113 0.708
Laboratory wet 125 0.348
Studio music 108 0.603

Operating room 135 0.474
Office 109 0.298

Computer room 114 0.659
Warehouse 506 0.439

Green house 101 0.728
Dental office 131 0.651

Tv studio 166 0.548
Meeting room 233 0.458

Leisure

Buffet 111 0.719
Fastfood 116 0.503

Concert hall 103 0.646
Restaurant 513 0.388

Bar 604 0.501
Movie theater 175 0.457

Gameroom 127 0.539
Casino 515 0.508

Bowling 213 0.723
Gym 231 0.548

Hairsalon 239 0.427
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Data source Hierarchical attribute Visual attribute

DPM DPM

DPM DPM

DPM DPM

isA(Food) ^ hasAttribute(Round)

isA(Ceiling) ^ hasAttribute(Boxy2D)

isA(Ceiling) ^ hasAttribute(Boxy2D)  

isA(Chair) ^ hasAttribute(Seatable)

isA(Board) ^ hasAttribute(Board)

isA(Seat) ^ hasAttribute(Seatable)

Extracted evidence

Fig. 5. Sample of a hierarchical structure and detected visual attributes of indoor scenes. The features of the DPM are visualized in
the middle column. Detected visual attributes are marked in the image. Extracted evidence of scenes with different hierarchical
structures is given in the last column. (The image is best viewed in color.)

Table 3. Comparative results with relevant methods on the MIT
indoor dataset.

Methods MAP

BoVW (Csurka et al., 2004) 12.7
ROI+GIST (Quattoni and Torralba, 2009) 26.1
DPM (Felzenszwalb et al., 2010b) 30.4
Object bank (Li et al., 2014) 37.6
Multi-scale BoVW (Zhou et al., 2013) 46.5
ISPRs (Lin et al., 2014) 50.1
CNN-SVM (Sharif Razavian et al., 2014) 58.4
SRI 53.4

is considered correct, otherwise if it is categorized
under other abstract categories, such as “leisure”, the
classification is considered incorrect.

The results of robustness and diverse query are
respectively given in Figs. 8 and 9. The abstract categories
are given by Quattoni and Torralba (2009). From the
figures we can see that compared with the method based
on classification (Zhou et al., 2013), the knowledge-based
SRI model is more robust to the variation in evidence.
Meanwhile, the KB can answer diverse queries although
it is not specially trained for this kind of test. This
is because combining visual attributes and semantic
categories improves the quality and robustness of the
knowledge base.

Although the CNN-based method achieved the best
performance in horizontal comparison, when the evidence
of unobserved raises, the performance of the CNN

decreases significantly compared with that of SRI. This is
because SRI combines both semantic and visual attributes
in constructing the knowledge base, which is more
descriptive than low-level visual features used by the CNN
and other deep learning methods. Moreover, there exist
several inevitable problems for CNN-based methods:

(i) The parameters of the CNN need to be carefully
tuned to get satisfactory performance. It is heavily
dependent on the experience of the experts, and is
much easier for the proposed SRI framework.

(ii) The network needs a large amount of data; this
will lead to the result that training the structure
of the CNN is expensive in both purchasing
special hardware and consuming huge computational
resources. According to Sharif Razavian et al.
(2014), the training of CNN consumes several
weeks on Tesla K40 GPUs, while the proposed SRI
framework took several days to be trained on a
quad-core CPU;

(iii) The CNN-based method is not necessarily able to
receive original images, which means the images
should be pre-processed before the training process
(Sharif Razavian et al., 2014; Dixit et al., 2015).
This will introduce additional processing cost for
large scale datasets. There is no such extra costs
for the proposed SRI framework. Therefore, the
proposed and other inference methods based on
knowledge inference remains valuable in the era of
deep learning.
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2.876 ( ) ( ) ( )
1.923 ( ) ( 2 ) ( ) ( ) ( )
0.951 ( ) ( ) ( )
0.752 ( )

isA Vehicle hasAttribute Mental isA Garage
isA Ceiling hasAttribute Boxy D isA Seat hasAttribute Seatable isA Airport
isA Food hasAttribute Round isA Buffet
isA Ceiling ha

� �
� � � �

� �
� ( 3 ) ( ) ( 2 ) ( ) ^ ( 3 ) ( )

0.687 ( ) ( 3 ) ( )
sAttribute Boxy D isA Window hasAttribute Boxy D isA Bed hasAttribute Boxy D isA Bedroom

isA instrumentality hasAttribute Boxy D isA Studiomusic
� � � �

� �

(a)

3.082 ( ) ( ) ( )
2.875 ( ) ( ) ( )
2.753 ( ) ( 3 ) ( ) ( ) ( )
1.8

isA Chair hasAttribute Seatable isA Bathroom
isA Clothes hasAttribute Cloth isA Cloister
isA Ceiling hasAttribute Boxy D isA Vehicle hasAttribute Mental isA Kindergarden

� � �
� � �
� � � � �
� 23 ( ) ( 2 ) ( ) ( 3 ) ( )

1.742 ( ) ( 2 ) ( ) ( ) ( )
isA Ceiling hasAttribute Boxy D isA Wardrobe hasAttribute Boxy D isA Diningroom
isA Window hasAttribute Boxy D isA Seat hasAttribute Seatable isA Florist

� � � �
� � � � �

(b)

Fig. 6. Top weighted rules. The rules can be well interpreted. For instance, the first rule in the second image means that a chair is less
likely to appear in a bathroom: top positive rules (a), top negative rules (b).

5. Conclusion

In this paper, we investigated the indoor scene
classification problem and proposed a novel semantic rule
inference (SRI) framework. The structure of semantic
hierarchies exists in indoor scenes, and the proposed
hierarchical structure is able to distinguish both scenes
of different categories with similar hierarchies and those
of the same categories with different hierarchies. We
proposed an inferential framework based on which the
knowledge base is constructed with both the hierarchical
structure and visual attributes. Experimental results
demonstrated the effectiveness and robustness of the
proposed SRI framework.
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